当前位置:文档之家› 算法导论之动态规划-最大公共子序列相关

算法导论之动态规划-最大公共子序列相关

算法导论之动态规划-最大公共子序列相关
算法导论之动态规划-最大公共子序列相关

最长公共子序列问题(最)

算法作业: LCS 问 题 作业要求:设计一个算法求出两个序列的所有LCS ,分析最坏情况,用“会计方法”证明利用b[i][j]求出 所有LCS 的算法在最坏情况下时间复杂度为)(m m n C O + 1、 算法思路: 根据最长公共子序列问题的性质,即经过分解后的子问题具有高度重复性,并且具有最优子结构性质,采用动态规划法求解问题。设X={x 1, x 2, … , x n }, Y={y 1, y 2, … , y m }, 首先引入二维数组C[i][j]记录X i 和Y j 的LCS 的长度,定义C[i][j]如下: { j i j y i 且x ,i,j ]][j C[i j y i x j i j i C j i C j i C 00001110,]},1][[],][1[max{]][[===>+--≠>--=或,且 为了构造出LCS ,还需要使用一个二维数组b[m][n],b[i][j]记录C[i][j]是通过哪个子问题的值求得 的,以决定搜索的方向,欲求出所有的LCS ,定义数组b 如下: 设1-对角线方向;2-向上;3-向左;4-向上或向左 若X[i]=Y[j],b[i][j] = 1, 若C[i-1][j][i][j-1], 则b[i][j] = 3, 若C[i-1][j]=[i][j-1], 则b[i][j] = 4, 根据以上辅助数组C 和b 的定义,算法首先需要求出这两个数组, C[m][n]中记录的最长公共子序列的长度,b 中记录了查找子序列元素的搜索方向。 利用C 和b 的信息,Find_All_LCS 可以采用回溯法求出所有的LCS 。基本思路如下:使用一个辅助数组记录每次调用Find_All_LCS 得到的LCS 中的元素,每次递归调用一次Find_All_LCS ,进入一个新的执行层,首先要判断当前处理的两个子序列长度是否大于等于0 ,若不满足,则该层的递归结束,返回上一层;然后再判断当前得到的子序列是否等于数组C 中求出的最长公共子序列长度,若等于,则说明算法执行到此已经得到一个LCS ,按序输出;若不等于,此时根据数组b 中记录的搜索方向继续搜索,特别要说明的是,当b[i][j]=4时,即要向上或向左,需要对这两个方向分别调用Find_All_LCS ,保证沿着这两个方向上LCS 元素不被漏掉,都可以搜索到;若b[i][j]=1,即沿对角线方向搜索前进时,此时元素X[i]为LCS 中的元素,存放至辅助数组中去,同时将当前已经求得的LCS 长度增1,当递归调用Find_All_LCS 从b[i][j]=1处时,需要回溯一步,搜索其它路径上可能为LCS 中的元素。当所有的可能路径都已经搜索完,算法结束。 对于某些情况会输出重复的LCS ,这是因为算法在沿不同路径搜索时可能会出现相同的LCS 序列。 2、 时间复杂度分析 由上述对Find_All_LCS 算法的分析可知,求出所有的LCS 实际上是根据搜索的方向信息遍历所有的路径找出满足条件的元素集合。因此,除求解辅助数组C 和b 所用的O(mn+m+n)的执行时间外,Find_All_LCS 的时间复杂度取决于所遍历路径数。而路径数是由搜索方向决定的。显然算法在最好的情况下,即m=n 并且b 中所有的值都指示沿着对角线方向搜索,时间复杂度为O(n). 相反,当X 和Y 序列不存在公共子序列时为算法的最坏情况,此时C 中所有值都等于0,数组b 中所有的值都指示要分别沿两个不同的方向(向左或向上)搜索,这种情况下每处理一次X[i],Y[j]时总是要沿两个方向分别调用Find_All_LCS ,遇到i=0或j=0时返回,直到搜索完所有的可能路径才结束,最坏情况下的搜索矩阵如下图所示:

算法分析与设计 实验三 最大子段和问题

昆明理工大学信息工程与自动化学院学生实验报告 ( 201 — 201 学年 第 1 学期 ) 课程名称:算法分析与设计 开课实验室: 年 月 日 一、上机目的及内容 1.上机内容 给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如 ∑=j k k a 1 的子段和的 最大值,当所有整数均为负整数时,其最大子段和为0。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)分别用穷举法、分治法和动态规划法设计最大子段和问题的算法; (2)对所设计的算法采用大O 符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 穷举法是用一个二维数组将从i 到j 的和都记录下来,再比较各元素的大小,时间复杂性为O (n 2),分治法的设计思想是不断将问题为子问题,然后求解子问题,最后对解进行合并,时间复杂性为O(nlog n ),动态规划法的设计思想是将问题划分为若干个子问题,时间复杂度为O(n)。

分治法流程图:

穷举法流程图: 动态规划法流程图: 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC 及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程) 程序代码: //穷举法 #include void main() { int i,j,n; int num[100],a[100],max; printf("\t\t\t 最大子段和问题(穷举法)\n\n"); printf("请输入所要求最大字段和整数的个数:\n"); scanf("%d",&n); printf("请分别输入这%d个整数的值:\n",n); for(i=0;i int MaxSum(int a[],int left,int right) { int sum=0; if (left==right) {

求最长子序列的长度

一,最长递增子序列问题的描述 设L=是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=,其中k1是对序列L=按递增排好序的序列。那么显然X与L的最长公共子序列即为L的最长递增子序列。这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。 最长公共子序列问题用动态规划的算法可解。设Li=< a1,a2,…,a i>,Xj=< b1,b2,…,b j>,它们分别为L和X的子序列。令C[i,j]为Li与Xj的最长公共子序列的长度。则有如下的递推方程: 这可以用时间复杂度为O(n2)的算法求解,由于这个算法上课时讲过,所以具体代码在此略去。求最长递增子序列的算法时间复杂度由排序所用的O(nlogn)的时间加上求LCS的O(n2)的时间,算法的最坏时间复杂度为O(nlogn)+O(n2)=O(n2)。 三,第二种算法:动态规划法 设f(i)表示L中以a i为末元素的最长递增子序列的长度。则有如下的递推方程: 这个递推方程的意思是,在求以a i为末元素的最长递增子序列时,找到所有序号在L前面且小于a i的元素a j,即j

(完整word版)最长公共子序列长度算法

// KSY.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include using namespace std; void LCSLength(int m,int n,char *x ,char *y, int **c, int **b) { int i ,j; for (i = 1; i <= m; i++) c[i][0] = 0; for (i = 1; i <= n; i++) c[0][i] = 0; for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) {

if (x[i]==y[j]) { c[i][j]=c[i-1][j-1]+1; b[i][j]=1; } else if (c[i-1][j]>=c[i][j-1]) { c[i][j]=c[i-1][j]; b[i][j]=2; } else { c[i][j]=c[i][j-1]; b[i][j]=3; } } } void LCS(int i ,int j, char *x ,int **b) { if (i ==0 || j==0) return; if (b[i][j]== 1) { LCS(i-1,j-1,x,b); printf("%c",x[i]); } else if (b[i][j]== 2) LCS(i-1,j,x,b); else LCS(i,j-1,x,b); } const int M = 6; const int N = 5; void output(char *s,int n); void LCSLength(int m,int n,char *x,char *y,int * *c,int * *b); void LCS(int i,int j,char *x,int * *b); void main() { char x[] = {' ','B','C','E','F','G','T'}; char y[] = {' ','C','D','F','J','G'}; int **c = new int *[M+1]; int **b = new int *[M+1]; for(int i=0;i<=M;i++) { c[i] = new int[N+1]; b[i] = new int[N+1]; } cout<<"序列X:"<

最大子段和动态规划法

实验名称: 最大子段和问题 实验目的: 了解最大子段和问题 实验环境: 操作系统:Windows XP Professional SP3 机器配置:Intel Pentium4 CPU 3.0GHz , 512MB 内存 开发工具:eclipse 实验内容: 1. 求数列的最大子段和(要求时间复杂为nlogn) (算法设计与分析 吕国英 清华大学出 版社 135页 4..3.3 二分法变异) (分治法) (也可用动态规划算法 参看递归王晓东计算机算法设计与分析第三版p61页) 算法的设计思想: 在对分治法德算法分析中注意到,若记???? ? ? <=<==∑=j i k k a n j i i b ][max ][,1<=j<=n,则所求的 最大子段和为: ][1max ][1max 1max ][1max j b n j k a j i n j k a n j i j i k j i k <=<== <=<=<=<==????? ?<=<=<=∑ ∑== 分为两种情况: (1)、当b[j-1]>0时,b[j]=b[j-1]+a[j]。 (2)、当b[j-1]<0时,b[j]=a[j]。 由此可得计算b[j]的动态规划递归式为: b[j]=max }{][],[]1[j a j a j b +-,1<=j<=n 由分析可知:次算法一共比较了n 次,故: T(n)=O(n)

据此可以写出如下程序: 实验步骤: 程序代码如下: package s; public class Po{ public static void main(String[] args) { int[] a=new int[10]; int[] b=new int[10]; int[] x=new int[10]; int start=0; int end = 0; System.out.print("数组为:");//随机赋值 for(int i =0;i<10;i++){ a[i]=(int)(Math.random()*100-50); System.out.print(a[i]+" "); } System.out.print("\n"); tem(a,x,b); int max=maxSum(a,b,end); System.out.print("最大子段和为:"); System.out.println(max); System.out.print("结束位置为:"); System.out.println(findend(a,b,end)); int begin=findStart(a,b,start,end); System.out.print("开始位置为:"); System.out.println(begin); systemout(x,start,end,a,b); } public static void tem(int a[],int x[],int b[]) {int n=a.length-1; int sum=0; b[0]=x[0];

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

最长公共子序列实验报告

河北地质大学课程设计报告 (学院)系: 信息工程学院 专业: 计算机科学与技术 姓名: 李义 班级: 二班 学号: 515109030227 指导教师: 王培崇 2016年11月26 日

算法课程设计报告 姓名李义学号515109030227 日期2016/11/10-2016/12/1 实验室152 指导教师王培崇设备编号08 设计题目求最长公共子序列 一、设计内容 求最长公共子序列,如输入字符串str1=adadsda,str2=sadasfda。 则求出的最长公共子序列是adasda。 二、设计目的 掌握动态规划思想,对使用求最长公共子序列加深理解。 三、设计过程 1.算法设计 1. for i ←0 to n 2. L[i,0] ←0 3. end for 4. for j ←0 to m 5. L[0,j] ←0 6. end for 7. for i ←1 to n 8. for j ←1 to m 9. if ai=bj then L[i,j]←L[i-1,j-1]+1 10. else L[i,j]←max {L[i,j-1], L[i-1,j] } 11. end if 12. end for 13. end for 14. return L[n,m] 2.流程图

开始结束 输入I=0,j=0 i<=n L[I,0]=0 i++ Y L[0,j]=0 N j<=n j++ Y i=1 to n J=1 to m ai=bj L[i,j]=L[i-1,j-1]+1 L[i,j]=max{L[i-1,j ],L[i,j-1]} Y J++i++ N 图1.Lcs 算法 3.数据结构 str1=adadsda str2=sadasfda 四、程序实现及运行结果

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划解最长公共子序列问题

动态规划解最长公共子序列问题 动态规划主要针对最优化问题,它的决策是全面考虑不同的情况分别进行决策,,最后通过多阶段决策逐步找出问题的最终解.当各个阶段采取决策后,会不断决策出新的数据,直到找到最优解.每次决策依赖于当前状态,又随机引起状态的转移.一个决策序列就是在变化的状态中产生出来的,故有”动态”的含义.所以,这种多阶段最优化决策解决问题的过程称为动态规划. 一问题的描述与分析 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干字符(可能一个也不去掉)后形成的字符序列..令给定的字符序列X=”x0,x1,x2,…xm-1”,序列Y=”y0,y1,…yk-1”是X的子序列,存在X的一个严格递增下标序列i=i0,i1,i2,…ik-1,使得对所有的j=0,1,2,…k-1,有xi=yi。例如X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。 给定两个序列A和B,称序列Z是A和B公共子序列,是指Z同是A和B的子序列。求最长公共子序列。 若A的长度为m,B的长度为n,则A的子序列有2*m-1个,B的子序列有2*n-1个。采用枚举法分别对A和B的所以子序列一一检查,最终求出最长公共子序列。如此比较次数(2*2n)接近指数阶,当n较大时,算法太耗时,不可取。所以要全面考虑不同的情况分别进行决策,,最后通过多阶段决策逐步找出问题的最终解.当各个阶段采取决策后,会不断决策出新的数据,直到找到最优解。 二、算法设计(或算法步骤) A=”a0,a1,a2,……am-1”,B=”b0,b1,b2,……bn-1”,且Z=”z0,z1,z2……zk-1”,为她们的最长公共子序列。不难证明有一下结论: (1)如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,z2,……zk-2”是“a0,a1,a2,…… am-2”和“b0,b1,b2,……bn-2”的一个最长公共子序列; (2)如果am-1!=bn-1,则若zk-1!=am-1,则“z0,z1,z2,……zk-1”是“a0,a1,a2,…… am-2”和”b0,b1,b2,……bn-1”的一个最长公共子序列。 (3)如果am-1!=bn-1,则若zk-1!=bn-1,则“z0,z1,z2,……zk-1”是“a0,a1,a2,…… am-1”和“b0,b1,b2,……bn-2”的一个最长公共子序列。 如此找到了原问题与其子问题的递归关系。 基本存储结构是存储两个字符串及其最长公共子序列的3个一位数组。当然要找出最长公共子序列,要存储当前最长公共子序列的长度和当前公共子序列的长度,而若只存储当前信息,最后只能求解最长公共子序列的长度,却不能找到最长公共子序列本身。因此需建立一个(n+1)*(m+1)的二维数组c,c[i][j]存储序列“a0,a1,a2……ai-2”和“b0,b1,……bj-1”的最长公共子序列长度,由上递推关系分析,计算c[i][j]可递归的表述如下: (1)c[i][j]=0 如果i=0或j=0;

最大子序列和的总结

最大子序列和 第一种情况:可以一个不取 【问题描述】:最大子序列和也叫数列的连续最大和,顾名思义,就是在一个长度为n的数列{An}中,求i,j(1<=i<=j<=n),使得数列{An}中,第i个元素到第j个元素之间,所有元素的和最大。例如:-2, 11, -4, 13, -5, -2时答案为20(11 -4 13) 解法一穷举法:以前我想出了一种算法,具体做法是:取出所给序列的所有子序列求和,共分n组,第一组长度为1,有n个;第二组长度为2, 有n-1个;……,最后一组,长度为n,只有一个。比较这n(n+1)/2个序列的和,再将每组的最大值比较,从而得到最大值以及其上下标。 a1 a2 a n-1 a n a1+a2 a2+a3 a n-1+a n a1+a2+a3 a2+a3+a4 ...... ...... ...... a1+a2......+a n-1 a2+a3......+a n a1+a2......+a n-1 +a n 此算法比较直接,也容易写出代码,但其时间开销为O(n2),空间开销为O(n),效率不高。 解法二:动态规划求解, 1 2 F[i]:表示以元素i结尾的连续最大子序列的和 那么对于第i个元素来说,要形成连续的最大子序列,只和相邻的前一个元素有关。因为可以不取,所以如果元素a[i]连接到以元素i-1结尾的最大连续子序列f[i-1]后是负数(f[i-1]+a[i]<0);则宁可不取,这样最大连续子序列和为0。 动态方程: f[i]:=max{0,f[I-1]+a[i]} (边界条件:f[0]=0;) 3、代码1: for I:=1 to n do if (f[I-1]+a[i])>0 then f[i]:=f[I-1]+a[i] else f[i]:=0; max:=-maxlongint; for i:=1 to n do if f[i]>max then max:=f[i];

最长公共子序列问题

2.3最长公共子序列问题 和前面讲的有所区别,这个问题的不涉及走向。很经典的动态规划问题。 例题16 最长公共子序列 (lcs.pas/c/cpp) 【问题描述】 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X 和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 给定两个序列X= < x1, x2, …, xm>和Y= < y1, y2, … , yn>,要求找出X和Y的一个最长公共子序列。 【输入文件】 输入文件共有两行,每行为一个由大写字母构成的长度不超过200的字符串,表示序列X和Y。 【输出文件】 输出文件第一行为一个非负整数,表示所求得的最长公共子序列的长度,若不存在公共子序列,则输出文件仅有一行输出一个整数0,否则在输出文件的第二行输出所求得的最长公共子序列(也用一个大写字母组成的字符串表示。 【输入样例】 ABCBDAB BDCBA 【输出样例】 4 BCBA 【问题分析】 这个问题也是相当经典的。。 这个题目的阶段很不明显,所以初看这个题目没什么头绪,不像前面讲的有很明显的上一步,上一层之类的东西,只是两个字符串而且互相没什么关联。 但仔细分析发现还是有入手点的: 既然说是动态规划,那我们首先要考虑的就是怎么划分子问题,一般对于前面讲到的街道问题和数塔问题涉及走向的,考虑子问题时当然是想上一步是什么?但这个问题没有涉及走向,也没有所谓的上一步,该怎么办呢? 既然是求公共子序列,也就有第一个序列的第i个字符和第二个序列的第j个字符相等的情况。 那么我们枚第一个序列(X)的字符,和第二个序列(Y)的字符。 显然如果X[i]=Y[j]那么起点是1(下面说的子序列都是起点为1的),长度为i的子序列和长度为j的子序列的最长公共子序列就是长度为i-1和长度为j-1 的子序列中最长的公共子

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

最长公共子序列问题

实验三最长公共子序列问题 1.实验环境 本实验采用 java 语言编写实现,环境:,编译器: eclipse 2.实验目的 通过最长公共子序列问题,巩固并详细分析动态规划思想和解题 步骤。 3.设计思路 最长公共子序列的定义为:设有两个序列S[1..m]和9[仁n],需要寻找它们之间的一个最长公共子序列。 例如,假定有两个序列: S1: I N T H E B E G I N N I N G S2: A L L T H I N G S A R E L O S T 则S i和S的一个最长公共子序列为 THING又比如: S1: A B C B D A B S2: B D C A B A 则它们的一个最长公共子序列为 BCBA。 这里需要注意的是,一个子序列不一定必须是连续的,即中间可被其他字符分开,单它们的顺序必须是正确的。另外,最长公共子序列不一定只有一个,而我们需要寻找的是其中一个。

当然,如果要求子序列里面的元素必须连成一片也是可以的。实际上,连成一片的版本比这里实现的更容易。 4.过程 我们可以通过蛮力策略解决这个问题,步骤如下: 1.检查S1[1..m]里面每一个子序列。 2.看看其是否也是S2[1..n]里的子序列。 3.在每一步记录当前找到的子序列里面最长的子序列。 这种方法的效率十分低下。因此本实验采用动态规划的方法实现该算法。 利用动态规划寻找最长公共子序列步骤如下: 1.寻找最长公共子序列的长度。 2.扩展寻找长度的算法来获取最长公共子序列。 策略:考虑序列S1和S2的前缀序列。 设 c[i,j] = |LCS (S1[1..i],S2[1..j]),则有 c[m, n] = |LCS(S1 S2)| 所以有 c[ i -1 , j -1 ] + 1, 如要 S1[i] = S2[j] c[i, j]= max{ c [ i - 1, j ], c[ i , j -1 ] }, 如果 S1[i]工S2[j] 然后回溯输出最长公共子序列过程:

运筹学之动态规划(东南大学)汇总

引言——由一个问题引出的算法 考虑以下问题 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图 1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u表示从v到u的边的长度。 具体算法如下: 开始时标记所有的顶点未访问过,MinDistance(A就是从A到E的最短距离。 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!,这是一个“指数级”的算法,那么,还有没有更好的算法呢? 首先,我们来观察一下这个算法。在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。也就是说,从C2到E的最短距离我们求了两遍。同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。而在整个程序中,从D1到E的最短距离被求了四遍。如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。于是,可以改进该算法,将每次求出的从v到E的最短距离记录下来,在算法中递归地求MinDistance(v时先检查以前是否已经求过了MinDistance(v,如果求过了则不用重新求一遍,只要查找以前的记录就可以了。这样,由于所有的点有n个,因此不同的状态数目有n 个,该算法的数量级为O(n。 更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。 请看图1,可以发现,A只和Bi相邻,Bi只和Ci相邻,...,依此类推。这样,我们可以将原问题的解决过程划分为4个阶段,设

最长公共子序列实验报告

最长公共子序列问题 一.实验目的: 1.加深对最长公共子序列问题算法的理解,实现最长公共子序列问题的求解算法; 2.通过本次试验掌握将算法转换为上机操作; 3.加深对动态规划思想的理解,并利用其解决生活中的问题。 二.实验内容: 1.编写算法:实现两个字符串的最长公共子序列的求解; 2.将输入与输出数据保存在文件之中,包括运行时间和运行结果; 3.对实验结果进行分析。 三.实验操作: 1.最长公共子序列求解: 将两个字符串放到两个字符型数组中,characterString1和characterString2,当characterString1[m]= characterString2[m]时,找出这两个字符串m之前的最长公共子序列,然后在其尾部加上characterString1[m],即可得到最长公共子序列。当characterString1[m] ≠characterString2[m]时,需要解决两个子问题:即找出characterString1(m-1)和characterString2的一个最长公共子序列及characterString1和characterString2(m-1)的一个最长公共子序列,这两个公共子序列中较长者即为characterString1和characterString2的一个最长公共子序列。 2.动态规划算法的思想求解: 动态规划算法是自底向上的计算最优值。 计算最长公共子序列长度的动态规划算法LCS-Length以characterString1和characterString2作为输入,输出两个数组result和judge1,其中result存储最长公共子序列的长度,judge1记录指示result的值是由那个子问题解答得到的,最后将最终的最长公共子序列的长度记录到result中。 以LCS-Length计算得到的数组judge1可用于快速构造序列最长公共子序列。首先从judge1的最后开始,对judge1进行配对。当遇到“↖”时,表示最长公共子序列是由characterString1(i-1)和characterString2(j-1)的最长公共子序列在尾部加上characterString1(i)得到的子序列;当遇到“↑”时,表示最长公共子序列和characterString1(i-1)与characterString2(j)的最长公共子序列相同;当遇到“←”时,表示最长公共子序列和characterString1(i)与characterString2(j-1)的最长公共子序列相同。 如图所示:

最大子段和三种求解方法

1、最大子段和问题的简单算法: 代码: #include using namespace std; int MaxSum(int a[],int n,int &besti,int &bestj){ int sum=0; int i,j,k; for(i=1;i<=n;i++) for(j=i;j<=n;j++) { int thissum=0; for(k=i;k<=j;k++)thissum+=a[k]; if(thissum>sum){ sum=thissum; besti=i; bestj=j; } } return sum; } int main(){ int n,a[100],m,i,j,maxsum; cout<<"请输入整数序列的元素个数n:"<>n; cout<<"请输入序列中各元素的值a[i](一共"<>a[m]; for(m=0;m>a[m]; int b[100];

for(m=0;m using namespace std; int MaxSum(int a[],int n,int &besti,int &bestj){ int sum=0; int i,j,k; for(i=1;i<=n;i++){ int thissum=0; for(j=i;j<=n;j++) { thissum+=a[j]; if(thissum>sum){ sum=thissum; besti=i; bestj=j; } } } return sum; }

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划法求解最长公共子序列(含Java代码)

公共子序列问题徐康123183 一.算法设计 假设有两个序列X和Y,假设X和Y分别有m和n个元素,则建立一个二维数组C[(m+1)*(n+1)],记录X i与Y j的LCS的长度。将C[i,j]分为三种情况: 若i =0 或j =0时,C[i,j]=0; 若i,j>0且X[i]=Y[j],C[i,j]=C[i-1,j-1]+1; 若i,j>0且X[i] Y[j],C[i,j]=max{C[i-1,j],C[i,j-1]}。 再使用一个m*n的二维数组b,b[i,j]记录C[i,j]的来向: 若X[i]=Y[j],则B[i,j]中记入“↖”,记此时b[i,j] = 1; 若X[i] Y[j]且C[i-1,j] > C[i,j-1],则b[i,j]中记入“↑”,记此时B[i,j] = 2; 若X[i] Y[j]且C[i-1,j] < C[i,j-1],则b[i,j]中记入“←”,记此时B[i,j] = 3; 若X[i]Y[j]且C[i-1,j] = C[i,j-1],则b[i,j]中记入“↑”或“←”,记此时B[i,j] = 4; 得到了两个数组C[]和B[],设计递归输出LCS(X,Y)的算法: LCS_Output(Direction[][], X[], i, j, len,LCS[]){ If i=0 or j=0 将LCS[]保存至集合LCS_SET中 then return; If b[i,j]=1 then /*X[i]=Y[j]*/ {LCS_Output(b,X,i-1,j-1); 将X[i]保存至LCS[len-i];} else if b[i,j]=2 then /*X[i]Y[j]且C[i-1,j]>C[i,j-1]*/ LCS_Output(b,X,i-1,j) else if b[i,j]=3 then /*X[i]Y[j]且C[i-1,j]

相关主题
文本预览
相关文档 最新文档