当前位置:文档之家› 基于贝叶斯网络的系统可靠性评估方法

基于贝叶斯网络的系统可靠性评估方法

基于贝叶斯网络的系统可靠性评估方法
基于贝叶斯网络的系统可靠性评估方法

系统可靠性的贝叶斯网络评估方法

摘要:针对现有组合法与状态法在可靠性评估方法中的局限性, 对基于贝叶斯网络的系统可靠性评估新方法进行了研究。运用该方法进行可靠性评估, 不但能计算出系统的可靠性指标, 而且能方便地给出一个或几个部件对系统可靠性影响的大小, 识别系统的薄弱环节。结合故障树方法建立系统可靠性评估的贝叶斯网络模型, 并用实例阐述了贝叶斯网络方法进行系统可靠性评估的有效性。同时通过对贝叶斯网络的条件失效概率与系统可靠性评估中常用重要度指标的对比分析表明, 贝叶斯网络的推理算法更便于查找系统的薄弱环节。

关键词:系统可靠性评估;贝叶斯网络;故障树;重要度;推理

引文

现代机械产品如飞机、飞机发动机、大型机床、轮船等的日益大型化与复杂化对可靠性的评估方法也提出了越来越高的要求。

对于由多个单元组成的复杂产品由于费用和试验组织等方面的原因, 不可能进行大量的系统级可靠性试验, 如何充分利用单元和系统的各种试验信息对系统可靠性进行精确的评估是一个复杂的问题, 因而引起许多学者的关注。

当前, 故障树分析经常应用在系统可靠性分析中。故障树分析能够计算出系统的可靠度, 并给出底事件发生对顶事件的影响大小, 但是不能定量给出某几个底事件或中间事件在整个系统可靠性中所占的地位。当系统中某些元件状态已知时, 很难计算出这些元件对整个系统或部分系统影响的条件概率, 而这些条件概率对于改善和提高机械系统的可靠性是很有帮助的。例如,可以利用这些信息找出系统可靠性的薄弱环节或薄弱点。

将贝叶斯网络技术应用于系统的可靠性评估, 能很好地弥补传统可靠性评估方法的不足。因为贝叶斯网络能很好地表示变量的随机不确定性和相关性, 并能进行不确定性推理。相关文献提出了把贝叶斯网络应用于电力系统可靠性评估中, 由于电力系统的构成与机械系统有一定的差别, 电力系统结构关系相对简单, 而机械系统结构关系复杂, 数量繁多, 因此如何将贝叶斯网络应用于一般的机械系统, 就成为可靠性研究者的一个新课题。相关人员研究了应用贝叶斯网络工具软件求解最小割集及元件重要度的方法。实际上, 由于贝叶斯网络结构的特点和双向推理的优势, 在进行系统可靠性研究中, 可以直接计算一个元件或多个元件故障对系统故障的影响,以及系统故障条件下, 元件的故障概率, 这样就避免了最小割集和重要度的计算, 因此应用贝叶斯网络结构求解故障树的最小割集以及重要度是没有必要的。

本文在详细分析贝叶斯网络特点的基础上,重点研究将贝叶斯网络应用于机械系统尤其是复杂机械系统可靠性评估的方法, 并对某一个或某几个元件状态同时发生变化时对系统可靠性的影响进行深入分析, 给出相应的验证实例。

1简述贝叶斯网络

1.1贝叶斯网络的定义

贝叶斯网络又称贝叶斯信念网络, 是一种对概率关系的有向图解描述, 它提供了一种将知识直觉地图解可视化的方法。贝叶斯网络是一个有向无环图(Directed A cyclic Graph , DAG), 它由代表变量的节点及连接这些节点的有向边构成。其中节点代表论域中的变量, 有向弧代表变量间的关系(即影响概率), 通过图形表达不确定性知识, 通过条件概率分布(CPD)的注释, 可以在模型中表达局部条件的依赖性。按照贝叶斯公式给出的条件概率定义

式中:P(B)为先验概率;P(A | B)为后验概率;P(B A)为似然率。

假设A 是一个变量, 存在n 个状态a1 , a2 , …a i ,…, a n ,则由全概率公式可以

得出

从而根据贝叶斯公式算出后验概率P(A|B)。贝叶斯网络不但可以实现正向推理, 由先验概率推导出后验概率, 即由原因导出结果, 还可利用公式由后验概率推导出先验概率, 即由结果导出原因。这一双向推理特点将在后面1.3节中详细说明。一个简单的贝叶斯网络如图1所示。图中的4个变量s, c , b 和d 分别代表吸烟、肺癌、支气管炎和呼吸困难。变量值取1或0表示变量代表的事件为真或假。如变量s为真的概率为0.5 , 用P(s = 1)= 0.5 表示。条件概率用来表示节点间的影响大小, 条件独立关系定义了贝叶斯网络的结构。如图1所示, P (d =1|c =1 , b =0)=0.90 表示患者在患上肺癌而不是支气管炎的情况下呼吸困难的概率为0.90。P(d| =1 c =1 ,

b =1) =0.99表示患者在同时患上肺癌和支气管炎的情况下呼吸困难的概率为

0.99。

图1 一个简单的贝叶斯网络

1.2 贝叶斯网络的条件独立性

贝叶斯网络的拓扑结构代表了变量间的相互关系, 它表达了变量之间的条件独立性, 如图1所示, 在给定s的条件下, 变量b和c是条件独立的, 则P(c|b,s)=P(c|s)。

贝叶斯网络的一个优势是它提供了节点变量概率分布的简单表达, 这个概率分布可以表达为在给定父节点分布的情况下, 节点的条件分布。因此Pa(t)代表节点T 的父节点, 则节点T 的概率分布为P(T)为

利用条件独立性进行分解, 可以极大地减少计算联合概率所需的参数数量。如图1 所示的一个简单的4节点贝叶斯网络, 有

1.3 贝叶斯网络的双向推理

贝叶斯网络是一种用图表示知识的方法, 并且是可以计算的概率模型。通过这种网络, 可以综合各种来源的数据, 并对这些数据进行综合的推理。

贝叶斯网络有正向推理和反向推理。贝叶斯网络推理计算分精确推理计算方法和近似计算方法。精确推理计算方法又分基于图形结构的方法, 如多义树传播算法、团树推理方法、图约减算法和基于组合优化的算法, 如桶排除方法。

这些推理算法都没有摆脱显式求和的计算方式, 其计算量都是随着节点数的增多呈指数增长。目前己经提出了多种近似推理算法。主要分为两大类:基于仿真的方法和基于搜索的方法。这些算法都采取一定的方式在运行时间和推理精度上寻求一个折中, 力求在较短的时间内得到一个满足精度要求的结果。

由于贝叶斯网络本身节点变量间的条件独立性, 基于故障树法基本思想的贝叶斯网络的推理计算, 不再有单独处理的不交化计算过程和最小割集的求解, 避免了不交化的大量计算, 同时通过双向推理可以计算出任意一个或多个变量节点给定的条件下, 网络正常工作的概率。进而通过反向推, 在网络故障条件下, 计算出任意一个或多个变量节点故障的概率, 对网络的薄弱环节进行诊断。桶排除法的推理算法即应用了贝叶斯网络节点变量间的条件独立性原则, 进行网络的正向推理。

利用贝叶斯公式计算先验概率或桶排除法可以得P(d =1)= 0.6642 。再运用贝叶斯公式计算其后验概率, 实现贝叶斯网络的双向推理。可得出

940

.0)1|1(473.0)1,1|1(566

.0)1|1(==========c d P c d b P d c P

2 贝叶斯网络识别系统薄弱环节

由于贝叶斯网络节点变量的条件独立性及其特有的双向推理优势, 应用贝叶斯网络可以方便地计算系统正常工作的概率以及系统故障条件下, 一个或多个元件故障的概率, 从而有效地识别系统的薄弱元件, 为系统维护和更新提供依据。

在故障树分析中, 系统失效与部件失效之间的关系通过3种重要度来表达,

它们从不同的角度反映了部件对系统影响的重要程度。概率重要度的物理意义是当且仅当元件X i 失效时系统失效的概率, 它反映了某个元件状态发生的微小变化导致系统发生变化的程度, 它为计算结构重要度和关键重要度提供必要的中间特征量。结构重要度是概率重要度的一种特殊条件下的结果, 主要用于可靠度分配。关键重要度反映了某个元件故障概率的变化率所引起的系统故障概率的变化率, 主要用于系统可靠性参数设计以及排列诊断检查顺序表。

系统故障后元件故障的条件概率从故障诊断的角度反映了元件在系统中的重要性大小, 指明了引起系统故障的最可能原因, 特别适合于识别系统薄弱环节、故障诊断和制定检查和修理计划。这一指标要比概率重要度、关键重要度和结构重要度反映的更为合理、可靠。

3机械系统可靠性评估的贝叶斯网络模型

3.1 基于故障树分析方法的贝叶斯网络

故障树分析方法是机械系统可靠性常用的评估方法之一, 由于它是一种图形方法, 故形象、直观。又由于它是故障事件在一定条件下的逻辑方法, 因此可以围绕一个或一些特定的失效状态, 进行层层追踪分析, 在清晰的故障树图示下, 能了解故障事件的内在联系及单元故障与系统故障间的逻辑关系。故障树有许多优点, 如有利于弄清系统的故障模式, 找出系统可靠性的薄弱环节, 提高系统可靠性的分析精度;能进行定性定量分析计算, 求出复杂系统的失效概率和其他的可靠性特征值, 为改进和评估系统的可靠性提供定量依据。

但是故障树分析方法也有一定的局限性, 如故障树只能考虑系统二态:工作或失效, 而考虑多态时很困难;系统事件之间要做独立假设, 对于相关事件难于处理;应用故障树进行故障诊断分析时,要求得最小路集或最小割集, 采用不交化方法, 计算量大;如要计算系统中某一部件或多个部件对系统故障的影响时, 计算难度大, 有时甚至无法计算。

而贝叶斯网络技术的应用, 可以根据系统中元件间的逻辑关系直接建立故障树。在故障树已有的情况下, 也可以直接基于故障树生成贝叶斯网络, 并可以简单地处理上述故障树难于解决的难题, 下面就在故障树基础上直接建立贝叶斯网络做详细的分析。

3.2 贝叶斯网络模型的建立

在机械系统中, 故障树的逻辑门包括与门、或门、表决门、异或门、禁止门、非门等。如何将故障树转换成相应的贝叶斯网络, 首先要将逻辑门关系用贝叶斯网络点和CPT 来表达。

在机械系统可靠性评估中, 贝叶斯网络模型的建立与故障树的结构是一一对应的, 因此逻辑门的转换也是必要的。从推理过程和对系统状态的描述过程来看, 故障树向贝叶斯网络的映射基于两个原则:贝叶斯网络中的结点与故障树中的事件是一一对应的;贝叶斯网络中的条件概率分布是故障树中逻辑门关系的反映。基于此原则,文献中将故障树中多种逻辑门用贝叶斯网络来表达, 讨论了故障树向贝叶斯网络转化的方法:包括事件、逻辑门与节点的映射关系、事件之间

逻辑关系与条件概率分布之间的映射关系。

现举例进行简单说明。图2所示为系统示意图。对于如图2所示的系统(系统由V1,V2,V3这3个部件组成, 系统功能定义为从A 到B 流体通道畅通, 阀正常状态为“通”、失效状态为“断”), 现以t 表示系统故障事件(顶事件),xi 表示部件i 的状态,m 为一个中间状态事件。条件概率中1表示故障,0表示正常。然后便可依

图2 系统示意图

剧1.2节中的精确推理算法或近似推理算法进行可靠性指标的计算。

)

03())12()11(1(1)12()11(P )3,|1()2()1()2,1|(P )3,|1(),,3,2,1()1(,3,3,3,3,3,2,1===--========

=∑∑∑∑∑x P x P x P x P x x m t P x P x P x x m x m t P t m x x x P t P m

x m x m x m x m x x x 当阀V1,V2,V3的故障概率已知时, 即可以通过式(1)推导出系统故障的概率。可见, 贝叶斯网络模型符合机械系统可靠性的基本原理。

4 结 论

结合贝叶斯网络的特点, 研究了贝叶斯网络在机械系统可靠性评估中的应用, 得出如下结论:

(1)应用贝叶斯网络来进行机械系统可靠性评估, 当故障树已经建立时不需要进行最小割集的求解, 可以避开不交化计算, 大大揭示了系统分析的效率。贝叶斯网络模型也使得系统可靠性分析更加直观、灵活。

(2)应用贝叶斯网络进行机械系统的可靠性评估, 不仅可以求出系统的可靠度, 方便地计算出某一个或某几个元件故障时系统故障的条件概率, 而且可以计算出系统失效时某一个或某几个元件失效的条件概率, 进行推理诊断分析, 出系统的薄弱点, 有针对性地加强系统的可靠性, 对于进行机械系统的故障诊断具有重要意义。

(3)通过对系统可靠性工程中常用重要度指标的分析与对比, 贝叶斯网络的推理算法更适合于求解机械系统可靠性的概率指标, 尤其便于查找机械系统的薄弱环节。

可靠性评估方法(可靠性预计、审查准则、工程计算)

电子产品可靠性评估方法培训 课程介绍: 作为快速发展的制造企业,产品可靠性的量化评估是一个难题,尤其是机械、电子、软件一体化的产品。针对此需求,本公司开发了《电子产品可靠性评估方法》课程,以期在以基于应力计数法的可靠性预计和分配、基于寿命鉴定的试验评估法两个方面提供对电子产品的评价数据。并在日常管理实践中,通过质量评价的方式,通过设计规范审查、FMEA分析发现评估中的关键问题点,以便更好地改进。 课程收益: 通过本课程的学习,可以了解电子产品的可靠性评估方法以及导致产品可靠性问题的问题点,为后期的质量管理统计和技术部门的解决问题提供工作依据。 课程时间:1天 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 【培训对象】本课程适于质量工程师、质量管理、测试工程师、技术工程师、测试部门等岗位。 课程特点: 讲师是可靠性技术+可靠性管理、军工科研+民品开发管理的综合背景; 课程包括开展可靠性评估工作的技术措施、管理手段,内容和授课方法着重于企业实践技术和学员的消化吸收效果。 课程本着“从实践中来,到实践中去,用实践所检验”的思想,可靠性设计培训面向设计生产实际,针对具体问题,充分结合同类公司现状,提炼出经过验证的军工和民用产品的可靠性

设计实用方法,帮助客户实现低成本地系统可靠性的开展和提升。 课程大纲: 一、可靠性评估基础 可靠性串并联模型 软件、机械、硬件的失效率曲线 可靠性计算 二、基于应力计数法的可靠性预计与分配 依据的标准 基于用户需求的设计输入应力条件 可靠性分配的计算方法和过程 基于应力计数法的可靠性预计 三、寿命鉴定试验评估方法 试验依据标准要求 试验过程 判定方式 四、产品质量与可靠性审查准则 基于失效机理的可靠性预防措施 系统设计准则(热设计、系统电磁兼容设计、接口设计准则) 机械可靠性设计准则 电路可靠性设计准则(降额、电子工艺、电路板电磁兼容、器件选型方法)嵌入式软件可靠性设计准则(接口设计、代码设计、软件架构、变量定义)五、DFMEA与PFMEA过程的潜在缺陷模式及影响分析方法

网络系统可靠性研究现状与展望资料

网络系统可靠性研究 现状与展望 姓名:杨玉 学校:潍坊学院 院系:数学与信息科学学院 学号:10051140234 指导老师:蔡建生 专业:数学与应用数学 班级:2010级二班

一、摘要 伴随着人类社会的网络化进程,人类赖以生存的网络系统规模越来越庞大、结构越来越复杂,这导致网络系统可靠性问题越来越严峻。本文首先探讨了网络系统可靠性的发展历程、概念与特点,进而从度量参数、建模、分析、优化四个方面系统综述了网络系统可靠性的研究现状,最后对网络系统可靠性研究未来的发展进行了展望。 二、关键词:可靠性;网络系统;综述;现状;展望 三、引言 21 世纪以来,以信息技术的飞速发展为基础,人类社会加快了网络化进程。交通网络、通信网络、电力网络、物流网络……可以说,“我们被网络包围着”,几乎所有的复杂系统都可以抽象成网络模型,这些网络往往有着大量的节点,节点之间有着复杂的连接关系。自从小世界效应[1]和无标度特性[2]发现以来,复杂网络的研究在过去10 年得到了迅速发展,其研究者来自图论、统计物理、计算机、管理学、社会学以及生物学等各个不同领域,仅发表在《Nature》和《Science》上的相关论文就达百篇。对复杂网络系统结构、功能、动力学行为的深入探索、科学理解以及可能的应用,已成为多个学科领域共同关注的前沿热点[3-14]。 随着复杂网络研究的兴起,作为复杂网络最重要的研究问题之一,网络系统可靠性研究的重大理论意义和应用价值也日益凸显出来[15, 16]。人们开始关注:这些复杂的网络系统到底有多可靠?2003 年8 月美加大停电事故导致美国的8 个州和加拿大的2 个省发生大规模停电,约5000 万居民受到影响,损失负荷量61800MW,经济损失约300 亿美元;2005 年12 月台湾海峡地震造成多条国际海底通信光缆发生中断,导致整个亚太地区的互联网服务几近瘫痪,中国大陆至台湾地区、美国、欧洲等方向国际港澳台通信线路受此影响亦大量中断;2008 年1 月,南方冰雪灾害导致我国十余个省市交通瘫痪、电力中断、供水停止、燃料告急、食物紧张……这些我们赖以生存的网络系统规模越来越庞大,结构越来越复杂,但越来越频繁发生的事故也将一系列严峻的问题摆在我们面前:一些微不足道的事故隐患是否会导致整个网络系统的崩溃?在发生严重自然灾

浅谈软件系统可靠性

浅谈软件系统可靠性 1 概述 近年来,随着计算机在军用与民用产品上的应用日益增多,软件缺陷所引发的产品故障,甚至灾难性事故也越来越严重,软件故障已成为高新技术产品发展的瓶颈。在这种情况下,一旦计算机系统发生故障,则其效益就会大幅度地消减,甚至完全丧失,从而使社会生产和经济活动陷入不可收拾的混乱状态。因此可以说,计算机系统的高可靠性是实现信息化社会的关键。 计算机系统硬件可靠性方面已有六十余年的发展历史,冗余技术、差错控制、故障自动检测、容错技术和避错技术等可靠性设计技术已经成熟。相比之下,软件可靠性的研究只有三十几年的发展历史,加上软件生产基本上仍处于作坊式的手工制作,其提高软件可靠性的技术与管理措施还处于十分不完善的状况。20 世纪70 年代末至80 年代初,软件可靠性的研究集中于对软件可靠性模型进行比较和选择。90 年代以来,软件可靠性研究工作进展较快,主要集中在软件可靠性设计、软件可靠性测试与管理以及软件可靠性数据的收集这三个方面。 2 软件可靠性的基本概念 2.1 软件可靠性的定义 1983年,美国IEEE计算机学会软件工程技术委员会对软件可靠性的定义如下: a)在规定的条件下,在规定的时间内,软件不引起系统失效的概率,该概率是系统输入和系统使用的函数,也是软件中存在的错误的函数;系统输入将确定是否会遇到已存在的错误。 b)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力。 软件可靠性定义中提到的“规定的条件”和“规定的时间”,在工程中有重要的意义。 定义中的“时间”有3种度量。第一种是日历时间,指日常生活中使用的日、周、月和年等计时单元;第二种是时钟时间,指从程序运行开始到运行结束所用的时、分、秒;第三种是执行时间,指计算机在执行程序时实际占用的CPU 时间。 定义中所指的“条件”,是指环境条件,包括了与程序存储、运行有关的计算机及其操作系统。 2.2 影响软件可靠性的主要因素 软件可靠性表明了一个程序按照用户的需求和设计的目标,执行其功能的正确程度。这要求一个可靠的程序应是正确的、完整的、一致的和健壮的。软件可靠性的决定因素是与输入数据有关的软件差错,正是因为软件中的差错引起了软件故障,使软件不能满足需求。影响软件可靠性的因素主要包括: 1、软件开发的支持环境; 2、软件的开发方法;

电力系统可靠性评估方法的分析

电力系统可靠性评估方法的分析 李朝顺 (沈阳电力勘测设计院辽宁沈阳 110003) 摘要:可靠性贯穿在产品和系统的整个开发过程,形成可靠性工程这门新兴学科。可靠性工程涉及原件失效数据的统计和处理、系统可靠性的定量评定、运行维护、可靠性和经济性的协调等各方面,是一门边缘科学,它具有实用性、科学性和实间性三大特点。其可靠性评估方法是可靠性研究领域一直探索的方向,本文对现有可靠性评估方法进行论述和分析,为可靠性工作者提供参考。 关键词:系统可靠性评估分析 1电力系统可靠性概述 可靠性(Reliability)是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 现代社会对电力的依赖越来越大,电能的使用已遍及国民经济及人民生活的各个领域,成为现代社会的必需品。电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按规定的技术经济要求组成的一个统一系统。发电厂将一次能源转换为电能,经过输电网和配电网将电能输送和分配给电力用户的用电设备,从而完成电能从生产到使用的整个过程。电力系统的基本结构如图1所示。 图1电力系统基本结构图 60年代中期以后,随着电力工业的发展,可靠性工程理论开始逐步引入电力工业,电力系统可靠性也应运而生,并逐步发展成为一门应用学科,成为电力工业取得重大经济效益

的一种重要手段。目前已渗透到电力系统规划、设计、制造、建设安装、运行和管理等各方面,并得到了广泛的应用,

如图2所示。 图2可靠性工程在电力系统中的应用 所谓电力系统可靠性,就是可靠性工程的一般原理和方法与电力系统工程问题相结合的应用科学。电力系统可靠性包括电力系统可靠性工程技术与电力工业可靠性管理两个方面。电力系统可靠性实质就是用最科学,经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。因此,一切为提高电力系统、设备健康水平和安全经济运行水平的活动都属于电力工业可靠性工作的范畴,都是为了提高电力工业可靠性水平所从事的服务活动。 通常,评价电力系统可靠性从以下两方面入手[2]。 (1) 充裕性(adequacy)—充裕性是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑到系统元件的计划停运及合理的期望非计划停运.又称为静态可靠性,即在静态条件下电力系统满足用户电力和电能量的能力。充裕性可以用确定性指标表示,如系统运行时要求的各种备用容量(检修备用、事故各用等)百分比,也可以用概率指标表示,如电力不足概率(LOLP),电力不足时间期望值(LOLE),电量不足期望值(EENS)等。 (2) 安全性(security)—安全性是指电力系统承受突然发生的扰动,如突然短路或未预料到的失去系统元件的能力,也称为动态可靠性, 即在动态条件下电力系统经受住突然扰动且不间断地向用户提供电力和电能量的能力。安全性现在一般采用确定性指标表示,例如最常用的可靠 性工 程在 电力 系统 中的 应用 元件故障数据统计和处理 可靠性数学理论 电源可靠性 输电系统可靠性 配电系统可靠性 大电力系统可靠性 可靠性管理 电气主接线可靠性 负荷预测 可靠性设备预诊断 故障分析 可靠性指标预测 建设安装质量管理 最佳检修和更换周期的确定 运行方式可靠性定量评估 可靠性工程教育

可靠性评估

可靠性概念理解: 可靠性是部件、元件、产品、或系统的完整性的最佳数量的度量。可靠性是指部件、元件、产品或系统在规定的环境下、规定的时间内、规定条件下无故障的完成其规定功能的概率。从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。 可靠性的技术是建立在多门学科的基础上的,例如:概率论和数理统计,材料、结构物性学,故障物理,基础试验技术,环境技术等。 可靠性技术在生产过程可以分为:可靠性设计、可靠性试验、制造阶段可靠性、使用阶段可靠性、可靠性管理。我们做的可靠性评估应该就属于使用阶段的可靠性。 机床的可靠性评定总则在GB/T23567中有详细的介绍,对故障判定、抽样原则、试验方式、试验条件、试验方法、故障检测、数据的采集、可靠性的评定指标以及结果的判定都有规范的方法。对机床的可靠性评估时,可以在此基础上加上自己即时的方法,做出准确的评估和数据的收集。 可靠性研究的方法大致可以分为以下几种: 1)产品历史经验数据的积累; 2)通过失效分析(Failure Analyze)方法寻找产品失效的机理; 3)建立典型的失效模式; 4)通过可靠性环境和加速试验建立试验数据和真实寿命之间的对应关系;5)用可靠性环境和加速试验标准代替产品的寿命认证; 6)建立数学模型描述产品寿命的变化规律; 7)通过软件仿真在设计阶段预测产品的寿命; 大致可把可靠性评估分为三个阶段:准备阶段、前提工作、重点工作。 准备阶段:数据的采集(《数控机床可靠性试验数据抽样方法研究》北京科技大学张宏斌) 用于收集可靠性数据, 并对其量化的方法是概率数学和统计学。在可靠性工程中要涉及到不确定性问题。我们关心的是分布的极尾部状态和可能未必有的载荷和强度的组合, 在这种情形下, 经常难以对变异性进行量化, 而且数据很昂贵。因此, 把统计学理论应用于可靠性工程会更困难。当前,对于数控机床可靠性研究数据的收集方法却很少有人提及, 甚至可以说是一片空白。目前, 可靠性数据的收集基本上是以简单随机抽样为主, 甚至在某些情况下只采用了某一个厂家在某一个时间段内生产的机床进行统计分析。由此所引发的问题就是: 这样收集的数据不能够很好地反映数控机床可靠性的真实状况, 同时其精度也不能够令人满意。 由于现在数控机床生产厂家众多、生产量庞大、机床型号多以及成产的批次多,这样都对数据的收集带来了很大的困难。因此,在数据采样时: (1)必须采用合理的抽样方法来得到可靠性数据; (2)简单随机抽样是目前普遍应用的抽样方法,但是必须抽取较大的样本量才能够获得较高的精度和信度; 针对以上的特点有三种数据采集的方法可以选择:简单随机抽样、二阶抽样、分层抽样。 (1)简单随机抽样:从总体N个单元中,抽取n个单元,保证抽取每个单元或者几个单元组合的概率相等。

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

基于贝叶斯网络的人因可靠性评价

基于贝叶斯网络的人因可靠性评价 * 孙 旋1,2 牛秦洲1 教授 徐和飞1 巫世晶2 秦 明2 黄河潮 3 (1桂林工学院电子计算机系,桂林541004 2武汉大学动力与机械学院,武汉430072 3香港城市大学建筑系) 学科分类与代码:620.20 中图分类号:X914 文献标识码:A =摘 要> 提出一种贝叶斯网络的人因可靠性评价(HRAB N)方法,其中的每个因子对应于贝叶斯网络中的节点,该方法可对人因可靠性作定量分析和定性分析。在定性分析上,节点的因果关系(HRA 中的因子关系)及需要改进的薄弱节点都直观地显示在层次图中;在定量分析方面,对节点因子后验概率的推断通过HRA 中的先验信息(包含仿真数据、现场操作及专家知识等)和最新信息得到。如果人因可靠性贝叶斯网络中的每个节点的先验概率分布和后验概率分布都已知,模型的可信性就可通过贝叶斯因子进行定量验证。贝叶斯网络扩展性好,当有新的节点因子需要考虑时,只需要补充对应的节点;笔者的方法也能很好地应用在不同行业的HRA 。 =关键词> 人因可靠性分析(HRA); HRA 模型; 模型的可信性; 贝叶斯网络; 贝叶斯因子 Human Reliabili ty Assessment Based on Bayesian Networks SUN Xuan 1 NIU Qin -zhou 1,Prof. XU He -fei 1 W U Sh -i jing 2 QIN Ming 2 HUANG He -chao 3 (1Department of Computer,Guilin University of Technology,Guilin 541004,China 2School of Mechanical &Po wer Engineering,Wuhan University,Wuhan 430072,China 3Department of Architecture,City University of Hong Kong,Hong Kong,China) Abstract: A human reliability assessment method using Bayesian networks is presented,in which each factor in the human reliability assessment corresponds to a node in the Bayesian networks,and could be used in qual-i tative and quantitative analyses.In the qualitative analysis,the causality of the nodes (the factors in the HRA)and the weak points need to be improved will be shown directly through hierarchical graph.In the quantitative analysis,the posterior probability (the potential factor)is inferred by the prior information (including simulation data,onsite experience data and e xpertise kno wledge)and latest information of HRA.A certain potential human actions could be predicted by mathe matical expectation of the node .s posterior probability.The c onfidence of the model of HRAB N might be quantitatively analyzed if the prior probability distribution and posterior probability distribution of every node were known.In addition,the flexibility of Bayesian networks is well,only corre -sponding nodes are added when new factors must be taken into account.The method could be well applied to every aspect in HRA. Key w ords: Human Reliability Analysis(HRA); model of HRA; c onfidence of model; Bayesian networks; Bayesian factor 第16卷第8期 2006年8月 中国安全科学学报Chi na Safety Science Journal Vol .16No .8 Aug .2006 文章编号:1003-3033(2006)08-0022-06; 收稿日期:2006-02-21; 修稿日期:2006-07-28

蒙特卡洛法在电力系统可靠性评估中地应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

网络可靠性设计

网络可靠性设计

目录 1.1 网络可靠性设计 (2) 1.1.1 网络解决方案可靠性的设计原则 (3) 1.1.2 网络可靠性的设计方法实例 (4) 1.1.3 网络可靠性设计总结 (9)

1.1网络可靠性设计 可靠性是指:设备在规定的条件下、在规定的时间内完成规定的功能的能力。对于网络系统的可靠性,除了耐久性外,还有容错性和可维护性方面的内容。 1)耐久性。是指设备运行的无故障性或寿命,专业名称叫MTBF(Mean Time Between Failure),即平均无故障时间,它是描述整个系统可靠性的重要指标。对于一个网络系统来说,MTBF是指整个网络的各组件(链路、节点)不间断无故障连续运行的平均时间。 2)容错性。专业名称叫MTTR(Mean Time to Repair),即系统平均恢复时间,是描述整个系统容错能力的指标。对于一个网络系统来说,MTTR是指当网络中的组件出现故障时,网络从故障状态恢复到正常状态所需的平均时间。 3)可维护性。在系统发生故障后,能够很快地定位问题并通过维护排除故障,这属于事后维护;根据系统告警提前发现问题(如CPU使用率过高,端口流量异常等),通过更换设备或调整网络结构来规避可能出现的故障,这属于预防维护。可维护性需要管理人员来实施,体现了管理的水平,也反映了系统可靠性的高低。

表示系统可靠性的公式为: MTBF / ( MTBF + MTTR ) * 100%。 从公式或以看出,提高MTBF或降低MTTR都可以提高网络可靠性。造成网络不可用的因素包括:设备软硬件故障、设备间链路故障、用户误操作、网络拥塞等。针对这些因素采取措施,使网络尽量不出故障,提高网络MTBF指标,从而提升整网的可靠性水平。 然而,网络中的故障总是不可避免的,所以设计和部署从故障中快速恢复的技术、缩小MTTR指标,同样是提升网络可靠性水平的手段。 在网络架构的设计中,充分保证整网运行的可靠性是基本原则之一。网络系统可靠性设计的核心思想则是,通过合理的组网结构设计和可靠性特性应用,保证网络系统具备有效备份、自动检测和快速恢复机制,同时关注不同类型网络的适应成本。 构建可靠的网络,需要从耐久性、容错性以及可维护性三个方面进行网络规划设计。而网络的规划设计是个系统工程,不同的设计方案的可靠性性效果不尽相同,这就需要以科学的方法进行设计,构建符合需要的可靠性网络。 1.1.1网络解决方案可靠性的设计原则 不同的网络,其可靠性的设计目标是不同的。网络解决方案的可靠性需要根据实际需求进行设计。高可靠性的网络不但涉及到网络架构、设备选型、协议选择、业务规划等技术层面的问题,还受用户现有网络状况、网络投资预算、用户管理水平等影响,因此在规划可靠性网络时需要因地制宜,综合考虑各方面的影响因素。

软件可靠性的评价准则

软件可靠性的评价准则 迄今为止,尚无一个软件可靠性模型对软件的不同特性和不同使用环境都有效。已公开发表的100余种软件可靠性模型,表达形式不同,适应性各异,与实际的软件开发过程有较大差异。而且,新模型还在不断发表。因此,在进行软件可靠性预计、分析、分配、评价和设计之前,对软件可靠性模型进行评价及选择与软件项目相符或相近的模型非常重要。通过建立有效的评价准则,在考虑它们与各种软件的关系的基础上,对拟评价的可靠性模型就有效性、适应性和模型能力等进行评价,判定它们的价值,比较它们的优劣,然后选择有效的软件可靠性模型。另一方面,在可接受的模型之间无法做出明确的选择时,可根据模型的使用环境等,在模型评价准则的基础上,进行模型择优。当然,软件可靠性模型的评价不仅依赖于模型的应用,还依赖于理论的支持和丰富的、高质量可靠性数据的支持。软件可靠性模型的评价最早始于1984年Iannino、Musa、Okumoto和Littlewood所提出的原则。根据这一原则,结合后人的工作,形成了基本的软件可靠性评价准则集。它们是软件可靠性模型比较、选择和应用的基础。 准则一:模型预测有效 软件可靠性模型最重要的评价指标是模型预测的有效性。它根据软件现在和过去的故障 行为,用模型预测软件将来的故障行为和可靠性水平。它主要通过能有效描述软件故障随机过程特性的故障数方式对模型进行描述与评价。基于软件故障时间特性的随机过程也是一种常用的方法,而且这两种方法相互重叠。 要确定软件可靠性模型预测的有效性,首先要比较模型预测质量。这种比较通常通过相 对误差法、偏值、U图法、Y图法、趋势法等方法进行。故障数度量是一种在工程上被广泛应 用的方法。此外,还可以通过比较不同数据集合所做出的中位线图形来评价模型预测的有效性。如果一个模型产生的曲线最接近于0,则该模型是最优的。而且,这种有效性测定方法有效地克服了规范化图形评价与具体软件项目之间的联系,保证了它的独立性。 用给定可靠性数据对软件可靠性模型进行比较时,必须考察拟合模型与观察数据的一致 性和符合性。当然,根据拟合模型进行采样,是否可以获得足够的观察数据非常重要。拟合优度检验是一种系统地表达并证明观察数据和拟合模型之间全局符合性的方法,使用最广泛的是x2检验。 1.准确性 软件可靠性模型预测的准确性可用前序似然函数来测定。设观察到的失效数据对应于软 件相继失效之间的时间序列t1,t2,..,ti-1,并用这些数据来预测软件在未来可能的Ti,即希 望得到Ti的真实概率密度函数Fi(t)的最优估计值。假设以t1,t2,...,ti-1为基础预测Ti的 分布Fi(t)的概率密度函数 @@42D11000.GIF;表达式1@@ 对Ti+1,Ti+2,...,Ti+n的这种向前一步预测,即进行了n+1次预测之后的前序似然函数为 @@42D11001.GIF;表达式2@@ 由于这种度量常常接近于0,所以常用其自然对数进行比较。假定比较的两个软件可靠性 模型分别为A和B,则对它们进行n次预测之后的前序似然比为 @@42D11002.GIF;表达式3@@

电力系统可靠性评估发展

电力系统可靠性评估发展 发表时间:2019-07-15T11:39:19.827Z 来源:《河南电力》2018年23期作者:薛琦 [导读] 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。 (国网河北省电力有限公司石家庄供电分公司 050000) 摘要:电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着经济的增长,电网向远距离、超高压甚至特高压方向的发展也越来越快,网络的规模日益庞大,结构也日益复杂。本文在对电力系统可靠性评估的研究现状进行学习的基础上,介绍了可靠性分析中的两个准则即N-1准则和概率性指标或变量的准则,在概率、频率、平均持续时间、期望值等指标框架内,讨论了解析法和蒙特卡洛法的基本原理及其在电力系统可靠性评估中的应用。 关键词:系统可靠性解析法;蒙特卡洛模拟法 一、可靠性产生背景 20世纪50年代,可靠性概念的提出开始于工业,并首先在军用的电子设备中得到应用。到了60年代中期,美国、西欧和日本以及前苏联等国家电力系统陆续出现稳定性的破坏事故,导致了大面积的停电,因此可靠性技术引入了电力系统。 1968年成立了美国电力可靠性协会,在美国的12个区各自制定可靠性准则,保证电力系统能经受较大事故的冲击,避免由于连锁反应导致大面积停电。 1981 年随着加拿大和墨西哥的加入改名为北美电力可靠性协会。 20世纪90年代电力市场的出现和1996年美国西部发生的两次停电事故成为影响电力系统可靠性进一步发展的因素。 近些年来不断发生大范围的停电事故,事故发生的同时也给人们带来了一些启示:确定性准则在大电网的规划和运行中受到了诸多限制,因此需要一些新的方法和观点来全面反映电网的状态,如需要考虑电网的一些随机事件。 二、可靠性在电力系统中的应用 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着电力系统规模的扩大,对电力系统可靠性的评估也要求更加准确,但是系统元件的不断增加,系统自动化程度不断提高,所以在可靠性评估中的难度也越来越大。发输电系统可靠性评估方法及发展单一的对发电系统或输电系统进行可靠性评估,结果在实际中就会有一定的局限性。 由于评估中要考虑元件的响应、网络结构、电压的质量等因素,所以计算量比较大计算也极其复杂。同时,回顾各大连锁停电故障,可以观察到的一个现象是电力系统的运行状态随着故障的连锁发生而不断恶化,系统内其他元件承受的负荷不断增加,系统趋近于某种临界状态,此时某些小概率故障(例如输电线路悬垂增加与树木接触,保护的隐性故障等)发生的概率显著增加,且一个小的事件可能会导致一个大事件乃至突变。而且,调度人员可能由于对当前系统的状态缺乏估计和了解,忽视了某些看起来平常的扰动,结果却可能导致无法估计的停电损失;或者出于对连锁大停电故障的过分担忧,实施相对保守但更加安全的控制方案,在一定程度上损害了运行经济性。因此针对上述出现的问题,如何利用新的方法更加准确和全面的反映电力系统的可靠性,并提高计算的速度,具有重要的理论研究意义和工程应用价值。 三、可靠性评估准则 电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按照规定的技术经济要求组成的统一系统。随着电力工业的发展,可靠性发展成为一门应用学科,成为电力工业取得重大经济效益的一种重要手段。电力系统可靠性实质就是用最科学、经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。 可靠性是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 可靠性评估准则,因为在电力系统中所需要的可靠性水平应达到一定的条件,所以可靠性评估应该对应相应的可靠性准则。在可靠性分析中有两个准则分别是N-1准则和概率性指标或变量的准则。在传统的可靠性评估中主要采用的是N-1准则。确定性的N-1准则已经在电力系统可靠性评估中广泛的使用了许多年,该准则概念清晰,可操作性好。N-1准则是指正常运行方式下电力系统中任意一元件(如线路、发电机、变压器等)无故障或因故障断开后,电力系统应能保持稳定运行和正常供电,并且其他元件不过负荷,电压和频率均在允许的范围内。 这一准则要求单个系统元件的停运不会造成任何损害或者负荷削减。但同时N-1准则有两个缺点:第一个是没有考虑多元件失效;第二是只分析了单一元件失效的后果,而没有考虑其发生的概率多大。如果选择的故障事件不是非常严重,但是发生的概率比较高,基于该类故障事件的确定性分析得出的结果仍然会使系统有较高的风险。相反,即使一个具有严重后果的故障事件发生但是它的的概率可忽略不计,基于这类事件的确定性分析就会导致规划评估中过分投资。 概率评估不仅可计及多重元件的失效事件,而且可以同时考虑事件的严重程度和事件发生的概率,将二者适当结合可以得到如实反映系统可靠性的指标。使用概率性指标评估的目的是在系统评估过程中增加新的考虑因素,而不是代替已经在可靠性评估中使用了多年的N-1准则,两者之间并无冲突,将二者结合起来可更加全面准确的反映系统的可靠性水平。 四、可靠性评估方法 电力系统可靠性是通过定量的可靠性指标来度量的。为了满足不同场合的需要和便于进行可靠性预测,已提出大量的指标,其中较多的主要有以下几类: (1)概率:如可靠度,可用率等; (2)频率:如单位时间内的平均故障次数; (3)平均持续时间:如首次故障的平均持续时间、两次故障间的平均持续时间、故障的平均持续时间等; (4)期望值:如一年中系统发生故障的期望天数。 上述几类指标各自从不同角度描述了系统的可靠性状况,各自有其优点及局限性。在实际应用过程中往往是采用多种指标来描述一个

贝叶斯方法评估系统(产品)的可靠性

贝叶斯方法评估系统(产品)的可靠性 用随机抽样进行统计分析计算的可靠性评估方法很多,而且都已标准化。但都要专门进行长时间的可靠性试验。这里介绍应用贝叶斯方法,推导了产品在研制中的增长评定方程式,充分利用产品在研制过程中和各现场试验信息,进行多母体统计分析,导出一种通用的故障率计算方程式,利用本方程式计算故障率,不仅简单、方便和经济,而且计算结果更符合产品的实际。 1 贝叶斯法可靠性评估模型 设产品研制分为m 个阶段,或产品的可靠性有m 次改进(一般m =2或m =3),每个阶段产品的故障率为λ1、λ2···λm ,且有λ1>λ2>···>λm ,各阶段的试验信息为(г1,r 1)、(г2,r 2)···(гm ,r m ),其中τi 和r i 分别为I 阶段的试验时间和故障数。根据贝叶斯公式,产品在(г1,r 1)···(гm ,r m )条件下,λ的分布密度函数由条件分布密度表示为: f[λ1···λm /(г1,r 1) ···(гm ,r m )] f[(г1,r 1) ···(гm ,r m ) ·λ1·λ2···λm ] = f[(г1,r 1) ···(гm ,r m )] 式中:f[λ1···λm /(г1,r 1) ···(гm ,r m )]为验后密度函数。 f (λ1···λm )为验前分布函数 f[(г1,r 1) ···(гm ,r m )/ λ1···λm ]为似然函数 f[(г1,r 1) ···(гm ,r m )]为(г1,r 1) ···(гm ,r m )的边缘密度函数。 假设验前分布函数已知,通过贝叶斯公式可求得验后密度函数,进而可求得m 阶段故障率的密度函数f(λm ),最后可求得m 阶段产品故障率上限λmu 。 设产品寿命服从指数分布。在这种假设下,产品的验前分布为伽玛函数,即 f(λ1···λm )=∏=m i 1 ( λτ10000)-Γr r i r (e -r i 0λ ) 式中г0、r 0为验前分布参数。 似然函数为: f[(г1,r 1) ···(гm ,r m )/ λ1···λ m ] = ∏ =m i 1 ( λ τ r r i i i i i r )11 +Γ+(e - r i i λ) [(г1,r 1) ···(гm ,r m )]的边缘密度函数为: f[(г1,r 1) ···(гm ,r m )] =?? ∞ ∞ λm 0···?∞ λ2 (f λ1···λm ) · f[(г1,r 1) ···(гm ,r m )/ λ1···λm ]d λ1···d λm 经推导,验后密度函数为: f[(г1,r 1) ···(гm ,r m )/ λ1···λm ]

网络可靠性实现

高可用性技术(故障检测技术)在路由网络中的应用 国网电科院信息通信技术服务中心蓝鹏 VER1.0 引言:为了保证网络的不间断运行,特别是核心出口网络的高可用性,通常在部署较大规模网络时,会采取链路级备份、设备级备份等方式。技术上通常使用多管理引擎备份、浮动静态路由、VRRP、HSRP等。虽然这些技术给网络带来了一些备份作用,但是对于实时性要求较高的网络还会存在一些问题,本文结合在H3C路由器上的配置实例说明一些故障检测技术与传统技术的结合(联动)从而实现更为智能的高可用性解决方案。 关键字:可靠性故障检测技术NQA BFD TRACK 路由协议网络收敛 (一)、可靠性概述 随着网络的快速普及和应用的日益深入,网络中断可能影响大量业务,因此,作为业务承载主体的基础网络,其可靠性日益成为倍受关注的焦点。在实际网络中,总避免不了各种非技术因素造成的网络故障和服务中断。因此,提高系统容错能力、提高故障恢复速度、降低故障对业务的影响,是提高系统可靠性的有效途径。 1.可靠性需求 可靠性需求根据其目标和实现方法的不同可分为三个级别,各级别的目标和实现方法如表 1 所示。 级别目标实现方法 1减少系统的软、硬件故障硬件:简化电路设计、提高生产工艺、进行可靠性试验 软件:软件可靠性设计、软件可靠性测试等 2即使发生故障,系统功能也不 设备和链路的冗余设计、部署倒换策略、提高倒换成功率受影响 3尽管发生故障导致功能受损, 提供故障检测、诊断、隔离和恢复技术 但系统能够快速恢复 表 1 在上述三个级别的可靠性需求中,第1级别需求的满足应在网络设备的设计和生产过程中予以考虑;第2级别需求的满足应在设计网络架构时予以考虑;第3级别需求则应在网络部署过程中,根据网络架构和业务特点采用相应的可靠性技术来予以满足。 2.可靠性度量 通常我们使用 MTBF ( Mean Time Between Failures ,平均故障间隔时间)和 MTTR ( Mean Timeto Repair ,平均修复时间)这两个技术指标来评价系统的可靠性。 (1).MTBF MTBF 是指一个系统无故障运行的平均时间,通常以小时为单位。 MTBF 越多,可靠性也就越高。 (2).MTTR MTTR 是指一个系统从故障发生到恢复所需的平均时间,广义的 MTTR 还涉及备件管理、客

基于贝叶斯方法的止回阀可靠性评估

稿件编号: NPIC-2-203-2014-0001-A 基于贝叶斯方法的止回阀可靠性评估 徐长哲,黄振,于海峰,聂常华,李明刚 (中国核动力研究设计院反应堆工程研究所,四川成都 610041) 摘要:本文根据轴系式止回阀的工作特点确定了其主要性能参数(泄漏量)以及该性能参数的退化模型,以及退化模型中的待估参数(泄漏量的期望值与方差)。根据目前与止回阀性能参数退化相似设备的研究,选定止回阀性能参数的分布密度函数(正态分布),采用无先验信息条件下的先验分布模型(扩散先验分布)对止回阀待估参数的后验分布进行计算,在计算过程中采用多元统计推断理论,令泄漏量的期望值为工作时间(开关次数)的线性函数,而泄漏量的方差与工作时间无关。通过计算,得到泄漏量分布密度函数各待估参数(即退化模型的待估参数)的计算模型和计算框图。研究结果表明,止回阀泄漏量的期望值的变形形式服从自由度为n的t分布,方差服从逆Gamma 分布。由此得到了泄漏量的期望值与方差,进而获得了止回阀泄漏量的分布密度函数和可靠度计算模型。 关键词:止回阀;小样本;贝叶斯;可靠性 中图分类号:文章标志码:A 文章编号:0258-0918(2010)01-0000-00 Reliability evaluation for check valve based on Bayes method XU Chang-Zhe,HUANG zhen,Yu Hai-feng,NIE Chang-hua,LI Ming-gang (Nuclear Power Institute of China, Chengdu of Sichuan Prov. 610041, China) Abstract: In this study, the main performance parameter of check valve, degradation model and evaluating parameter have been obtained according to the working characteristics of check valve. Based on the investigation of similar equipment, distribution density function of performance parameter for check valve has been chosen. Posterior distribution of evaluating parameter for check valve has been calculated by using prior distribution model without prior information. During calculation multivariate statistical inference theory has been used, and it is assumed that the expected value of leakage is linear function of switching number, while variance is irrelevant to switching number. Calculation model and block diagram for distribution density function of leakage have been obtained. The results show that the leakage expected value distribution is t with three degrees of freedom, while the variance distribution is inverse Gamma. Expected value and variance of leakage have been obtained. Distribution density function and reliability evaluation model for leakage of check valve are acquired too. Key words: check valve;small sampling;Bayes;reliability 0 引言 可靠性是衡量产品质量的重要指标,产品的可靠性用可靠度来衡量,可靠度是产品在规定的条件下和规定的时间内完成规定功能的概率。传统的可靠性评估是根据已有的大量破坏性实验数据进行失效概率分析。在可靠性试验中常常由于成本的问题而只能进行小子样试验,这些方法对小样本的可靠性分析并不适用。而贝叶斯法利用了人们对可靠性的认识以及已有的可靠性信息等,扩大了可靠性信息的来源,故可以用于解决小子样问题。本文利用贝叶斯方法对轴系式止回阀的可靠性评估方法进行了研究。 1 贝叶斯方法 在研究给定现有信息I0的条件下的θ的条件分布时,贝叶斯方法的关键之处在于,将θ看作随机量,并且在获得样本信息之前,认为其具

相关主题
文本预览
相关文档 最新文档