当前位置:文档之家› 华东师范大学 数学分析 第10章

华东师范大学 数学分析 第10章

华东师范大学 数学分析 第10章
华东师范大学 数学分析 第10章

第十章 定积分的应用

课后习题全解

§1 平面图形的面积(教材上册P242)

1.求由抛物线y=x 2与y=2-x 2所围成图形的面积。 解 该图形如图10-1所示.

先由2

22{

y x y x ==-求出两线交点(±1,1),所求面积为

A=22

211[(2)](22)11

x x dx x dx --=---??=()31212|x x --=83. 2.求有曲线|ln |y x =与直线1,10,0x x y ===所围成图形的面积.

解 该图形如图10-2所示.

110ln ln 0.11A xdx xdx =-+?

?

=1100.11(ln )|(ln )|x x x x x x -++- =110(99ln1081)-

3.抛物线22y x =把圆228x y +≤分成两部分,求这两部分面积之比.

解 先由22228{

y x x y =+=

求出圆与抛物线交点为()2,2±. 设这两部分面积分别为1s 及2s (图10-3)

2

2

120

2)y s dy =?

=328

1

026arcsin )|y =432π+

128s s π+= 12/(32)/(92)s s ππ∴=+-

4.求内摆线33cos ,sin (0)x a t y a t a ==>所围成图形的面积.(图10-4).

解 40

a

s ydx =?

2

22422

2

460

38

4(3sin cos )12(sin sin )a a t t dt

a t t dt

π

ππ=-=-=

??

5.求心形线(1cos )(0)r a a θ=+>所围成图形的面积. 解 如图10-5所示

()2

212

21cos 0

s a d π

θθ

=?

+?

=

232

a π

6.求三叶形曲线所围成图形的面积. 解 如图10-6所示. 2

2

2

12

4

6sin 3a s

a

d a ππ

θθ=?

=

?

§2 由平行截面面积求体积(教材上册p246)

1. 如图10-9所示,直椭圆柱体被通过底面短轴的斜平面所截.试求截得楔形体的体积.

解 如图10-10所示,用垂直Oy 轴的平面截割,得一直角三角形PQR 设OP=z,则

高5

1102OR x x ==从而它的面积为

2

1

112

24x x x ??=

xOz 平面上椭圆方程为

2

22

41x z +

=

则PQR ?面积为()

2

2

4251Z -于是所求体积

()(

)

2

22425100

04422512|0

z z z V dz -=-=?

?

4003=

2. 求下列平面曲线绕轴旋转所围立体的体积.

2

2

2(1)sin ,0,2,1,y a b y x x t ππθ=≤≤≤≤+=2x 绕x 轴.

(2)x=a(t-sint),y=a(1-cost)(a<0),0绕x 轴.(3)r=a(1+cos )(a>0),绕极轴。(4)绕y 轴.

()21()b V y x dx a

π=?

22

2

sin

0V xdx ππ

π

==

?

2(2)()()b

V y t dx t a

π=?

223

2(1cos )(1cos )50

V a t a t dt a πππ=--=? 3

23

(3)()sin ,0,0()V r d r r π

βθθθαθβπθα=

≤≤≤≤≤≤?

3

32283

32(1cos )sin a V

a d ππβθθθα

=?

+=?

2

2

2

222

2224

31,2(1)0

y x a b b a y a a V y dx b dx ab a ππππ+====-=-??(4)由得则 3.以知球半径为r ,验证高为h 的球缺体积(图10-11)

2

3()()h

V h r h r π=-≤

解 22()r h

V

r x dx π-=-?

()

22

3

x r r x r h π

=--

()2

3h h r π=-

§3 平面曲线的弧长与曲率(教材上册P252)

1.求下列曲线的弧长

(

)()3

2

33331,04;

1;

(3)cos ,sin (0),02;

(4)cos sin ,(sin cos )(0,02);(5)sin (0,03);(6)(0),02.

y x

x x a t y a t a t x a t t t y a t t t a t r a a r a a θππθπθθπ=≤≤+===>≤≤=+=->≤≤=>≤≤=>≤≤ 解

(1)s =?

827

1)s ==?

44(2)cos (),sin x t y t ==

s =

1

2

2

22

11

22

4sin cos

2[2(sin)](sin)

1ln(1

t

t d t

π

=

=--

=++

?

?

222

333

33

(3),cos,sin(0,02)

x y a x a t y a t a tπ

+==?=>≤≤化为设

2

3

S

π

=?

3

2

2

sin2

6

a t dt

a

π

=

=

?

at

==

22

2

22

2

00

a

S atdt t a

ππ

π

===

?

2

3

sin1012

=-

(图)

32

3

32

sin a

S a d

π

ππ

θ

==

?

2

(6)Sπθ

=?

1

2

1

2

2

ln(

[ln(2

a

a

π

θ

ππ

=++

=++

§4 旋转曲面的面积(教材上册P225)

1.求下列平面曲线绕指定轴旋转所得旋转曲面的面积

2

2

2222(1)sin ,0,(2)(sin ),(1cos )(0),02;

(3)1,()(),y x

a b

y x x x a t t y a t a t y a r r a ππ=≤≤=-=->≤≤+=+-=<2绕x 轴;

绕y 轴;(4)x 绕x 轴.

解 (1)'cos y x = 由旋转体侧面积公式得

2sin 2S π

π

ππ==-??

2ln 1]π=++

(2)2(1cos )0

S a t π

π=-??

22

32

643

22(1cos )2sin 0

16sin 0

t

a t a dt a

udu

a πππ

ππ=-?==

?

?

212(3)'()[(1),y a b

b y a y ?-=?=--?

2

2

22222122

['()][(1)](1)y b a

a b b

y y y y b ?-=--?=-? 22222

122222(),a b y a y y b b b y

--=?=-

2(2b b

S y b b π?π==--??

2

2,

;

,2[

[ln

b

b

a

b S a a

b

a

a a

b

π

π

π

π

=

-

<=+

?

2

2

当a=b时,S=4

当a时

b

当a>b时,S=2

(4)此圆分成两个单支

2(2(

y a y a

r r

S a a

r r

ππ

=+=-

=++-

--

??

2

4ar

π

=

2.设平面光滑曲线由极坐标方程

[]()

(),([,]0,,0 r r r

θαθβαβπθ

=<<<≥

给出,试求它绕极轴旋转所得旋转曲面的面积计算公式。

sin,cos

y r x r

θθ

==

''sin cos,''cos sin

y r r x r r

θθθθ

=+=-

旋转曲面

2(

S y

β

πθθ

α

=?

2sin

2sin

r

r

β

πθθ

α

β

πθθ

α

=

=

?

?

3.试求下列极坐标曲线绕极轴所得旋转曲面的面积

(1)心形线(1cos)(0)

r a a

θ

=+>

(2)双纽线22

2cos2(0)

r a a

θ

=>

(

)12(1cos )sin 0

S a π

πθθ=+?

324

2

24cos 028cos

sin

2

2

325

a a d a ππθθ

π

θ

θ

πθ

π===

??

(

)4

222sin 0y π

πθθ=??

(2

42a π=-

§5 定积分在物理中的某些应用(教材上册P259)

1.有一等腰梯形闸门,它的上、下两底边各长10米和6米,高为20米。计算当水面与上底边相齐时闸门一侧所受的静压力。 解 如图(10-14)所示

阴影部分即从深度x 到x+x ?这一窄条上的静压力为 F P S ?=?

106

(10)

20

(105)(Vx x x Vx x x V -=??+

?=-?为液体比重,下同)

20(10)05

x

F Vx dx

∴=-?所求静压力为 32

3

2

20(5)

15209.8(520)15

14373.33x V x kN

=-=??-=

2.边长为a 和b 的矩形薄板,与液面成(090αα<< )角斜沉于液体中。设a>b ,长边平行于液面,上沿位于深h 处,液体的比重为V 。试求薄板每侧所受的静力。

解 如图(10-15)所示

(sin )sin dx

F V a h b x αα

?=?+-

()sin 1

sin 0sin b F Va h b x dx ααα

∴=+-?

22sin sin (sin )00

sin 2sin 1

sin 2

b b aV aV h b x x

abVh Vab αααααα=+?-=+??

3.直径为6米的一球浸入水中,其球心在水面下10米处。求球面上所受静压力。

解 如图10-16所示建立坐标系 球面在水深xm 处所受压力的微元为

213

27dF F ππ=∴=?球面所受总压力

1108.35()kN ≈

即球面上所受总压力为1108.35kN.

4.设在坐标轴的原点有一质量为m 的质点,在区间[,][0]a a l a +>上有一质量为M 的均匀细杆,试求质点与细杆之间的引力。

解 如图10-17,以质点为原点,取一微元x ?,距原点x ,m 与x ?间的引力为

2

x km M

l

F

x

???=

∴m 与M 间的引力为

2111()a l kmM kmM kmM

F dx a l x l a a l a a l +??=?=?-= ?++??

? 5.设有两条各长为l 的均匀细杆在同一直线上,中间离开距离c ,每根细杆的

质量为M 。试求它们之间的万有引力。(提示:在第4题的基础上再作一次积分)。

解 如图10-18所示

在2l 上取一微元x ?,则x ?与1l 引力为

()

x kM m l F x x l ???

?=?+

则1l 与2l 引力为

2

()

c l k M F dx c lx x c +?=+?

()2

2

22211ln (2)

c l c l k M k M dx c l x x c l c c l ++????=-= ?++??? 6.设有半径为r 的半圆形导线,均匀带电,电荷密度为δ,在圆心处有单位正电荷,试求它们之间作用力的大小。(图10-19) 解 取θ?所对应的一段导线,电荷其电量为dQ r

d δθ=?? 它与圆心处正电荷在垂直方向上引力为

2sin sin r k F k

r r

δθθ

δθ

θ????==

则导线与电荷作用力为

sin 20

k k d r

r

πδθ

δ

θ=

? 7.一个半球形(直径为20米)的容器内盛满了水。试问把水抽尽需做多少功?(如图10-20)

解 取一小薄层为微元

2222

()10()0

W V x r x x

W V x r x dx

ππ?=?-∴=-?做的总功为

224101

102

4250076969.02V x r x V kJ

ππ??=- ?

??== 8.长10米的铁索下垂于矿井中,以知铁索每米的质量为8千克,问将此铁索提出地面需作多少功? 解 取铁索的一小段为微元。(如图10-21),

华东师范大学2004数学分析试题

华东师范大学2004数学分析试题

华东师范大学2004数学分析 一、(30分)计算题。 1、求 2 1 20)2 (cos lim x x x x -→ 2、若)), sin(arctan 2ln x x e y x +=-求' y . 3、求 ?--dx x xe x 2)1(. 4、求幂级数∑∞ =1 n n nx 的和函数)(x f . 5、 L 为过 ) 0,0(O 和 )0,2 (π A 的曲线 ) 0(sin >=a x a y ,求 ?+++L dy y dx y x . )2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中) 10(,22 ≤≤+=z y x z , 取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则} {n x 至少存在一个聚点). ,(0 +∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连 续. 3、若 ) (x f , ) (x g 在] 1,0[上可积,则 ∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim .

4、若∑∞=1n n a 收敛,则∑∞ =1 2n n a 收敛. 5、若在 2 R 上定义的函数 ) ,(y x f 存在偏导数 ),(y x f x ,) ,(y x f y 且),(y x f x , ) ,(y x f y 在(0,0)上连续,则),(y x f 在 (0,0)上可微. 6、),(y x f 在2 R 上连续,} ) ()(|),{(),(22 2 r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(0 0 则.),(,0),(2 R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上有最大值或最小值。 四、(15分)求证不等式:]. 1,0[,122∈+≥x x x 五、设) (x f n , ,2,1=n 在],[b a 上连续,且) (x f n 在],[b a 上一致 收敛于 ) (x f .若 ] ,[b a x ∈?, )(>x f .求证: , 0,>?δN 使 ],[b a x ∈?, N n >,. )(δ>x f n 六、(15分)设}{n a 满足(1); ,2,1,1000 ++=≤≤k k n a a n k (2)级数∑∞ =1 n n a 收敛. 求证:0 lim =∞ →n n na . 七、(15分)若函数)(x f 在),1[+∞上一致连续,求证: x x f )(在),1[+∞上有界. 八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3 R 有连续偏导数,而且对以任意点) ,(00, 0z y x 为中心,以任意正数r 为半径的上半球面, ,)()()(:02202020z z r z z y y x x S r ≥=-+-+-

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x ) = f ( x0 ) , ( 1) 则称f 在点x0 连续. 例如, 函数f ( x ) = 2 x + 1 在点x = 2 连续,因为 又如,函数li m x → 2 f ( x) = lim x →2 ( 2 x + 1 ) = 5 = f (2 ) . f ( x) = x sin 1 x , x ≠ 0, 0 , x = 0 在点x = 0 连续,因为 lim x →0f ( x) = lim x →0 x sin 1 x= 0 = f ( 0) . 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为 Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 . 注自变量的增量Δx或函数的增量Δy 可以是正数,也可以是0 或负数. 引进了增量的概念之后,易见“函数y = f ( x ) 在点x0 连续”等价于 lim Δy = 0 . Δx→0

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析课本(华师大三版)-习题及答案04

第四章 函数的连续性 习题 §1 连续性概念 1. 按定义证明下列函数在其定义域内连续: (1)()x x f 1 = ; (2) ()x x f = 2. 指出下列函数的间断点并说明其类型: (1)()x x x f 1+ =; (2)()x x x f sin =; (3)()[] x x f cos =; (4)()x x f sgn =; (5)()()x x f cos sgn =; (6)()?? ?-=为无理数; 为有理数, x x x x x f ,, (7)()()?? ? ? ??? +∞<<--≤≤--<<-∞+=x x x x x x x x f 1,11sin 11 7,7,71 3. 延拓下列函数,使其在R 上连续: (1)()2 8 3--=x x x f ; (2)()2cos 1x x x f -=; (3)()x x x f 1cos =. 4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续。又问:若f 与2f 在I 上连续, 那么f 在I 上是否必连续? 5. 设当0≠x 时()()x g x f ≡,而()()00g f ≠。证明:f 与g 两者中至多有一个在0 =x 连续 6. 设f 为区间I 上的单调函数。证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间 断点 7. 设f 只有可去间断点,定义()()y f x g x y →=lim ,证明:g 为连续函数 8. 设f 为R 上的单调函数,定义()()0+=x f x g ,证明:g 在R 上每一点都右连续 9. 举出定义在[]1,0上分别符合下述要求的函数: (1)只在 41,31,21三点不连续的函数; (2)只在4 1 ,31,21三点连续的函数;

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

数学分析华东师大反常积分

数学分析华东师大反常 积分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十一章反常积分 §1 反常积分概念 一问题提出 在讨论定积分时有两个最基本的限制: 积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制, 考虑无穷区间上的“积分”, 或是无界函数的“积分”, 这便是本章的主题. 例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图 11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v0 至少要多大设地球半径为R, 火箭质量为m, 地面上的重力加速度为 g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为 mg R2 F = . x2 于是火箭从地面上升到距离地心为r ( > R) 处需作的功为

r mg R ∫ ∫ 2 ∫ d x = m g R 2 1 - 1 .R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = m g R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

华东师大数学分析试题

华东师大2019年数学分析试题 一、(24分)计算题: (1) 求011lim()ln(1)x x x →-+; (2) 求32cos sin 1cos x x dx x +?g (3) 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数, 试求grad z 。 二、(14分)证明: (1)11(1)n n +??+???? 为递减数列: (2) 111ln(1),1,21n n n n <+<=+???? 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之 一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导, '()f x K ≤ (K 为正常数) ,(,)x a b ∈ 证明:f 在点a 右连续,在点b 左连续。 四、(14分)设1 20(1)n n I x dx =-?,证明: 五、(12分)设S 为一旋转曲面,它由光滑曲线段

绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为: 2(b a A f x π=? 六、(24分)级数问题: (1) 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧, “死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。设 sin ,01,0()x x x x f x ≠=?=??{}[]() x a,b ()()11()()n n n f x f x f x f x f x ∈? ?,求 ()(0),1,2,k f k =L (2) 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教 谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故 ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P .3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明|||| 2 22 2c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是2 2 b a +,OC 的长度是2 2 c a +, AC 的长度为||c b -。因为三角形两边的差 大于第三边,所以有

数学分析教案(华东师大版)上册全集1-10章

第一章实数集与函数 导言数学分析课程简介( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是

可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听 为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析,高等教育出版社,2001; [2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992; [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设. 3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.

数学分析-上册--第三版-华东师范大学数学系-编

数学分析-上册--第三版-华东师范大学数学系-编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,

1 再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明| ||| 2222c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是 2 2b a +,OC 的长度是2 2c a +, a c b ) ,(b a A ) ,(c a C x y O

数学分析课本(华师大三版)-习题及答案10

习 题 十 1. 求下列曲线所围图形的面积. (1) y x x x y = ===1 14,,,0=; (2) 轴; y x y y ==3 8,, (3) ; y e y e x x x ==?,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2 380,,=1; (6) y x y y x y =+===14,,,;3 (7) ; y x x y 2 24=?=, (8) . x y y x =?=2 10(), 2. 求抛物线以及在点y x x =?+?2 4(,)03?和处的切线所围图形的面积. (,)30 3. 设曲线与直线y x x =?2y ax =,求参数,使该曲线与直线围图形面积为 a 92 . 4. 曲线与相交于原点和点f x x ()=2 g x cx c ()=>3 0()(,)11 2 c c ,求的值,使位于区间c [,01 c 上,两曲线所围图形的面积等于 23. 5. 求星形线所围图形的面积(a ). x a t y a t t ==?????≤≤cos sin 3 3 02 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积. (1) 三叶玫瑰线r =83sin θ; (2) 心形线r =?31(sin )θ; (3) r =+1sin θ与r =1; (4) r =2与r =4cos θ. 7. 证明:球的半径为R 、高为的球冠的体积公式为: h V h R = ?13 32 π()h

8. 计算圆柱面与所围立体(部分)的体积. x y a 22+=2 2 x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积. x y a 2 2 +=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为. h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积. (1) ; y x x =≤sin () 0π≤;(2) y x x y ===2 20,,(3) y x y x == 2,; (4) ; y x x e =≤ln () 1≤3 (5) . y x y x ==2 2 , 12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体 积. 13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =?3 2y x =2 y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长. (1) ; y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38; (3) x y y y = ?≤≤141 2 12ln (),e ; (4) r a a =>≤≤θθ ,()003; (5) r a =≤sin ()3 3 03≤θ θπ,; (6) . x a t t t y a t t t t =+=?≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2 2 20+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密 度x a y a ==cos sin 3 θ,3 θρ为常数) . 17. 计算下列曲线所围图形的质量中心. (1) ax ; y ay x a ==>2 2 0, () (2) x a y b x a y b 222 2100+=≤≤≤≤,,(); (3) 轴,()y a x x =sin ,01≤≤x ; 18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3 (c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功. 20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,

数学分析教案华东师大第三版

§6 重积分的应用 (一) 教学目的:学会用重积分计算曲面的面积,物体的重心,转动惯量与引力. (二) 教学内容: 曲面面积的计算公式;物体重心的计算公式;转动惯量的计算公式;引力的计算公式. 基本要求:掌握曲面面积的计算公式,了解物体重心的计算公式,转动惯量的计算公式 和引力的计算公式. (三) 教学建议: 要求学生必须掌握曲面面积的计算公式,物体重心的计算公式,转动惯量的计算公式和引力的计算公式,并且布置这方面的的习题. ________________________________________ 一 曲面的大面积 设D 为可求面积的平面有界区域函数在D 上具有连续一阶偏导数,讨论由方程 D y x y x f z ∈=),(,),( 所确定的曲面S 的面积i σ? ==i i i i 1 1当 0||||→T 时,可用和式∑=?n i i A 1的极限作为S 的面积 首先计算i A ?的面积,由于切平面的法线向量就是曲面S 在),,(i i i i M ζηξ处的法线向量,记它与z 轴的夹角为i γ,则

),(),(11 cos 22 i i y i i x i f f ηξηξγ++= i i i y i i x i i i f f A σηξηξγσ?++=?= ?),(),(1cos 22 ∑∑==?++=?n i i i i y i i x n i i f f A 1 221),(),(1σηξηξ 是连续函数),(),(122i i y i i x f f ηξηξ++在有界闭域上的积分和,所以当0||||→T 时,就得 到 ∑=→?++=?n i i i i y i i x T f f S 1220||||),(),(1lim σηξηξ dxdy y x f y x f D i i y i i x ??++=),(),(122 或 ∑??=→=?=?n i D i i T z n dxdy S 10|||||),cos(||)cos |lim γσ 例 1 求圆锥 22y x z += 在圆柱体 x y x ≤+22内那一部分的面积 解 dxdy y x z y x z S D i i y i i x ??++= ?),(),(122 x y x D ≤+22: 所求曲面方程为 ?+= 22y x z 2222,y x y z y x x z y x +=+=

华师大04数分

华东师范大学2004数学分析 一、(30分)计算题。 1、求12 0)2 (cos lim x x x x -→ 2、若)),sin(arctan 2ln x x e y x +=-求'y . 3、求?--dx x xe x 2) 1(. 4、求幂级数∑∞=1n n nx 的和函数)(x f . 5、L 为过)0,0(O 和)0,2(π A 的曲线)0(sin >=a x a y ,求?+++L dy y dx y x .)2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中)10(,22≤≤+=z y x z ,取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则}{n x 至少存在一个聚点).,(0+∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连续. 3、若)(x f ,)(x g 在]1,0[上可积,则∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim . 4、若∑∞=1n n a 收敛,则∑∞ =12n n a 收敛. 5、若在2R 上定义的函数),(y x f 存在偏导数),(y x f x ,),(y x f y 且),(y x f x ,),(y x f y 在(0,0)上连续,则),(y x f 在(0,0)上可微. 6、),(y x f 在2R 上连续,})()(|),{(),(2202000r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(00 则.),(,0),(2R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上

最新数学分析教案华东师大版第五章导数和微分精编版

2020年数学分析教案华东师大版第五章导数和微分精编版

第五章导数和微分 教学目的: 1.使学生准确掌握导数与微分的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分; 2.弄清函数可导与可微之间的一致性及其相互联系,熟悉导数与微分的运算性质和微分法则,牢记基本初等函数的导数公式,并熟练地进行初等函数的微分运算; 3.能利用导数与微分的意义解决某些实际问题的计算。 教学重点、难点:本章重点是导数与微分的概念及其计算;难点是求复合函数的导数。 教学时数:16学时 § 1 导数的概念(4学时) 教学目的:使学生准备掌握导数的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分,能利用导数的意义解决某些实际应用的计算问题。 教学要求:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数

的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用为体;会求曲线上一点处的切线方程。 教学重点:导数的概念。 教学难点:导数的概念。 教学方法:“系统讲授”结合“问题教学”。 一、问题提出:导数的背景. 背景:曲线的切线;运动的瞬时速度. 二、讲授新课: 1.导数的定义: 定义的各种形式. 的定义. 导数的记法. 有限增量公式: 例1 求 例2 设函数在点可导, 求极限 2.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点. 例3考查在点的可导情况. 3.导数的几何意义: 可导的几何意义, 导数的几何意义, 单侧导数的几何意义.

【精品】数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1- 10章

第一章实数集与函数 导言数学分析课程简介( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 32 sin、实数定义等问题引入. 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算 研究变实值函数.主要研究微分(differential)和积分(integration) 两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函 数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是 连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三 世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、 成果的积累时期.

3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法:

华东师范大学数学分析电子教案1-2

§2数集?确界原理 【教学目的】1.使学生知道区间与邻域的表示方法; 2.使学生深刻理解确界的与确界原理,并在有关命题的证明中正确地加以运用. 【教学重点】确界的概念及其有关性质(确界原理). 【教学难点】确界的定义及其应用. 引言 为了以后表述的方便,本节课我们先定义实数集R中的两类重要的数集——区间与邻域;并讨论有界集与无界集;最后再由有界集的界引出确界定义及确界存在性定理(确界原理).后者是我们以后关于实数理论研究的基础,应给予充分重视. 一 区间与邻域 1.区间(用来表示变量的变化范围) 设,a b R ∈且a b <. {}{}{}{}{}{}{}{}{}|(,) .|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ???? ∈<<=???? ∈≤≤=??∈≤<=?????∈<≤=??? ? ?∈≥=+∞?∈≤=-∞?? ∈>=+∞??∈<=-∞??∈-∞<<+∞=?开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间? ?? ?? ? ? ?????? 注:∞+读作正无穷大;∞-读作负无穷大。 2.邻域 联想字面意思:“邻近的区域”. 设a 为任一给定实数,δ(Delta----德耳塔)为一给定正实数. (1) 点a 的δ邻域:{}(;)||(,)U a x x a a a δδδδ=-<=-+ (2)点a 的空心δ邻域:{}),(),(||0)(δδδδ+?-=<-

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分 §1 二重积分的概念 1.把重积分 ??D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0?,并用直线网x=n i ,y=n j (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点. 2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界. 3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积. 4.设D 为矩形区域,试证明二重积分性质2、4和7. 性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且 ()?+D g f =??+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ??≤D D g f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得 ()D ,f f D ?ηξ=?. 5.设D 0、D 1和D 2均为矩形区域,且 210D D D =,?=11D int D int , 试证二重积分性质3. 性质3(区域可加性) 若210D D D =且11D int D int ?=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且 ?0D f =??+2 1D D f f , 6.设f 在可求面积的区域D 上连续,证明: (1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D >?; (2)若在D 内任一子区域D D ?'上都有 ?' =D 0f ,则在D 上()0y ,x f ≡。 . 7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得 ()()??D dxdy y ,x g y ,x f =()ηξ,f ()??D dxdy y ,x g .

数学分析(华东师大)第十一章反常积分

r mg R ∫ ∫ 第 十 一 章 反 常 积 分 §1 反常积分概念 一 问题提出 在讨论定积分时有两个最基本的限 制 : 积分 区间 的有穷 性和 被积函 数的 有 界性 .但在很多实际问题中往往需要突 破这 些限制 , 考虑无 穷区 间上的“ 积分”, 或是无界函数的“积分”, 这便是本章的主题 . 例 1 ( 第二宇宙速度问题 ) 在地球表面垂直发射火箭 ( 图 11 - 1 ) , 要使火 箭克服地球引力无限远离地球 , 试问初速度 v 0 至少要多大 ? 设地球半径为 R, 火箭质量为 m, 地面上的重力加速度为 g .按万有引力定律 , 在距地心 x( ≥ R ) 处火箭所受的引力为 mg R 2 F = . x 2 于是火箭从地面上升到距离地心为 r ( > R) 处需作的功为 2 ∫ d x = mg R 2 1 - 1 . R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = mg R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = m g R .

用g = 9 .81 ( m6s/2 ) , R = 6 .371×106 ( m) 代入,便得 v0 = 2 g R ≈ 11 .2( k m6s/) . 例2圆柱形桶的内壁高为h , 内半径为R , 桶底有一半径为r 的小孔(图11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水, 共需多少时间?

相关主题
文本预览
相关文档 最新文档