当前位置:文档之家› 天球坐标系统

天球坐标系统

天球坐标系统
天球坐标系统

天球坐标系统

是天文学上用来描绘天体在天球上位臵的坐标系统。有许多不同的坐标系统都使用球面坐标投影在天球上,类似于使用在地球表面的地理坐标系统。这些坐标系统的不同处只在用来将天空分割成两个相等半球的大圆,也就是基面的不同。例如,地理坐标系统的基面是地球的赤道。每个坐标系统的命名都是依据其所选择的基面。地平坐标系

(1)基圈是地平圈

(2)原点是南点,始圈是午圈

(3)纬度叫高度或高度角h,是天体相对地平圈上下的角距离.地平圈为起点0°,向上至天顶为90°,向下至天底为-90°.天体相对天顶的角距离叫天顶距Z,Z=90°-h

(4)经度叫方位或方位角A,是天体所在地平圈相对原点的方向和角距离.南0°,西90°,北180°,东270°.

(5)地球自转引起天体自东向西的周日视运动,h和A变化;同时h 和A随经纬度变化,

故记录天体位臵及绘制星图不宜用地平坐标系.地平坐标系反映天体在天空中高度和方位.

第一赤道坐标系(时角坐标系)

(1)基圈是天赤道

(2)主点为天赤道与观测者天顶南子午圈交点(上点)θ,主圈为过θ的赤经圈.天体所在赤经圈平面与主圈平面的夹角即时角.从0°到

正负180°,即0时到正负12时,东负西正.

(3)异地异时时角变化,时角坐标系用于时间度量.

(第二)赤道坐标系

(1)基圈是天赤道

(2)主点为春分点φ,主圈为过春分点的赤经圈(时圈)叫春分圈.向东,从0°到360°,即0时到24时.

(3)赤纬δ是天体与天赤道的方向和角距离;赤经α是天体所在赤经圈平面与主圈平面的夹角.

(4)天体周日视运动不影响春分点与天体间的相对位臵,δ和α不变;异地异时δ和α也不变,故用赤道坐标系记录天体位臵及绘制星图.

黄道坐标系

(1)基圈是黄道

(2)原点为春分点φ,始圈为过春分点的黄经圈(KφK').

(3)黄纬是天体与天赤道的方向和角距离;黄经是天体所在黄经圈平面与始圈平面的夹角.

(4)黄道坐标系常用于日地月位臵关系

不同坐标系介绍及相互转换关系

一、各坐标系介绍

GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、

Geographic Coordinate System(地理坐标系统)、

Projection Coordinate System(投影坐标系统)。这三者并不是完全独立的,而且各自都有各自的应用特点。如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。

1、椭球面(Ellipsoid)

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位臵,不同的大地基准面,它们的经纬度坐标是有差异的。采用的3个椭球体参数如下

椭球体长半轴短半轴

Krassovsky(北京54坐

6378245 6356863.0188 标系)

IAG 75(西安80坐标系)6378140 6356755.2882

WGS 84 6378137 6356752.3142

2、高斯投影坐标系统

(1)高斯-克吕格投影性质

高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777

一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y 轴,构成高斯克吕格平面直角坐标系。

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。

(2)高斯-克吕格投影分带

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第1、2…120带。我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影。(3)高斯-克吕格投影坐标

高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本

带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如

(4231898m,21655933m),其中21即为带号。

(4)高斯-克吕格投影与UTM 投影

UTM 投影全称为“通用横轴墨卡托投影”,是等角横轴割圆柱投影(高斯-克吕格为等角横轴切圆柱投影),圆柱割地球于南纬80度、北纬84度两条等高圈,该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。UTM 投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM 投影的比例系数为0.9996。UTM 投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363公里,比例系数为 1.00158。 高斯-克吕格投影与UTM 投影可近似采用 Xutm=0.9996 * X 高斯,Yutm=0.9996 * Y 高斯进行坐标转换。以下举例说明(基准面为WGS84): 输入

坐标

(度)

高斯投影(米) UTM 投影(米) Xutm=0.9996 * X 高

斯, Yutm=0.9996 * Y 高斯

纬度

值(X ) 32

3543600.9

3542183

.5 3543600.9*0.9996 ≈ 3542183.5

经度值(Y )

121

21310996.8

311072.4 (310996.8-500000)*0.9996+500000 ≈ 311072.4

注:坐标点(32,121)位于高斯投影的21带,高斯投影Y 值21310996.8中前两位“21”为带号(三度带还是六度带?);坐标点(32,121)位于UTM 投影的51带,上表中UTM 投影的Y 值没加带号。因坐标纵轴西移了500000米,转换时必须将Y 值减去500000乘上比例因子后再加500000。

理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。

3、地理坐标网(经纬网)

在我国1:1万-1:10万地形图上,经纬线只以图廓的形式表现,经纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短线表示经差、纬差1’的分度带,需要时将对应点相连接,就构成很密的经纬网。在1:20万-1:100万地形图上,直接绘出经纬网,有时还绘有供加密经纬网的加密分割线。纬度注记在东西内外图廓间,经度注记在南北内外图廓间。

4、直角坐标网(方里网)

直角坐标网是以每一投影带的中央经线作为纵轴(X轴),赤道作为横轴(Y轴)。纵坐标以赤道我0起算,赤道以北为正,以南为负。我国位于北半球,纵坐标都是正值。横坐标本应以中央经线为0起算,以东为正,以南为负,但因坐标值有正有负,不便于使用,所以又规定凡横坐标值均加500公里,即等于将纵坐标轴向西移500公里。横坐标从此纵轴起算,则都成正值。然后,以公里为单位,按相等的间距作平行于纵、横轴的若干直线,便构成了图面上的平面直角坐标网,又叫方里网。

二、坐标系转换(三度带与六度带相互转换)

在定位一个点时,首先需要一个坐标系,也就是大地水准面,因为对同一地理位臵,不同的大地基准面,它们的经纬度坐标是有差异的。通过软件或者编程实现,将大地坐标转化为高斯坐标。

鉴于我国曾使用不同的坐标基准(BJ54、State80、Correct54),各地的重力值又有很大差异,所以很难确定一套适合全国且精度较好的转换参数。在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样。必须了解,在不同的椭球之间的转换是不严密的。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,Y平移,Z平移),3个旋转因子(X旋转,Y旋转,Z旋转),一个比例因子(也叫尺度变化K)。国内参数来源的途径不多,一般当地测绘部门会有。通行的做法是:

在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测

WGS84坐标,通过一定的数学模型,求解七参数。若多选几个已知点,通过平差的方法可以获得较好的精度。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即只考虑3个平移因子(X平移,Y平移,Z平移),而将旋转因子及比例因子(X旋转,Y旋转,Z旋转,尺度变化K)都视为0,所以三参数只是七参数的一种特例。在ArcGIS等软件中提供了三参数、七参数转换法,而在同一个椭球里的转换都是严密的。

地理坐标与天球坐标

第一章 地理坐标与天球坐标 主要内容:地面上点位置及天球上天体位置的描述。 第一节地理坐标 教学目的:1.掌握地球上方向的描述方法。 2.掌握经纬线及经纬度的概念。 3.掌握地理坐标的书写方法,会使用地球仪查找经纬度。教学难点:1.方向的描述。 2.经纬度的度量及球面坐标模式的建立。 课时:3课时。 教学过程: 地心——地球的球心0 地轴——地球的自转轴北极N 地极——地轴与地面的两个交点 南极S 一.地球上的经纬线 (一)纬线(圈) 1.概念(P1) 2.特点 (1)地球表面有无数条纬线。 (2)纬线相互平行。 ∵纬线平面⊥地轴 (3)纬线大小不等。 纬圈的半径随切割平面与地心距离的增大而减小。 3.赤道 垂直于地轴并通过地心的平面与地面的交线。 赤道是纬线中唯一的大圆。 赤道将地球分为南北两半球。 4.极 地面上距离赤道最远的两点。 可视为半径为0的纬线。 (二)经线 1.概念(P2) 经圈:一切通过地轴的平面同地面相割而成的圆。

所有经圈都是大圆。 经线:每一经圈被南北两极等分为两个半圆,每个半圆叫做经线或子午线。 2.特点 (1)地球表面有无数条经线。 地球上的任何一点都可以看作 是某条经线与纬线的交点。 (2)所有经线大小相等。(半个大圆) (3)所有经线相交于南北两极。 经线即连接南北两极的大圆弧。 (4)经线与纬线相互垂直。 3.本初子午线(P2) 通过格林尼治天文台原址的经线。 是人为选定的作为经度起始面的经线。 1884年国际经度会议将其定为本初子午线。 4.本地子午线对整个地球来说,有无数条。 通过本地的子午线 对一个地点来说,只有一条。 (三)地球上的方向 经纬线代表着地球上的方向,每一地点的经纬线分别指示该地的正东、正西、正南、正北四个方向。 1.经线代表南北方向 北:即沿经线指向北极 南:即沿经线指向南极 南北方向是有限的方向:北极 是向北的终点,也是向南的起点; 南极是向南的终点,也是向北的起点。 2.纬线代表东西方向 东:顺地球自转的方向 西:逆地球自转的方向 东西方向是无限的方向,因为纬圈无始终。 理论上的亦东亦西:A、B两地互为东西 实际上的非东即西:取A、B两点间的劣弧判断。 地球上点的相互方向的判断: A比较南北方向:看该点更靠近N、S哪个极 B比较东西方向:首先选取二点间的劣弧,然后看是顺着还是逆着地球自转方向由一点到达另一点。

天球坐标系知识

第一章地理坐标与天球坐标 第一节地理坐标 101经线和纬线 §101-1地球上的经线和纬线 地球的自转轴叫地轴。地轴通过地心,它同地面相交的两个端点,是地球的两极,分别叫北极和南极。 纬线意即横线,经线则是竖线。平面上的直线,到了球面上就成了弧线。所以,纬线和经线都是地球上大大小小的圆。在几何上,任何圆都代表一定的平面,因此,球面上的圆,都可以看作一定的平面同球面的截割线。纬线与经线的差异,在于各自平面同地轴的关系:前者垂直于地轴,后者则通过地轴。纬线平面垂直于地轴,经线平面都通过地轴。 一切垂直于地轴的平面同地面相割而成的圆,都是纬线。所有纬线互相平行,大小不等。其中,垂直于地轴,且通过地心的平面同地面相割而成的圆,是纬线中的唯一大圆,名叫赤道。赤道分地球为南北两半球,是地理坐标系的横轴。 一切通过地轴(也必通过地心)的平面同地面相割而成的圆,都是经圈。所有经圈都是大圆,因而有同样的大小。它们都在南北两极相交,并被等分为二个半圆,这样的半圆叫经线。其中,通过英国伦敦格林尼治天文台的那条经线,被公认为本初子午线,即0°经线。它是地理坐标系的纵轴。 经线和纬线处处相交。每一条经线通过所有的纬线;每一条纬线也通过所有的经线,而且相互垂直。地球上每一地点,都可以看成特定的经线和纬线的交点,从而确定它们的地理位置。 §101-2地球上的方向和距离 地球上的方向,通常是指地平方向。地平圈上的东南西北四正点,代表地平方向的东南西北四正向。我国古代用十二地支(子丑寅卯……戌亥)表示地平方向,其中的子午和卯酉,分别就是南北和东西向。 在地球上,经线就是南北线(故经线也叫子午线)。所有经线都相交于南北两极,向北就是向北极,向南就是向南极。南北两极是世界的二个顶端,它们分别是南北方向的终点,同时又是二者的起点。北极是向南的起点,那里的四面八方都朝南,没有别的方向;南极则是向北的起点,与北极情形相反。因此,南北方向是有限方向,有其起始和终极。 东西线垂直于南北线,因而纬线(垂直于经线)的方向,就是东西方向。纬线都是整圆,没有起点和终点,因而东西方向是无限方向。一地如位于另一地的东方,它也必定位于该地的西方。当年哥伦布和麦哲伦等人都是向西航行,可他们的目的地却是东方!因为两地互为东西,所以,西行可以东达。但是,实际上人们总是采取二地之间的最短距离,即取圆的劣弧来定东西。任何地点不是位于另一地点的东方,就是位于它的西方,不能两者兼而有之。这样,两地之间,理论上是亦东亦西,实际上则是非东即西。 地球是一个球体。在球面上,两点间的最短距离,是通过它们的大圆弧线。因此,求地面上两点之间的最短距离,首先是它的角距离,然后把角距离换算为线距离。在这种情形下,为度量地面上两点之间的线距离,要求所采用的长度单位同角度单位之间,最好有一种简单的换算关系。这样的长度单位,在近代自然科学精确测定地球的形状和大小之后,相继出现了。 102 经度和纬度 §102—1经度和纬度

第二章 天球与天球坐标系解析

第二章 天球与天球坐标系 7 第二章 天球与天球坐标系 传统天文航海以太阳、月亮、行星和恒星(统称为天体,详见第十二章)为导航信标,获取天体的准确位置是开展天文航海的前提条件。在天文航海、球面天文学等领域,通常基于天球的概念,通过建立天球坐标系定义天体的位置。 本章详细介绍天球、天球基准点线圆、天球坐标系、天体位置坐标和天文三角形等概念,同时介绍基本的天球作图方法。 第一节 天球与天球基准点线圆 作为研究天文航海问题的平台和工具,天球及其基准点线圆是航海人员必备的基本知识。 一、天球 夜间仰观天空,总感到天空好象一个巨大的空心半球笼罩在头顶上,而且不论我们如何移动,总处于这个巨大的空心半球的球心。分布在无限广阔的宇宙中的所有天体,虽然距离我们远近各异,都好像散布在这个空心球的内表面上。 在天文学中,将这一感觉上的空心球体作为研究天体直观位置和运动规律的一种辅助工具,并定义为天球。也就是说,天球是以地心为中心,以无限长为半径的想象球体(图2-1-1)。所有天体投影在天球内表面上的位置,也因源于感观,称为天体的视位置。 值得说明的是,天球的半径为无限长这一特性,使得地球表面不同位置点之间的距离、 图2-1-1 天球

天 文 航 海 8 地球的半径,甚至地球到太阳之间的距离等有限长的量可以被视为无穷小而忽略。因此,分别以地球表面不同位置点上的测者、地心和日心为中心的天球,可以被认为是同一个天球。 二、天球基准点线圆 天球上的基准点、线、圆,都是根据地球上的诸如地极、地轴、赤道、地平面、测者铅 如图2-1-2和2-1-3所示,天球基准点线圆及其定义如下: 1.天轴和天极 将地轴(n s P P )向两端无限延长,与天球球面相交所得的天球直径(N S P P )称为天轴。天轴的两个端点称为天极。其中,与地球北极相对应的天极称为天北极,符号N P ;与地球南极相对应的天极称为天南极,符号S P 。 2.天赤道 将地球赤道(qq ')平面向四周无限扩展,与天球球面相截所得的大圆(QEQ W ')称为天赤道。显然,天赤道与天轴相垂直。 3.测者铅垂线、天顶和天底 将地球上的测者铅垂线(_____ AO )向两端无限延长,与天球球面相交所得的天球直径(____ Zn ),称为测者铅垂线。测者铅垂线与天球球面相交的两点,在测者头顶正上方的点称为天顶,符号Z ;在测者正下方的点称为天底,符号n 。

天球坐标的讲解

第二节天球坐标 一、地平坐标系 二、时角坐标系 三、赤道坐标系 四、黄道坐标系 观测与实习〔四〕辨认北极星,用简易方法测定地理纬度 第二节天球坐标 天球是人们为研究问题方便而假想的球体,虽然它不是真实存在着的球体,但是天空给 予人们的布满天体的球体印象却是非常直观的。像地表上有圆和点一样,天球上也有圆和点, 而且天球上的圆也有大圆和小圆之分。大圆是以球心为圆心的圆,也就是过球心的平面无限 扩展与天球相割而成的圆;小圆则不是以球心为圆心的圆,所有小圆所在的平面,都不通过 球心(如图2- 10)。任何一个大圆都有两个极点,极点到大圆上任何一点的角距离都是相等的,都是90°。当然两个相对应的极点连线与其大圆是垂直的。 天球上也有方向,天球上的方向,是以地球自转为基础,是地球上的方向的延伸。例如,和地球上经线相对应的南北方向,和地球上纬线相对应的东西方向。 在天球上,也有距离。但是,只有角距离,而没有直线距离。例如,织女星和牛郎星, 相距为16.4光年,但是在天球上,只能看到它们之间相距约际上是天体之间方向上的夹 角,而不是其真实的直线距离。 有了地理坐标系,便可以确定地面上任一地点的位置。 位置和运动规律,人们规定了天球坐标系。根据不同的用途, 用的天 球坐标系有:地平坐标系、时角坐标系、赤道坐标系和黄道坐标系。 不同的坐标系, 35°。所以,天球上的距离,实 为了确定和研究天体在天球上的 有不同的天球坐标系。经常采 图口3极地附近軽纬网

具有各不相同的组成要素。 各种坐标系都是在各自的基本圈和基本点的基础上建立起来的。 因此,基本圈和基本点 的确定,是建立天球坐标系最重要的内容,它决定着各种坐标系最本质的特征和不同的用途。 一、地平坐标系 地平坐标系是一种最直观的天球坐标系,和我们日常的天文观测关系最为密切。例如, 在晴朗的傍晚,观测者经常可以看到人造卫星在群星间的运行, 和大量的流星现象, 它们的 运行速度都很快,用什么方法能够快速、简便地记录下卫星或流星的位置呢?最简便的方法 就是记下某瞬间该卫星或流星的地平经度(方位)和地平纬度(高度) 论的地平坐 标系。 1.基本圈和基本点 地平坐标系中的基本圈是地平圈,基本点是天顶和天底。 地平圈就是观测者 所在的地平面无限扩展与天球相交的大圆。 垂直于地平面的直线并无限延长, 在地平面以上与天球相交的点, 与天球相交的点,称为天底。在天球上, 天顶和天底与地平圈的角距离均 为90°, 只不过一 个在地平圈以上,另一个在地平圈以下。地平圈把天球分为可见半球和不可见半球两部分。 由于天球的半径是任意长的, 而地球的半径则相对很小, 因此,观测者所在的点可以认 为是与地心重合的, 地平圈也可以看成是以地心为圆心的, 这与观测者所在点的地平面在天 球上是完全一致的。 通过天顶和天底可以作无数个与地平圈相垂直的大圆, 称为地平经圈;也可以作无数个 与地平圈平行的小圆,称为地平纬圈。地平经圈与地平纬圈是构成地平坐标系的基本要素。 地轴的无限延长即为天轴,天轴与天球有两个交点,与地球北极相对应的那个点叫做天 北极,与地球南极相对应的那个点叫做天南极。 通过天顶和天北极的地平经圈 (当然也通过 天底和天南极),与地平圈有两个交点;靠近天北极的地个点为北点,靠近天南极的那个点 为南点。北点和南点分别把地平圈和地平经圈等分。根据面北背南、左西右东的原则, 可以 确定当地的东点和西点, 即面向北点左90°为西点,右90°为东点。这样,就确定了地平圈 ,这就是我们所要讨 从观测者所在的地点,作 称为天顶;在地平面以下

天球坐标系和地球坐标系

.elecfans./book/book.php?bid=11 第1节天球坐标系和地球坐标系 2.1.1天球坐标系 天球坐标系是利用基本星历表的数据把基本坐标系固定在天球上,星历表中列出一定数量的恒星在某历元的天体赤道坐标值,以及由于岁差和自转共同影响而产生的坐标变化。常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1. 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 2.天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。 天球空间直角坐标系与天球球面坐标系的关系可用图2-1表示:

图2-1 天球直角坐标系与球面坐标系 对同一空间点,天球空间直角坐标系与其等效的天球球面坐标系参数间有如下转换关系: 2.1.2地球坐标系 地球坐标系有两种几何表达方式,即地球直角坐标系和地球坐标系。 1.地球直角坐标系的定义

地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。 2.地球坐标系的定义 地球坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。空间点位置在该坐标系中表述为(L,B,H)。 地球直角坐标系和地球坐标系可用图2-2表示: 图2-2 地球直角坐标系和坐标系 对同一空间点,直角坐标系与坐标系参数间有如下转换关系:

13 常用天球坐标系和坐标换算

十三常用天球坐标系和坐标换算 天球坐标系 天文学中用来描述天体位置的坐标系统称为“天球坐标系”。常用的天球坐标系有地平坐标系、道坐标系和黄道坐标系。每一种坐标系都由一个“基本平面”和一个“极”组成。基本平面是天球上大圆所在的平面,“极”垂直于基本平面,指向由基本平面确定 ◆地平坐标系 基本平面是地平圈,“极”是天顶Z。在地平坐标系(见下图)中,设天体为ζ。过天顶Z、天体ζ和天底Z'的大圆 ZζZ'与地平圈WSEN垂直,且相交于H点, ZζH 叫做“天体ζ地平经圈”。 它在地平圈上的弧度NH叫做“天体ζ方位角”,记为A,由N点按顺时针方向计量,由00量到3600。天体ζ的另一个坐标是Zζ弧,叫做“天顶距”,记为z,由天顶往下计量,从00量到900 。 ◆赤道坐标系 基本平面是赤道面,“极”是北天极。在赤道坐标系(下左图)中,过北天极P、天体ζ和南天 极P'的大圆,PζP'垂直于赤道面γQQ'且与γQQ'交于T,PζTP'就是天体ζ的赤经圈

或叫“时圈”。赤道上的QT弧叫做“时角”,记为t,从子午圈上Q点开始,按顺时针方向计量。赤道上的γ点是春分点,γT弧是天体ζ的一个坐标,叫做”赤经”,记为α,从春分点开始,按逆时针方向计量。在时角t和赤经α的测量中,计量单位都是时、分、秒,记为h、m、s。天体ζ的另一个坐标叫做“赤纬”,记为δ,从赤道向两极度量,从00量到900,在赤道以北的天体记为“+”,在赤道以南的天体记为“-”。 ◆黄道坐标系 基本平面是黄道面,“极”是北黄极。在黄道坐标系(见上右图)中,经过黄极п、天体ζ和南黄极п'的大圆пζπ'垂直于天球黄道面γEE',且与黄道交于L,пζп'就是天体ζ的“黄经圈”。黄道上的γ是春分点,γL弧是天体ζ的一个坐标,叫做“黄经”,记为λ,由春分点γ开始,在黄道上沿反时针方向计量,由00量到3600,。天体ζ的另一个坐标是Lζ弧,叫做黄纬,记为β,由黄道向两极度量,从00量到900,,在黄道以北的天体记为“+”,在黄道以南的天体记为“-”。 ◆坐标变换 天体在天球上的位置常常用一组坐标例如(A,Z)测量,而在实际工作中,有时则需要用另外一组坐标表示,这就需要在不同的坐标系之间进行变换。下面是常用坐标系之间的变换公式。 ⑴已知地平坐标(A ,Z)求赤道坐标(а,δ) : cosδcost=sinФsinZ cosA+cosФcosZ (1.1) Cosδsi nt=si nZ sinA(1.2) sinδ=sinФcosZ-cosФsi nZ cosA(1.3) 式中t是时角,它与观测时间S(以恒星时作计量单位)和赤径а的关系是,t=S-а,Ф是观测点地理纬度。 ⑵由赤道坐标(а,δ)变换到地平坐标(A ,Z): sinZ cosA=si nФcosδcost-cosФsinδ(2.1) sinZ si nA= cosδsi nt (2.2) cosZ=cosФcosδcost + sinФsinδ(2.3) (见左图) (3)由赤道坐标 (а,δ)变换到黄道坐标(λ,β): COSβcosλ=cosδcosа(3.1) COSβsinλ=cosεcosδsinа+si nεsinδ(3.2) si nβ=cosεsi nδ-sinεcosδsi nа(3.3) 式中ε式黄赤交角。 (4)由黄道坐标(λ,β)变换到由赤道坐标(а,δ) : COSδcosа=cosβcosλ(4.1) COSδsi nа=cosεcosβsi nλ-sinεsi nβ(4.2)

第二章 天球与天球坐标系..

第二章天球与天球坐标系 传统天文航海以太阳、月亮、行星和恒星(统称为天体,详见第十二章)为导航信标,获取天体的准确位置是开展天文航海的前提条件。在天文航海、球面天文学等领域,通常基于天球的概念,通过建立天球坐标系定义天体的位置。 本章详细介绍天球、天球基准点线圆、天球坐标系、天体位置坐标和天文三角形等概念,同时介绍基本的天球作图方法。 第一节天球与天球基准点线圆 作为研究天文航海问题的平台和工具,天球及其基准点线圆是航海人员必备的基本知识。 一、天球 夜间仰观天空,总感到天 空好象一个巨大的空心半球笼 罩在头顶上,而且不论我们如 何移动,总处于这个巨大的空 心半球的球心。分布在无限广 阔的宇宙中的所有天体,虽然 距离我们远近各异,都好像散 布在这个空心球的内表面上。 在天文学中,将这一感觉 上的空心球体作为研究天体直 观位置和运动规律的一种辅助 工具,并定义为天球。也就是 说,天球是以地心为中心,以 无限长为半径的想象球体(图 2-1-1)。所有天体投影在天球 内表面上的位置,也因源于感 图2-1-1 天球 观,称为天体的视位置。 值得说明的是,天球的半径为无限长这一特性,使得地球表面不同位置点之间的距离、

地球的半径,甚至地球到太阳之间的距离等有限长的量可以被视为无穷小而忽略。因此,分别以地球表面不同位置点上的测者、地心和日心为中心的天球,可以被认为是同一个天球。 二、天球基准点线圆 天球上的基准点、线、圆,都是根据地球上的诸如地极、地轴、赤道、地平面、测者铅 如图2-1-2和2-1-3所示,天球基准点线圆及其定义如下: 1.天轴和天极 将地轴(n s P P )向两端无限延长,与天球球面相交所得的天球直径(N S P P )称为天轴。天轴的两个端点称为天极。其中,与地球北极相对应的天极称为天北极,符号N P ;与地球南极相对应的天极称为天南极,符号S P 。 2.天赤道 将地球赤道(qq ')平面向四周无限扩展,与天球球面相截所得的大圆(QEQ W ')称为天赤道。显然,天赤道与天轴相垂直。 3.测者铅垂线、天顶和天底 将地球上的测者铅垂线(_____ AO )向两端无限延长,与天球球面相交所得的天球直径(____ Zn ),称为测者铅垂线。测者铅垂线与天球球面相交的两点,在测者头顶正上方的点称为天顶,符号Z ;在测者正下方的点称为天底,符号n 。

天球坐标系和地球坐标系

https://www.doczj.com/doc/f66590679.html,/book/book.php?bid=11 第1节天球坐标系和地球坐标系 2.1.1天球坐标系 天球坐标系是利用基本星历表的数据把基本坐标系固定在天球上,星历表中列出一定数量的恒星在某历元的天体赤道坐标值,以及由于岁差和自转共同影响而产生的坐标变化。常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1. 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 2.天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。 天球空间直角坐标系与天球球面坐标系的关系可用图2-1表示: 图2-1 天球直角坐标系与球面坐标系 对同一空间点,天球空间直角坐标系与其等效的天球球面坐标系参数间有如下转换关系:

2.1.2地球坐标系 地球坐标系有两种几何表达方式,即地球直角坐标系和地球大地坐标系。 1.地球直角坐标系的定义 地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。 2.地球大地坐标系的定义 地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。空间点位置在该坐标系中表述为(L,B,H)。 地球直角坐标系和地球大地坐标系可用图2-2表示: 图2-2 地球直角坐标系和大地坐标系 对同一空间点,直角坐标系与大地坐标系参数间有如下转换关系:

天球坐标的讲解

精心整理 第二节天球坐标 一、地平坐标系 二、时角坐标系 三、赤道坐标系 四、黄道坐标系 观测与实习〔四〕辨认北极星,用简易方法测定地理纬度 光年,但 人 地平坐标系是一种最直观的天球坐标系,和我们日常的天文观测关系最为密切。例如,在晴朗的傍晚,观测者经常可以看到人造卫星在群星间的运行,和大量的流星现象,它们的运行速度都很快,用什么方法能够快速、简便地记录下卫星或流星的位置呢?最简便的方法就是记下某瞬间该卫星或流星的地平经度(方位)和地平纬度(高度),这就是我们所要讨论的地平坐标系。 1.基本圈和基本点 地平坐标系中的基本圈是地平圈,基本点是天顶和天底。 地平圈就是观测者所在的地平面无限扩展与天球相交的大圆。从观测者所在的地点,作垂直于地平面的直线

并无限延长,在地平面以上与天球相交的点,称为天顶;在地平面以下与天球相交的点,称为天底。在天球上,天顶和天底与地平圈的角距离均为90°,只不过一个在地平圈以上,另一个在地平圈以下。地平圈把天球分为可见半球和不可见半球两部分。 由于天球的半径是任意长的,而地球的半径则相对很小,因此,观测者所在的点可以认为是与地心重合的,地平圈也可以看成是以地心为圆心的,这与观测者所在点的地平面在天球上是完全一致的。 通过天顶和天底可以作无数个与地平圈相垂直的大圆,称为地平经圈;也可以作无数个与地平圈平行的小圆,称为地平纬圈。地平经圈与地平纬圈是构成地平坐标系的基本要素。 按顺时 90°,则岩层向东北倾斜,在90°~180°之间则向东南倾斜,在180°~270°之间则向西南倾斜,在270°~360°之间则向西北倾斜。 在天文观测中,如果预报或观测到某一天文现象,发生时的方位(南点为起点)为45°,则表示该天文现象发生于西南方。 我们这里所说的方位,一般是指天文学中的概念,即南点是它的起点,午圈所在的平面是它的起始面。 3.高度

第二章-天球与天球坐标系

第二章-天球与天球坐标系

第二章天球与天球坐标系 传统天文航海以太阳、月亮、行星和恒星(统称为天体,详见第十二章)为导航信标,获取天体的准确位置是开展天文航海的前提条件。在天文航海、球面天文学等领域,通常基于天球的概念,通过建立天球坐标系定义天体的位置。 本章详细介绍天球、天球基准点线圆、天球坐标系、天体位置坐标和天文三角形等概念,同时介绍基本的天球作图方法。 第一节天球与天球基准点线圆 作为研究天文航海问题的平台和工具,天球及其基准点线圆是航海人员必备的基本知识。

一、天球 夜间仰观 天空,总感到 天空好象一个 巨大的空心半 球笼罩在头顶 上,而且不论 我们如何移 动,总处于这 图2-1-1 天球 个巨大的空心 半球的球心。分布在无限广阔的宇宙中的所有天体,虽然距离我们远近各异,都好像散布在这个空心球的内表面上。 在天文学中,将这一感觉上的空心球体作为研究天体直观位置和运动规律的一种辅助工具,并定义为天球。也就是说,天球是以地心为中心,以无限长为半径的想象球体(图 2-1-1)。所有天体投影在天球内表面上的位置,也因源于感观,称为天体的视位置。 1

值得说明的是,天球的半径为无限长这一特性,使得地球表面不同位置点之间的距离、地球的半径,甚至地球到太阳之间的距离等有限长的量可以被视为无穷小而忽略。因此,分别以地球表面不同位置点上的测者、地心和日心为中心的天球,可以被认为是同一个天球。 二、天球基准点线圆 天球上的基准点、线、圆,都是根据地球 上的诸如地极、地轴、赤道、地平面、测者铅垂线、测者子午圈等基准点、线、圆而建立起来的,两者之间具有一一对应的投影关系。 2

天球坐标的讲解

第二节天球坐标 第二节天球坐标 天球是人们为研究问题方便而假想的球体,虽然它不是真实存在着的球体,但是天空给予人们的布满天体的球体印象却是非常直观的。像地表上有圆和点一样,天球上也有圆和点,而且天球上的圆也有大圆和小圆之分。大圆是以球心为圆心的圆,也就是过球心的平面无限扩展与天球相割而成的圆;小圆则不是以球心为圆心的圆,所有小圆所在的平面,都不通过球心(如图2-10)。任何一个大圆都有两个极点,极点到大圆上任何一点的角距离都是相等的,都是90°。当然两个相对应的极点连线与其大圆是垂直的。 天球上也有方向,天球上的方向,是以地球自转为基础,是地球上的方向的延伸。例如,和地球上经线相对应的南北方向,和地球上纬线相对应的东西方向。 在天球上,也有距离。但是,只有角距离,而没有直线距离。例如,织女星和牛郎星,相距为光年,但是在天球上,只能看到它们之间相距约35°。所以,天球上的距离,实际上是天体之间方向上的夹角,而不是其真实的直线距离。 有了地理坐标系,便可以确定地面上任一地点的位置。为了确定和研究天体在天球上的位置和运动规律,人们规定了天球坐标系。根据不同的用途,有不同的天球坐标系。经常采用的天球坐标系有:地平坐标系、时角坐标系、赤道坐标系和黄道坐标系。不同的坐标系,具有各不相同的组成要素。 各种坐标系都是在各自的基本圈和基本点的基础上建立起来的。因此,基本圈和基本点的确定,是建立天球坐标系最重要的内容,它决定着各种坐标系最本质的特征和不同的用途。 一、地平坐标系 地平坐标系是一种最直观的天球坐标系,和我们日常的天文观测关系最为密切。例如,在晴朗的傍晚,观测者经常可以看到人造卫星在群星间的运行,和大量的流星现象,它们的运行速度都很快,用什么方法能够快速、简便地记录下卫星或流星的位置呢最简便的方法就是记下某瞬间该卫星或流星的地平经度(方位)和地平纬度(高度),这就是我们所要讨论的地平坐标系。 1.基本圈和基本点

天球和天球坐标系

天球和天球坐标系 在晴朗的夜晚,仰望天空,眼前像有一个半球形的夜幕天穹,上面点缀着无数闪烁改变的明星,感觉自己仿佛是处在这个天穹的中心,这就是人们对“天球”的印象,天文学家为了研究天体的位置和天体的运动引入了“天球“的概念和天球坐标。 天球和天球坐标系 天球是一个假想的球,它是以观测都(或地心、日心)为中心,以无穷远为半径的球,所有天体都投影在这个球面上。天球的轴是地球自转轴的延伸,叫天轴;天轴与天球有两个交点叫做天极,地球北极的延伸的点叫北天极′球南极延伸的那个点叫南天极。 天体在天球上的视位置,最方便是用球面坐标来表示,在天球上建立的球面坐标系叫天球坐标系。天文中常用的天文坐标系有地平坐标系、赤道坐标系、黄道坐标系、银道坐标系。 1.地平坐标系 地平系主要有两个参量:方位角A和地平高度H(或天顶距Z),如图:2.1所示。观测者的头顶方向与天球相交的点叫天顶(Z点)。从观测都脚底方向延伸与天球的交点叫天底。垂直于天顶和天底连线并过天球中心的平面叫地平面。它与天球相交于一个大圆,这个大圆叫地平圈,也叫真地平。这个真地平是数学平面,它和眼睛看到的视地平有所区别。在宽阔的海面上,因为地球是球形,视地平总是低于真地平。与地平圈平行的小圆叫地平纬圈,与地平圈垂直的大圆叫地平经圈。从北点沿地平圈顺时钟方向量度叫地平方位角,记做A。天体δ的地平高度,是从地平圈沿着地平经圈向上量度,记作地平高度h 天体没着地平经圈天顶Z的圆弧叫这个天体的天顶距Z。 由图可以看出天顶距Z与天体的高度h 的关系为Z=90。-h。所以,地平坐标系中,地平高度h参量也可以用天顶距z代替,两者之和等于90。。 通过北天极p和天顶z的大圆叫天球子午圈,它和真地平相交于N点和S点。靠近北天极的叫北点,和它相对的另一点是南点。在地平圈上沿顺时针量度,离南、北点各90。的点分别叫东点(E)和西点(W)。通过天顶、东点、天底和西点的大圆ZEZ’W叫卯酉圈。 天体通过子午圈叫“中天”,天体每天有两次中天,位置达到最高的叫上中天,位置达到最低叫下中天。在极点是特殊情况,两次中天天体的高度一样,可以定天体通过面向的子午圈方向为上中天,相距180。背向的那次中天叫下中天。 地球上任何观测点的天极高度等于当地的地理纬度,由相似三角形的道理,可以证明。如图2.2所示,在观测地O’处的天极为P’方向。根据两个边互相垂直的角相等(∠

天球坐标系及时间系统.ppt.Convertor

天球和天球坐标系 球面三角基础知识 一、球面上的圆 定理: 任何平面和球面的交线都是正圆。(大圆、小圆) 定义: 通过球心的平面与球面的交线,是直径最大的圆,叫做大圆。 不通过球心的平面与球面的交线,叫小圆。 . 小圆未通过圆心 二、球面上两点的距离 球面上两点间大圆弧的长度叫球面上两点的距离 三、圆的极 与圆所在平面相垂的直线与球面相交的两个点。 大圆的极点:通过球心与大圆所在平面相垂的直线与球面的两个交点。 四、球面角 球面角=两个大圆弧相交所成的角度(ABC) 两大圆弧的交点(A)称为球面角的顶点,大圆弧称为球面角的边 球面角是以过顶点的圆弧的二切线所夹的角度来度量 五、球面三角形 球面三角形:球面上两两分别相交的三个大圆弧所围成的几何图形 球面三角形的边:三条大圆弧为球面三角形的边a、b、c 球面三角形的角:各大圆弧所成的球面角为球面三角形的角A、B、C 基本性质、基本公式 以任意点为球心,任意长为半径,为研究天体的位置和运动而引进的一个与人们直观感觉相符的假想圆球。性质: 1、与直观感觉相符的科学抽象 2、天体在天球上的位置只反映天体视方向的投影 3、天球上任意两天体的距离用其角距表示 4、地面上两平行方向指向天球同一点 5、任意点为球心 地理坐标 1、地轴 2、地极 3、纬线和赤道 4、经线和本初子午线 5、经度 6、纬度 上海北纬31度11分,东经121度29分 天球上的基本点圈 1、天极(p、p,)和天赤道(Q、Q, ) 2、天顶(Z)天底(Z,)和真地平 3、天子午圈、四方点、和卯酉圈 4、黄道和黄极 5、二分点和二至点 6、天极在天球上的位置h北=φ 1、天极和天赤道: 天极:P 过天球中心做一与地球自转轴平行的直线(天轴),它与天球相交的两点为天极。 天赤道:QQ’过天球中心做一与天轴垂直的平面(天赤道面),它与天球相交的大圆为天赤道。 2、天顶、天底和真地平 天顶:Z 过天球中心做一直线与观测点的铅垂线平行,交天球于两点,位于观测者头顶的一点称天顶。天底:Z’与天顶相对的另一交点为天底。 真地平:过天球中心做一与铅垂线垂直的平面,与天球相交的大圆为真地平。 3、天子午圈、四方点、卯酉圈 天子午圈:过天极和天顶的大圆。

天球坐标系和地球坐标系

天球坐标系 天球坐标系是利用基本星历表的数据把基本坐标系固定在天球上,星历表中列出一定数量的恒星在某历元的天体赤道坐标值,以及由于岁差和自转共同影响而产生的坐标变化。常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1. 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 2.天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。 天球空间直角坐标系与天球球面坐标系的关系可用图2-1表示: 图2-1 天球直角坐标系与球面坐标系 对同一空间点,天球空间直角坐标系与其等效的天球球面坐标系参数间有如下转换关系:

2.1.2地球坐标系 地球坐标系有两种几何表达方式,即地球直角坐标系和地球大地坐标系。 1.地球直角坐标系的定义 地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。 2.地球大地坐标系的定义 地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。空间点位置在该坐标系中表述为(L,B,H)。 地球直角坐标系和地球大地坐标系可用图2-2表示: 图2-2 地球直角坐标系和大地坐标系 对同一空间点,直角坐标系与大地坐标系参数间有如下转换关系: 2.1.3站心赤道直角坐标系与站心地平直角坐标系 1.站心赤道直角坐标系 2.站心地平直角坐标系

地球概论第二节天球和天球坐标系

第二节 天球坐标 教学目的:1.掌握天球上主要的圈和点。 2.掌握各种天球坐标系统。 3.明确各种天球坐标的区别及联系,会进行天球坐标的计算。教学重点:1.有关天球坐标的概念。 2.高度、赤纬、赤经、时角、黄经的意义及度量方法。 教学难点:天球坐标的联系。 课 时:7课时。 教学过程: 一.天球 人类对天空的直觉印象是:抬头看天,头顶最高;平视四野,天地相连。天空像一个巨大的半球罩在地面上,这个半球被称为——天穹。 (一)天穹(P7) 人们所能直接看到的地平以上的半个球形天空,称天穹。 由于天体的距离十分遥远,故尽管它们在距离上差别很大,但人眼并不能分辨它们的远近,被认为是等距的。日月星辰仿佛都位于天穹内侧,并随之旋转。 从天穹的概念出发,人们设想在地球的另一侧同样有半个球面,天空作为球面不仅存在于地上,也存在于地下。宇宙包括地球在内似乎是一个球体,这种假想的球体叫天球。 (二)天球 1.概念(P7) 2.特点 (1)球心为地心:天体在天球上的相对位置大体上同他们在天穹上的位置一致。因为地球半径与无穷大相比被忽略了。 (2)半径为无穷大:所有的天体都在天球上有自己的投影。人们可以把这种投影位置当作它们的真实位置。这种假想符合人类的直觉印象。 事实上天球并不存在,人们能感觉到天球的原因基于两点: z天体离我们太远,以至不能分辨其远近,似乎都位于天球内表面上; z天体之间的相对位置几乎保持不变,人们自然的想到它们镶嵌在天球上并随之旋转。 3.地心天球与日心天球 地心天球:以地心为球心的天球。 通常所说的天球均为地心天球。 日心天球:以日心为球心的天球。 在讨论地球绕日公转时用日心天球。

相关主题
文本预览
相关文档 最新文档