当前位置:文档之家› 氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试实验报告
氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测

试实验报告

学号:1141440057

姓名:冯铖炼

指导老师:索艳格

一、实验目的

1.了解燃料电池工作原理

2.通过记录电池的放电特性,熟悉燃料电池极化特性

3.研究燃料电池功率和放电电流、燃料浓度的关系

4.熟悉电子负载、直流电源的操作

二、工作原理

氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。

氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带

负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。

氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器

氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。

具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。

工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。

利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。

一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种:

若电解质溶液是碱、盐溶液则

负极反应式为:

正极反应式为:

若电解质溶液是酸溶液则

负极反应式为:

正极反应式为:

总反应方程式为:

在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现OHˉ。

三、实验步骤

①连接电子负载,测量开路电压

将燃料电池阴阳极与电子负载正负极连接,打开电子负载电源来测量

电池的开路电压。

②打开电扇,抽入空气(13.68V,0.4A)

将小电扇接入直流稳压电源,叶片转动将空气抽入燃料电池阳极,其中空气中的氧气讲参与化学反应。

③通入氮气,排除空气,营造惰性环境

为了排除杂质气体对燃料电池内反应的干扰,实验前先打开氮气瓶阀门,使氮气通入燃料电池内部,创造惰性气体环境。

④通入氢气,参与反应(0.38m3/h)

打开氢气瓶的阀门,氢气通过转子流量计后进入燃料电池阴极。通过控制阀门开度和观察流量计读书来控制氢气浓度。

⑤等待电压稳定,记录电压

初始电池内部化学反应未达到稳态,电池的开路电压持续上升。等待将近3分钟,开路电压趋于稳定,记录此时的电压为燃料的开路电压。

⑥设定放电电流,记录电压

在电子负载上设定恒电流放电,待电压稳定后记录数据。逐渐升高放电电流,记录数据。

⑦控制变量,多组实验对比

改变电扇功率或氢气流量测量多组数据。

四、实验数据(由于本组学生方灿同学弄丢了一组数据,造成对照实验

数据不完整,请见谅!)

表1 实验控制条件参数表

不同实验之间通过调整风扇功率、氢气流速得出多组不同数据。

图1

图形分析:

图中三条曲线中存在两个阶段,第一阶段迅速下降,第二阶段下降缓慢。说明在电流较小时,电流增加,电压迅速下降;到达阶段2后,电压下降变得缓慢。理论分析:

理论上燃料电池的极化曲线存在三个阶段(骤降-平缓-骤降),但是实验数据做出的曲线并没有体现这一理论现象。其原因可能有二点:①实验数据采集不足,放电电流的设定还没有达到阶段3的电流值。②氢气流量不稳,氢气流量波动会导致实验数据采集出现问题。

结论:

①:当氢气浓度不变时,氧气浓度较高一组,在相同放电电流下,工作电

压较大。

②:燃料浓度高的电池,电池的开路电压和工作电压比浓度低的要高。

图2

图形分析:

图中曲线呈对数增长趋势,其曲线高度由高到低排列依次是实验一、实验三和实验二。

理论分析:

理论上燃料电池的输出功率应该存在一个峰值,但是实验数据中并没有出现这个现象,其原因和图一的分析一致。

结论:

①燃料的浓度越高,电池的输出功率越高。

②电池的输出功率随放电电流上升而变大,但是上升趋于平缓。

甲醇制芳烃实验报告doc

甲醇制芳烃实验报告 篇一:化工实训实验报告 吉林化工学院化工过程模拟实训报告 题目:甲醇-水精馏分离过程模拟计算 教学院石油化工学院专业班级化工1302班学生学号1310111218学生姓名何迪指导教师刘艳杰 XX 年12月8日 1、软件功能简介 (1)全面的单元操作:包括气/液,气/液/液,固体系统和用户模型。 (2)将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。 (3) 优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。 (4) Design Specification 功能: 自动计算操作条件或设备参数,满足指定的性能目标。 2、已知基础数据及分离任务 (1)已知基础数据 F1:35?C ,101kPa,1080 kg/hr的甲醇(52%w)-水(48%w)。F2:20?C ,150kPa,1000kg/hr 的甲醇(40%w)-水(60%w)。F3:25?C ,120kPa,1420kg/hr 的甲醇(60%w)-水(40%w)。精馏塔进料流量:3000 kg/hr,进料温度60?C,压力150kPa。(2)分离任务 塔顶产品甲醇含量不低于99.9%(w),塔底产品水含量

不低于99.9%(w)。甲醇回收率不低于99.1%,水回收率不低于99.5%。 3、流程叙述 将温度为35 ?C,压力为101kPa,流量为1080 kg/hr 的甲醇(52%w)-水(48%w) 与温度为20 ?C,压力为150kPa,流量为1000 kg/hr的甲醇(40%w)-水(60%w)及温度为25 ?C,压力为120kPa,流量为1420kg/hr的甲醇(60%w)-水(40%w)在混合器M0101中混合。将混合后的物料经分流器S0101分流出3000kg/hr由泵P0101打入换热器E0101,在换热器中将物料加热至60 ?C后,进入精馏塔T0101进行甲醇-水混合液的精馏分离,经精馏后塔顶得到99.9%的甲醇,塔釜得到99.9%的水。流程图见图1所示。 图1 甲醇-水分离流程图 4、模拟计算过程的简述 4.1 模拟的全局设置(1)启动ASPEN 双击桌面的aspen软件快捷方式打开aspen。(2)单位制的选择 在新建页面选择General with Metric Units选项 (3)运行类型的确定 运行类型选择 Flowsheet,确认创建aspen文件。 (4)组分的输入 将本组流程命名为学号18,并且Input Data为METCHE,Output Result为METCHE。

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

燃料电池实验报告

竭诚为您提供优质文档/双击可除 燃料电池实验报告 篇一:燃料电池综合特性实验报告 燃料电池综合特性实验 【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。 能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系

统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。 【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。 【关键词】燃料电池,电解池,太阳能电池 【正文】 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安

离心泵特性曲线测定实验报告

离心泵特性曲线实验报告 一.实验目的 1、熟悉离心泵的构造和操作 2、掌握离心泵在一定转速下特性曲线的测定方法 3、学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生 了解涡轮流量计、电动调节阀以及相关仪表的原理和操作。 二, 基本原理 离心泵的主要性能参数有流量Q 、压头H 、效率和轴功率N ,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。而且,当期流量变化时,泵的压头、功率、及效率也随之变化。因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。 用实验方法测出某离心泵在一定转速下的Q 、H 、n 、N ,并做出H-Q 、n-Q 、N-Q 曲线,称为该离心泵的特性曲线。 1、扬程(压头)H (m ) 分别取离心泵进口真空表和出口压力表处为1、2截面,列柏努利方程得: f H g u g p z H g u g p z +++=+++222 2222 111ρρ 因两截面间的管长很短,通常可忽略阻力损失项H f ,流速的平方差也很小 故可忽略,则: +H0 式中 ρ:流体密度,kg/m 3 ; p 1、p 2:分别为泵进、出口的压强,Pa ; g p p H ? 1 2 ? ?

u 1、u 2:分别为泵进、出口的流速,m/s ; z 1、z 2:分别为真空表、压力表的安装高度,m 。 由上式可知,由真空表和压力表上的读数及两表的安装高度差,就可算出泵的扬程。 2、轴功率N (W ) N= N 电η电 =电 其中,N 电为泵的轴功率,η电为电机功率。 3、效率η(%) 泵的效率η是泵的有效功率与轴功率的比值。反映泵的水力损失、 容积损失和机械损失的大小。泵的有效功率Ne 可用下式计算: g HQ Ne ρ= 故泵的效率为 %100?= N g HQ ρη 4、泵转速改变时的换算 泵的特性曲线是在定转速下的实验测定所得。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n ¢ 下(可取离心泵的额定转速)的数据。换算关系如下: 流量 n n Q Q '=' 扬程 2 )(n n H H ' =' 轴功率 3 )(n n N N ' =' 效率 ηρρη==''= 'N g QH N g H Q ' 三, 实验装置流程示意图

性能测试工具LoadRunner实验报告

性能测试工具LoadRunner实验报告 一、概要介绍 1.1 软件性能介绍 1.1.1 软件性能的理解 性能是一种指标,表明软件系统或构件对于其及时性要求的符合程度;同时也是产品的特性,可以用时间来进行度量。 表现为:对用户操作的响应时间;系统可扩展性;并发能力;持续稳定运行等。1.1.2 软件性能的主要技术指标 响应时间:响应时间=呈现时间+系统响应时间 吞吐量:单位时间内系统处理的客户请求数量。(请求数/秒,页面数/秒,访问人数/秒) 并发用户数:业务并发用户数; [注意]系统用户数:系统的用户总数;同时在线用户人数:使用系统过程中同时在线人数达到的最高峰值。 1.2 LoadRunner介绍 LoadRunner是Mercury Interactive的一款性能测试工具,也是目前应用最为广泛的性能测试工具之一。该工具通过模拟上千万用户实施并发负载,实时性能监控的系统行为和性能方式来确认和查找问题。 1.2.1 LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户; 压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;

监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 1.2.2 LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner就是通过代理方式截获客户端和服务器之间交互的数据流。 1)虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,记录并将其转发给服务器端;接收到从服务器端返回的数据流,记录并返回给客户端。 这样服务器端和客户端都以为在一个真实运行环境中,虚拟脚本生成器能通过这种方式截获数据流;虚拟用户脚本生成器在截获数据流后对其进行了协议层上的处理,最终用脚本函数将数据流交互过程体现为我们容易看懂的脚本语句。 2)压力生成器则是根据脚本内容,产生实际的负载,扮演产生负载的角色。 3)用户代理是运行在负载机上的进程,该进程与产生负载压力的进程或是线程协作,接受调度系统的命令,调度产生负载压力的进程或线程。 4)压力调度是根据用户的场景要求,设置各种不同脚本的虚拟用户数量,设置同步点等。 5)监控系统则可以对数据库、应用服务器、服务器的主要性能计数器进行监控。 6)压力结果分析工具是辅助测试结果分析。 二、LoadRunner测试过程 2.1 计划测试 定义性能测试要求,例如并发用户的数量、典型业务流程和所需响应时间等。 2.2 创建Vuser脚本 将最终用户活动捕获(录制、编写)到脚本中,并对脚本进行修改,调试等。协议类型:取决于服务器端和客户端之间的通信协议;

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 即:电N N 95.0= (4) 3.效率η的计算

PC性能评测实验报告

计算机体系结构课程实验报告 PC性能测试实验报告 学号: 姓名:张俊阳 班级:计科1302 题目1:PC性能测试软件 请在网上搜索并下载一个PC机性能评测软件(比如:可在百度上输入“PC 性能benchmark”,进行搜索并下载,安装),并对你自己的电脑和机房电脑的性能进行测试。并加以比较。 实验过程及结果: 我的电脑:

机房电脑:

综上分析:分析pcbenchmark所得数据为电脑的current performance与其potential performance的比值,值大表明计算机目前运行良好,性能好,由测试结果数据可得比较出机房的电脑当前运行的性能更好。分析鲁大师性能测试结果:我的电脑得分148588机房电脑得分71298,通过分析我们可以得出CPU占总得分的比重最大,表明了其对计算机性能的影响是最大的,其次显卡性能和内存性能也很关键,另外机房的电脑显卡性能较弱,所以拉低了整体得分,我的电脑各项得分均超过机房电脑,可以得出我的电脑性能更好的结论。 题目2:toy benchmark的编写并测试 可用C语言编写一个程序(10-100行语句),该程序包括两个部分,一个部分主要执行整数操作,另一个部分主要执行浮点操作,两个部分执行的频率(频率整数,频率浮点)可调整。请在你的计算机或者在机房计算机上,以(,),(,),(,)的频率运行你编写的程序,并算出三种情况下的加权平均运行时间。 实验过程及结果: #include<> #include<> int main() {

int x, y, a; double b; clock_t start, end; printf("请输入整数运算与浮点数运算次数(单位亿次)\n"); scanf("%d%d", &x, &y); /*控制运行频率*/ start = clock(); for (int i = 0; i

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究实验报告

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究 学院:化学学院 班级:化学03班 姓名:艾丽莎 学号:33090331

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究【实验目的】 甲醇燃料电池阳极催化剂的合成及其电化学催化性能的表征,此实验过程设计无机合成、物理化学及电化学等学科方向内容,对同学熟练运用化学实验基本理论、基本方法和操作具有很好的促进作用。燃料电池是一类连续地将燃料氧化过程的化学能直接转换为电能的电化学电池,直接甲醇燃料电池(DMFC)由于其结构简单、操作方便和比能量高等优点,具有十分诱人的应用前景,引起广泛的研究兴趣,已经成为燃料电池领域的研究热点。把相关研究作为实验内容对同学开阔视野,培养科学的思维方式及勇于创新意识具有促进作用。 1. 了解碳载铂与铂钌阳极催化剂的制备方法。 2. 了解甲醇燃料电池的工作原理,掌握催化剂电催化性能的测试方法。 3. 了解甲醇燃料电池阳极电催化反应机理。 【实验原理】 一.什么是燃料电池。 燃料电池(Fuel Cell, 简称FC)发电是继水力、火力和核能发电之后的第四类发电技术。由于它是一种不经过燃烧直接以电化学反应方式将燃料的化学能转化为电能的发电装置,从理论上讲,只要连续供给燃料,燃料电池便能连续发电。但是,与一般电池不同,FC所用的燃料和氧化剂并不是储存在电池内,而是储存在电池外。在这一点上,与内燃机相似。因此,FC又被形象地称为“电化学发电机”。 二.燃料电池的分类。 燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料的种类以及使用方式等进行分。目前广为采纳法是燃料的种类以及使用方式等进行分。目前广为采纳法是依据燃料电池中所用的电解质类型来进行分,即为六燃料: ①碱性燃料电池(AFC)碱性燃料电池采用氢氧化钾溶液作为电解液,电池的工作温度一般在60 -220 ℃之间。 ②质子交换膜燃料电池(PEMFC)质子交换膜燃料电池采用能够传导质子的聚合物膜作为电解质,比如全氟磺酸膜(Nafion 膜),其主链为聚四氟乙烯链,支链上带有磺酸基团,可以传导质子。 ③磷酸燃料电池(PAFC)磷酸燃料电池是目前最为成熟的燃料电池,已经实现了一定规模的商品化。其采用是100%的磷酸作为电解液,其具有稳定性好和腐蚀性低的特点。 ④熔融碳酸盐燃料电池(MCFC)熔融碳酸盐燃料电池是一种中高温燃料电池,其电解质是Li2CO3-Na2CO3或者Li2CO3-K2CO3的混合物熔盐,浸在用LiAlO2制成的多孔膜中,高温时呈熔融状态对碳酸根离子具有很好的传导作用。 ⑤固体氧化物燃料电池(SOFC)其是一种全固体的燃料电池,电解质是固态致密无孔的复合氧化物,最常使用钇掺杂锆简写为YSZ,这样的电解质材料在高温下具有很好的氧离子传导性。 ⑥直接甲醇燃料电池(DMFC)直接甲醇燃料电池是近年来开发起的,用PEM 作为电解质的新型燃料电池。其直接使用液体甲醇作为燃料,大幅度的简化了发电系统和结构。三.甲醇燃料电池(DMFC)的工作原理。 直接以液态或气态甲醇为燃料的FC称为DMFC,直接甲醇燃料电池是质子交换膜燃料电池(PEMFC)的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换

2020年燃料电池行业分析报告

2020年燃料电池行业 分析报告 2020年3月

目录 一、国内:商业化早期阶段,长远规划可期 (4) 1、产业情况:商业化早期阶段,有望与锂电形成互补 (4) 2、政策引导:借鉴锂电池发展经验,搭建规划框架雏形 (6) (1)高层重视程度持续提升,重磅氢能发展规划即将出台 (6) (2)国补维持较高水平,新补贴标准值得期待 (6) (3)地方政策顺势跟进,氢能产业蓬勃发展 (7) 二、海外:他山之石,以日本氢能发展经验为鉴 (8) 1、起因:能源自给率低,倒逼氢能革命 (8) 2、规划:三步走战略目标明确,未来氢能社会可期 (9) 3、研发:产学研一体化,掌握全产业链核心技术 (10) 4、能源供应:打造海外氢能供应体系 (12) 5、应用:优先开拓车用市场,完善加氢站等配套设施 (13) 6、应用:积极探索多元化应用场景 (14) 三、地方:多点开花,培育氢能产业集群 (15) 1、长三角:以长三角一体化为契机,打造氢能产业集群 (16) 2、环渤海:张家口基地“以点带面”,迎合北方商用车市场 (18) 3、珠三角:广东多城联动,省级层面加强顶层设计 (19)

政策框架初成,长远规划可期。燃料电池已初步达到产业化标准,而当前氢能基础设施短板是限制燃料电池汽车产业快速发展的主要 因素之一。国家对氢能/燃料电池的重视程度不断提升,发改委要求在2021年前完成氢能发展的标准规范和支持政策。未来随着国家级氢能规划的出台,有望引导行业有序、健康发展,进一步推动绿色能源转型,为燃料电池产业发展提供有力保障。补贴层面,纯电动汽车珠玉在前,我国已形成了“购置补贴为主、税收减免为辅”的补贴模式,国补与地补相结合,推动新能源汽车产业发展。 借鉴日本发展经验,推动产业健康成长。日本政府首先在国家层面明确了氢能源战略定位,随后配合推出了氢能产业战略方向和目标,并不断更新发布实现战略目标的路线图,一系列“组合拳”对氢能产业的前期培育和健康发展具有重要的指引作用。研发方面,大力支持产学研一体化,掌握全产业链核心技术;氢能支持方面,打造海外氢能供应体系,完善国内加氢站等配套设施;应用领域,优先开拓车用市场,积极探索多元化应用场景。 全国多点开花,培育区域产业集群。近年地方政府对氢燃料电池汽车产业的扶持也在加速推进,已有17个省/直辖市出台了针对氢燃料电池的扶持政策,从产业规划、地方补贴、技术进步等多维度全方位推动氢能产业发展。产业初期投资额大、经济效益慢,政府需提供财政支持、终端运营订单、基金直投、研发平台建设等多维度支持,因此国内氢能产业主要集中在经济发达的东部沿海地区,现已形成了长三角、环渤海、珠三角三大氢能产业集群。

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

2015年燃料电池汽车行业分析报告

2015年燃料电池汽车行业分析报告 2015年1月

目录 一、FCEV是未来汽车发展的最理想方向 (5) 1、节能减排压力巨大 (5) 2、汽车多技术轨道并行 (6) 3、FCEV兼具传统汽车和新能源汽车优点,是未来汽车发展的最理想方向.. 7 二、燃料电池汽车概况 (8) 1、燃料电池汽车工作原理 (8) 2、燃料电池 (9) 3、燃料电池汽车发展历史 (11) (1)技术创新阶段(1959年~1993年) (11) (2)技术验证阶段(1994~2007年) (12) (3)商业化前夕(2008年~) (14) 三、燃料电池汽车产业链解析 (16) 1、燃料电池产业链分析 (17) (1)质子交换膜 (18) (2)催化剂 (18) (3)扩散层 (19) (4)双极板(阴、阳极板) (19) 2、氢产业链分析 (20) (1)制氢 (21) ①电解水 (21) ②甲烷蒸汽重整 (22) (2)储氢 (22) (3)加氢站 (23) 3、产业链上的优势企业 (23) 4、产业链上的中国企业 (24) (1)新源动力:中国燃料电池领域规模最大的企业 (24)

(2)神力科技:中国燃料电池技术研发和产业化的领先者 (25) (3)中科同力:致力于质子膜燃料电池中质子膜的研制与生产 (26) (4)贵研铂业:燃料电池催化剂提供商 (26) 四、国内外燃料电池汽车发展现状 (27) 1、各国政府大力发展燃料电池汽车 (28) (1)日本:FCCJ计划2015年实现燃料电池汽车商业化 (28) (2)德国:欧洲氢燃料电池汽车最活跃的国家 (30) (3)英国:H2 Mobility Roadmap (31) (4)美国:以加州为代表的零排放汽车计划(Zero Emission Vehicles) (33) (5)中国:扶持力度相对较弱,尚处于技术验证阶段 (34) 2、各大汽车制造商致力于燃料电池汽车的研究与推广 (35) (1)戴姆勒(DAIMLER):率先将PEMFC应用于汽车 (35) (2)福特(FORD):与燃料电池汽车若即若离 (36) (3)通用(GM):在燃料电池汽车领域研究历史最长 (37) (4)本田(Honda):推出世界第一辆商业化燃料电池汽车FCX Clarity (38) (5)现代(Hyundai):全球率先批量生产燃料电池汽车——ix35 FECV (38) (6)日产(Nissan):进入燃料电池汽车领域相对较晚,电池技术领先 (39) (7)丰田(Toyota):燃料电池汽车领域投入力度最大、技术最先进 (40) (8)大众(Volkswagen):近年开始涉足燃料电池汽车 (41) (9)上汽集团(SAIC):中国目前唯一可产业化燃料电池汽车的企业 (41) 3、三大燃料电池汽车集团联盟 (42) (1)戴姆勒/福特/雷诺-日产联盟 (43) (2)宝马/丰田联盟 (43) (3)通用/本田联盟 (43) 五、燃料电池汽车产业化黎明到来 (44) 1、技术:现有燃料电池汽车性能与传统汽车相当 (45) 2、成本:燃料电池系统成本持续下降 (45) 3、基础设施:加氢站建设先行,加速建设中 (47)

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

化工原理实验报告离心泵的性能试验北京化工大学

北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级:化工13 姓名: 学号: 20130 序号: 同组人: 实验二:离心泵性能实验 摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大; 当Re大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 为定值的条 件下。 关键词:性能参数(N H Q, , , )离心泵特性曲线管路特性曲线C0一.目的及任务

1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.熟悉孔板流量计的构造,性能和安装方法。 4.测定孔板流量计的孔流系数。 5.测定管路特性曲线。 二. 实验原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。 图1.离心泵的理论压头与实际压头 (1)泵的扬程He He=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ; H 真空表——泵入口处的真空度,mH 2o ; H 0——压力表和真空表测压口之间的垂直距离,H 0=。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为 轴 ηN Ne = 102 QHe Ne ρ = 式中 Ne ——泵的有效功率,kW ;

软件测试实验报告LoadRunner的使用

南昌大学软件学院 实验报告 实验名称 LoadRunner的使用 实验地点 实验日期 指导教师 学生班级 学生姓名 学生学号 提交日期 LoadRunner简介: LoadRunner 是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。LoadRunner 的测试对象是整个企业的系统,它通过模拟实际用户的操作行为和实行实时性能监测,来帮助您更快的查找和发现问题。此外,LoadRunner 能支持广范的协议和技术,为您的特殊环境提供特殊的解决方案。LoadRunner是目前应用最为广泛的性能测试工具之一。 一、实验目的

1. 熟练LoadRunner的工具组成和工具原理。 2. 熟练使用LoadRunner进行Web系统测试和压力负载测试。 3. 掌握LoadRunner测试流程。 二、实验设备 PC机:清华同方电脑 操作系统:windows 7 实用工具:WPS Office,LoadRunner8.0工具,IE9 三、实验内容 (1)、熟悉LoadRunner的工具组成和工具原理 1.LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户;压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 2.LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner 就是通过代理方式截获客户端和服务器之间交互的数据流。 ①虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,

燃料电池综合特性实验报告

燃料电池综合特性实 验论文 作者:宋东辉 学号:03482015010 单位:二十二连二区队A组

燃料电池综合特性实验 一、实验目的: 1.了解燃料电池的工作原理 2.观察仪器的能量转换过程:电能→电解池→氢能(能量储存)→燃料电池→电 能 3.测量燃料电池输出特性,作出所测燃料电池的伏安特性(极化)曲线,电池 输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率 4.测量质子交换膜电解池的特性,验证法拉第电解定律 二、实验原理: 1、燃料电池 质子交换膜燃料电池(如上图)在常温下工作,其基本结构如图1所示。 目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄膜,厚度0.05~0.1mm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。

膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。 进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子, 阳极反应为:H2 = 2H++2e (1) 氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。 在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水, 阴极反应为:O2+4H++4e = 2H2O (2) 阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。 总的化学反应如下:2H2+O2 = 2H2O (3) 2、水的电解 将水电解产生氢气和氧气,与燃料电池中氢气和氧气反应生成水互为逆过程。水电解装置同样因电解质的不同而各异,碱性溶液和质子交换膜是最好的电解质。若以质子交换膜为电解质,可在图1右边电极接电源正极形成电解的阳极,在其上产生氧化反应2H2O = O2+4H++4e。左边电极接电源负极形成电解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H++2e = H2。即在右边电极析出氧,左边电极析出氢。 作燃料电池或作电解器的电极在制造上通常有些差别,燃料电池的电极应利

最新燃料电池行业分析报告

【智拓精文】最新燃料电池行业分析报告 最新燃料电池行业分析报告 简单地说,燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。它是一种电池,但不需用昂贵的金属而只用便宜的燃料来进行化学反应。这些燃料的化学能也通过一个步骤就变为电能,比通常通过两步方式的能量损失少得多。于是,可以为人类提供的电量就大大地增加了。 按照国民经济分类标准,燃料电池行业是电气机械及器材制造业(代码:39)下面的电池制造行业(代码:3940 )的子行业之一。

按燃料电池工有低温型,温度低于200 C;中温型,温度为200?750 C; 作温度分高温型,温度高于750 C 数据来源:世经未来 一、燃料电池在国内外的发展情况 迄今,燃料电池已经历了一个多世纪的发展历程。现代对燃料电池的研究和开发始于20世纪50年代,并以XX年代美国将燃料电池成功地应用到载人航天飞行器为标志,使燃料电池在这一特殊领域步入实用化阶段。XX年代以后,燃料电池从空间运用转入 民用。进入XX年代,由于全球性能源紧缺问题日趋突出以及环境保护和可持续发展的迫切要求,燃料电池因其突出的优越性得到了蓬勃的发展,洁净电站、便携式电源即将进入商业化阶段燃料电池动力汽车进入实验阶段(奔驰、丰田)。 如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 早在20世纪XX年代,我国就开展燃料电池方面的研究,在燃料电池关键材料、关键技术的创新方面取得了许多的突破。政府十分注重燃料电池的研究开发,陆续开发出30kW级氢氧燃料电极、燃料电池电动汽车等。燃料电池技术特别是质子交换膜燃料电池技术也得到了迅速发展,相继开发出60kW、75kW等多种规格的质子交换膜燃料电池组;开发出电动轿车用净输出40kW、城市客车用净输出100kW燃料电池发动机,使中国的燃料电池技术跨入世界先进国家行列。 二、行业发展环境稳定 20XX年X-YY月,国内生产总值397983.20亿元,同比增长10.30%,高于20XX 年的9.20%。分季度看,一季度增长11.9%,二季度增长11.1%,三季度增长10.6%,

相关主题
文本预览
相关文档 最新文档