当前位置:文档之家› 高考物理电磁感应现象的两类情况-经典压轴题及答案

高考物理电磁感应现象的两类情况-经典压轴题及答案

高考物理电磁感应现象的两类情况-经典压轴题及答案
高考物理电磁感应现象的两类情况-经典压轴题及答案

高考物理电磁感应现象的两类情况-经典压轴题及答案

一、电磁感应现象的两类情况

1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=?,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:

(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】

(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件

sin mg BId θ=①

导体棒切割磁感线产生的电动势为

E =Bdv ②

由闭合电路欧姆定律得

E

I R r

=

+③ 联立①②③得

v =20m/s ④

由欧姆定律得

U =IR ⑤

联立①⑤得

U =7V ⑥

(2)由电流定义式得

Q It =⑦

由法拉第电磁感应定律得

E t

=

?⑧

B ld ?Φ=?⑨

由欧姆定律得

E

I R r

=

+⑩ 由⑦⑧⑨⑩得

Q =0.02C ?

2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求:

(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7

2L

t g

= 【解析】 【详解】

(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有

2

1sin 302

mgL mv ?=

, 则线框进入磁场时的速度

2sin30v g L gL =?=

线框ab 边进入磁场时产生的电动势E =BLv 线框中电流

E I R

=

ab 边受到的安培力

22B L v

F BIL R

==

线框匀速进入磁场,则有

22sin 30B L v

mg R

?= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为

22422B L v

F BI L mg R

==''=

方向沿斜面向上

(2)设线框再次做匀速运动时速度为v ',则

224sin 30B L v mg R

?=

'

解得

4v v =

'=根据能量守恒定律有

2211

sin 30222

mg L mv mv Q ?'?+=+

解得4732

mgL

Q =

线框ab 边在上侧磁扬中运动的过程所用的时间1L t v

=

设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:

22sin 302mg t BLIt mv mv ?-='-

其中

()022BL L x I t R

-=

联立以上两式解得

()02432L x v t v

g

-=

-

线框ab 在下侧磁场匀速运动的过程中,有

00

34x x t v v

='=

所以线框穿过上侧磁场所用的总时间为

123t t t t =++=

3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧

接一阻值 为R 的电阻。有一金属棒静止地放在轨道上,与两轨道垂直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂直轨道平面竖直向下的磁感应强度为1T 的匀强磁场中。T=0 时,用一外力F 沿轨道方向拉金属棒,使金属棒以加速度 a =0.2 m/s 2 做匀加速运动,外力F 与时间 t 的关系如图乙所示。 (1)求金属棒的质量 m ;

(2)当力F 达到某一值时,保持F 不再变化,金属棒继续运动3s ,速度达到1.6m/s 且不再变化,测得在这 3s 内金属棒的位移 s=4.7 m ,求这段时间内电阻R 消耗的电能。

【答案】(1)0.5kg ;(2)1.6J 【解析】 【分析】 【详解】 由图乙知

0.10.05F t =+

(1)金属棒受到的合外力

220.10.05B l v

F F F t ma R

=-=+-=合安

当t =0时

0v at ==

0.1F =N 合

由牛顿第二定律代入数值得

0.5F m a

=

=kg 合

(2)F 变为恒力后,金属棒做加速度逐渐减小的变加速运动,经过3s 后,速度达到最大

1.6m v =m/s ,此后金属棒做匀速运动。 1.6m v =m/s 时

0F =合

220.4m

B l v F F R

===N 安

将F =0.4N 代入0.10.05F t =+

求出金属棒做变加速运动的起始时间为t =6s (该时间即为匀加速持续的时间) 该时刻金属棒的速度为

1 1.2v at ==m/s

这段时间内电阻R 消耗的电能

()2

2112

F K m E W E FS m v v =-?=--

()221

0.4 4.70.5 1.6 1.2 1.62

E =?-??-=J

4.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。两根完全相同的导体棒a 、b ,质量均为m =0.1kg ,导体棒b 与导轨CD 、MN 间的动摩擦因数均为μ=0.2,导体棒a 与导轨DE 、NP 之间光滑。导体棒a 、b 的电阻均为R =1Ω。开始时,a 、b 棒均静止在导轨上除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,运动过程中a 、b 棒始终不脱离导轨,g 取10m/s 2. (1)b 棒开始朝哪个方向滑动,此时a 棒的速度大小;

(2)若经过时间t =1s ,b 棒开始滑动,则此过程中,a 棒发生的位移多大;

(3)若将CDNM 面上的磁场改成竖直向上,大小不变,经过足够长的时间,b 棒做什么运动,如果是匀速运动,求出匀速运动的速度大小,如果是匀加速运动,求出加速度大小。

【答案】(1)0.2m/s ;(2)0.24m ;(3)匀加速,0.4m/s 2。 【解析】 【分析】 【详解】

(1)开始时,a 棒向下运动,b 棒受到向左的安培力,所以b 棒开始向左运动,当b 棒开始运动时有

1B IL mg μ=

对a 棒

2=

2B Lv

I R

联立解得

2

1220.2m/s mg R

v B B L μ?=

=

(2)由动量定理得对a 棒

2sin mgt B ILt mv θ-=

其中

222B

Lx

It R R

?Φ=

= 联立解得

22

2(sin )20.24mgt mv R

x m B L

θ-?=

= (3)设a 棒的加速度为a 1,b 棒的加速度为a 2,则有

21sin mg B IL ma θ-= 12-B IL mg ma μ=

2112

2B Lv B Lv I R

-=

当稳定后,I 保持不变,则

2112

02B L v B L v I t R t

?-??==??? 可得

122a a =

联立解得两棒最后做匀加速运动,有a 1=0.2m/s 2,a 2=0.4m/s 2

5.如图所示空间存在有界匀强磁场,磁感应强度B =5T ,方向垂直纸面向里,上下宽度为d =0.35m.现将一边长L =0.2m 的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m =0.1kg ,电阻

2R =Ω.(g 取10m/s 2)求:

(1)导线框匀速穿出磁场的速度; (2)导线框进入磁场过程中产生的焦耳热;

(3)若在导线框进入磁场过程对其施加合适的外力F 则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F 时完全相同。请写出F 随时间t 变化的函数表达式. 【答案】(1)2m/s (2)0.15J (3)F =0.75-1.25t (0

(1)导线框匀速穿出磁场过程中,感应电动势:

E BLv =

感应电流:BLv

I R

=

, 线框受到的安培力:22=B L v

F BIL R =安培

线框匀速穿出磁场,由平衡条件得:22g B R

m L v

=

解得:v =2m/s

(2)自导线框刚要进入磁场至刚要离开磁场的过程中,仅进人磁场过程中有焦耳热产生,由能量守恒得:2

12

mgd mv Q =+ 得:Q =0.15J

(3)导线框刚好完全进入磁场至刚好要离开磁场的过程

()22

02v v g d L -=-

得:导线框刚好完全进入磁场的速度v 0=1m/s

导线框进入磁场的过程由2

02v aL =

得:a =2.5m/s 2

2012

L at =

得:t 0=0.4s

取向下为正方向有:22'

'B L v mg F mav at R

--==

得:F =0.75-1.25t (0

6.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。在电磁感应现象中,感应电动势分为动生电动势和感生电动势两种。产生感应电动势的那部分导体就相当于“电源”,在“电源”内部非静电力做功将其它形式的能转化为电能。

(1)如图1所示,固定于水平面的U 形金属框架处于竖直向下的匀强磁场中,磁感应强度为B ,金属框两平行导轨间距为l 。金属棒MN 在外力的作用下,沿框架以速度v 向右做匀速直线运动,运动过程中金属棒始终垂直于两平行导轨并接触良好。已知电子的电荷量为e 。请根据电动势定义,推导金属棒MN 切割磁感线产生的感应电动势E 1;

(2)英国物理学家麦克斯韦认为,变化的磁场会在空间激发感生电场,感生电场与静电场不同,如图2所示它的电场线是一系列同心圆,单个圆上的电场强度大小处处相等,我们把这样的电场称为涡旋电场。在涡旋电场中电场力做功与路径有关,正因为如此,它是一种非静电力。如图3所示在某均匀变化的磁场中,将一个半径为x 的金属圆环置于半径为r 的圆形磁场区域,使金属圆环与磁场边界是相同圆心的同心圆,从圆环的两端点a 、b 引

出两根导线,与阻值为R 的电阻和内阻不计的电流表串接起来,金属圆环的电阻为

2

R ,圆环两端点a 、b 间的距离可忽略不计,除金属圆环外其他部分均在磁场外。已知电子的电荷量为e ,若磁感应强度B 随时间t 的变化关系为B =B 0+kt (k >0且为常量)。 a .若x <r ,求金属圆环上a 、b 两点的电势差U ab ;

b .若x 与r 大小关系未知,推导金属圆环中自由电子受到的感生电场力2F 与x 的函数关系式,并在图4中定性画出F 2-x 图像。

【答案】(1)见解析(2)a. 2ab 2k πU =3x ; b.2

2 F =

2ker x

;图像见解析 【解析】 【分析】 【详解】

(1)金属棒MN 向右切割磁感线时,棒中的电子受到沿棒向下的洛仑兹力,是这个力充当了非静电力。非静电力的大小

1F Bev =

从N 到M 非静电力做功为

=W Bevl 非

由电动势定义可得

1W E Blv q

=

=非

(2)a.由01B B kt =+可得

B

k t

?=? 根据法拉第电磁感应定律

2B S

E kS t t ?Φ??=

==?? 因为x r <,所以

2=πS x

根据闭合电路欧姆定律得

2

/2

E I R R =

+

ab U I R =?

联立解得

2

2π=3

ab k x U b.在很短的时间内电子的位移为s ?,非静电力对电子做的功为2F s ? 电子沿着金属圆环运动一周,非静电力做的功

222πW F s F x ?=∑=非

根据电动势定义

2W E e

=

当x r <时,联立解得

22

kex

F =

当x r >时,磁通量有效面积为

2S r π=

联立解得

2

2ker 2F x

= 由自由电子受到的感生电场力2F 与x 的函数关系式 可得F 2-x 图像

7.在如图甲所示区域(图中直角坐标系Oxy 的一、三象限)内有匀强磁场,磁感应强度方向垂直于纸面向里,大小为B ,半径为l ,圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在纸面内沿逆时针方向匀速转动,导线框回路电阻为R .

(1)求线框中感应电流的最大值I 0和交变感应电流的频率f ;

(2)在图乙中画出线框在一周的时间内感应电流I 随时间t 变化的图象(规定与图中线框的位置相应的时刻为t =0)

【答案】(1)2012I bl R ω=

,f ω

π

= (2)

【解析】 【详解】

(1)在从图1中位置开始t =0转过60°的过程中,经△t ,转角△θ=ω△t ,回路的磁通增量为

△Φ=

1

2

△θ l 2B 由法拉第电磁感应定律,感应电动势为:

ε=

t

Φ

V V 因匀速转动,这就是最大的感应电动势.由欧姆定律可求得:

I 0=1 2R

ωBl 2

前半圈和后半圈I (t )相同,故感应电流周期为:

T = πω

频率为:

1f T =

ωπ

=. 故感应电流的最大值为

I 0=1 2R

ωBl 2,

频率为

f =

ωπ

. (2)由题可知当线框开始转动

3

π

过程中,有感应电流产生,全部进入时,无感应电流,故当线框全部进入磁场接着再旋转6

π

过程中无电流,然后出磁场时,又有感应电流产生.故图线如图所示:

【点睛】

本题考查了法拉第电磁感应定律的应用,注意公式=E t

Φ

V V 和E =BLv 的区别以及感应电流产生条件,并记住旋转切割产生感应电动势的公式E =

1

2

BωL 2.

8.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320

F g m =

,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:

(1)区域Ⅰ中磁感应强度的方向怎样?

(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .

【答案】(1)向外 (2)340mgd q U = (3)

4750mg (4)47

25

mgd 【解析】 【详解】

(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。 因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。 (2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有

Bdv I R R

ε

=

=

,33

44U I R Bdv =?=

线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有

0A F F mg μ--=

解得

31

0.12020

A F BId mg mg mg ==

-= 通过线框任一横截面的电量q 为q It =,其中2d

t v

= 联立以上各式,解得

340mgd

q U

=

(3)MN 刚到达Ⅱ区正中间时,流过线框的电流为

34'4Bdv Bdv Bdv

I I R R

+=

== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为

4

''3'165

A A F BI d BI d F mg =+==

由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为

7

3''85

A N mg BI d BI d mg F mg =+-=+=

木块与线框组成的系统受力平衡,因此拉力F 为

4747

'55050

A F F N mg mg mg μ=+=+=

(4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有

3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+

由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为

4'27

2'2'25

BI d N mg BI d mg BI d mg ?=-+

=+= 此过程中拉力做的功W 为

4747

'222255025

A W F d N d mg d mg d mgd μ=?+?=?+?=

9.如图所示(俯视图),两根光滑且足够长的平行金属导轨固定在同一水平面上,两导轨间距 L =1m 。导轨单位长度的电阻 r =1Ω/m ,左端处于 x 轴原点,并连接有固定电阻 R 1=1Ω(与电阻 R 1 相连的导线电阻可不计)。导轨上放置一根质量 m =1kg 、电阻 R 2=1Ω的金属杆ab ,整个装置处于磁感应强度B = B 0+kx (B 0=1T ,k =1T/m )的磁场中,磁场方向竖直向下。用一外力F 沿水平方向拉金属杆ab ,使其从原点处开始以速度v =1m/s 沿 x 轴正方向

做匀速运动,则:

(1)当 t =1s 时,电阻R 1上的发热功率。 (2)求 0-2s 内外力F 所做的功。

(3)如果t =2s 调整F 的大小及方向,使杆以1m/s 2 的加速度做匀减速运动,定性讨论F 的大小及方向的变化情况。

【答案】(1)0.25W (2) 2J (3) 见解析 【解析】 【详解】

(1)当t =1s 时,x =vt =1m ,B =B 0+kx =2T ,所以R 1上的电流为120.52BLv

I R R xr

==++A ,得

21P I R ==0.25W

(2)电流与导体棒位置的关系为012()0.52B kx Lv

I R R xr

+=

=++A ,得回路中的电流与导体棒位置

无关,由F ILB =得0F ILB ILkx =+,画出F -x 图象,求0-2s 内图象下面的“面积”,即是导体棒在运动过程中克服安培力所做的功

当t =0,B =1T ,所以0.5N F ILB ==,当t =2s ,B =3T ,所以 1.5N F ILB ==,x =2m ,所以做功的“面积”为2J 。

因导体棒是匀速运动,合力做功为0,所以外力克服安培力做功为2 J

(3)当t =2s 时 1.5N F ILB ==安,方向向左,此时合外力1N F ma ==合,方向向左,所以此时F 应向右,大小为0.5N 。随着速度的减小,安培力将减小,F 先减小。当安培力等于1N 时,F 减至0。当速度更小是,安培力也更小,此时F 应反向增大,当速度接近为0时,安培力也接近为0, F 接近1N 。

10.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计,左侧接有定值电阻R ,质量为m 、电阻为r 的导体杆,以初速度v 0沿轨道滑行,在滑行过程中保持与轨道垂直且接触良好,整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。宏观规律与微观规律有很多相似之处,导体杆速度的减小规律类似于放射性元素的半衰期,理论上它将经过无限长的时间衰减完有限的速度。 (1)求在杆的速度从v 0减小到0

2

v 的过程中: ①电阻R 上产生的热量; ②通过电阻R 的电量;

(2)①证明杆的速度每减小一半所用的时间都相等;

②若杆的动能减小一半所用时间为t 0,则杆的动量减小一半所用时间是多少?

【答案】(1)①2

038()Rmv R r +,②

2mv Bl

;(2)①22()v B l t v m R r ?=?+,②2t 0。 【解析】 【详解】

(1)①设电路中产生的热量为Q ,由能量守恒定律

22

0011()222

v mv m Q =+ 串联电路中,产生的热量与电阻成正比,可得

Q R =

R

R r

+Q 解得电阻R 产生的热量为

2

38()

R Rmv Q R r =+;

②设该过程所用时间为t ,由动量定理

0(

)2

v BIlt m v -=- 其中

It q =

解得通过R 的电量为:

2mv q Bl

=

; (2)①设某时刻杆的速度为v (从v 0开始分析亦可),则 感应电动势

E =Blv ,

感应电流

I =E R r

+, 安培力

F =BIl =22B l v

R r

+

在很短时间Δt 内,由动量定理

F Δt =m Δv ,(Δv 为速度变化绝对值)

可得

22B l v

t m v R

r

?=?+ 所以在任意短时间内速度变化的比例为

22

()

v B l t v m R r ?=?+ 由于22

()

B l m R r +为定值,可见任何相等时间内速度变化的比例都相等。所以从任何时刻开始

计算,速度减小一半所用时间都相等。 ②杆的动能减小一半,其速度v 减小为

2

,所用时间为t 0, 由①中分析可得,杆的速度从

2

再减小到22?所用时间仍为t 0, 所以杆的速度减小一半所用时间为2t 0,即动量减小一半所用时间为2t 0。

11.如图所示,间距为

L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,

左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.

【答案】(1)12B Lv r ;2122B B L v

r

-mgsin β(2)222221sin m g r B L α

【解析】 【分析】 【详解】

(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv①

导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r

=

② 联立①②式解得流过导体棒cd 的电流大小为:12B Lv

I r

=③

导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:

21212sin ?sin 2B B L v

f m

g F mg r

ββ=-=-

⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L v

f F m

g mg r

ββ=-=-⑥

(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦

流过导体棒ab 的电流大小为:0

02E I r

=

⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨

导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:022

12sin mgr v B L α

=

此时cd 棒消耗的电功率为:22220

22

1sin m g r P I R B L α

==

【点睛】

本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.

12.如图所示,两根间距为L 的光滑金属导轨CMM ′P ′P 、DNN ′Q ′Q 固定放置,导轨MN 左侧部分向上弯曲,右侧水平。在导轨水平部分的左右两端分布着两个匀强磁场区域MM ′N ′N 、P ′PQQ ′,区域长度均为d ,磁感应强度大小均为B ,Ⅰ区方向竖直向上,Ⅱ区方向竖直向下,金属棒b 静止在区域Ⅱ的中央,b 棒所在的轨道贴一较小的粘性纸片(其余部分没有),它对b 棒的粘滞力为b 棒重力的k 倍,现将a 棒从高度为h 0处静止释放,a 棒刚一进入区域Ⅰ时b 棒恰好可以开始运动,已知a 棒质量为m ,b 棒质量为2m ,a 、b 棒均与导轨垂直,电阻均为R ,导轨电阻不计,重力加速度为g ,则 (1)h 0应为多少?

(2)将a 棒从高度小于h 0的某处静止释放,使其以速度v 1(v 1为已知量)进入区域Ⅰ,且能够与b 棒发生碰撞。求从开始释放a 棒到a 、b 两棒刚要发生碰撞的过程中,a 棒产生的焦耳热。

(3)调整两磁场区域间的距离使其足够远(区域大小不变),将a 棒从高度大于h 0的某处静止释放,使其以速度v 2(v 2为已知量)进入区域Ⅰ,经时间t 0后从区域Ⅰ穿出,穿出时的

速度为

1

2

v 2,请在同一直角坐标系中画出“从a 棒进入磁场开始,到a 、b 两棒相碰前”的过程中,两棒的速度—时间图象(必须标出t 0时刻b 棒的速度,规定向右为正方向)。

【答案】(1)22244

8R k m g

B L

(2)222213388B L d B L d v R mR ??- ???(3)

【解析】 【详解】

(1)设a 棒刚进入区域Ⅰ时的速度为0v ,由机械能守恒得:

2001

2

mgh mv =

由b 棒恰好开始运动时受力平衡得

220

22B L v mgk BLI R

==

解得:

222044

8R k m g

h B L =

(2)设a 棒穿出区域Ⅰ时的速度为1v ',与b 棒相碰前的速度为v ,则有:

11111mv mv BL t BLq I -='= 1222mv mv BLI t BLq ='-=

12q BLd

R

=

24q BLd

R

=

联立可得:

22134B L d

mv mv R

-=

a 棒产生的焦耳热:

2211

2(1)4

a Q Q m v v -==

可得:

2222133()88a B L d B L d v R

Q R =-

(3)①判断0t 时刻b 棒能否穿出区域Ⅱ,假定b 不能穿出区域Ⅱ,并设0t 时的速度大小为

b v ,00t :阶段a 、b 棒受到的冲量相等,有:

221

()22

b m v v mv -=

解得:

214

b v v =

因22

21

a b v v v >

=,故有: 12

b a v v <

12

b x d <

所以假设成立,即在a 棒穿出Ⅰ区时b 棒尚在Ⅱ区; ②判断0t 后,b 棒能否穿出区域Ⅱ,假定b 棒不能穿出区域Ⅱ 因10222b BLI t mv BLI t ==,则有:

1022I t I t =

即:

12q q =

所以:

22(2)a b b BL v v t v t R

R

-=

设在0t 前后b 棒在区域Ⅱ中走过的距离分别为1x 、2x ,则有:

10b x v t = 220()b a b x v t v v t =-=

解得:

12000(12

)b a b a x x v t v v t v t d d ==+=+->

所以假设不成立,即b 棒能穿出区域Ⅱ且速度不为零; 两棒的速度-时间图象如图所示:

13.如图所示,两根金属平行导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直导轨放置

在其上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.

(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为1

5

mg ,将金属棒a 从距水平面高度h 处由静止释放.求:

①金属棒a 刚进入磁场Ⅰ时,通过金属棒b 的电流大小;

②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;

(2)若水平段导轨是光滑的,将金属棒a 仍从高度h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,求金属棒a 在磁场Ⅰ内运动过程中,金属棒b 中可能产生焦耳热的最大值.

【答案】(1)①22BL gh R

;② 22

44

50m gR h B L <; (2)110mgh 【解析】 【详解】

(1)① a 棒从h 0高处释放后在弯曲导轨上滑动时机械能守恒,有

解得:

a 棒刚进入磁场I 时 ③, 此时通过a 、

b 的感应电流大小为 2E

I R

=

解得:

② a 棒刚进入磁场I 时,b 棒受到的安培力大小 ⑤

为使b 棒保持静止必有 ⑥ 由④ ⑤ ⑥联立解得:

(2)由题意知当金属棒a 进入磁场I 时,由左手定则判断知a 棒向右做减速运动;b 棒向左运动加速运动.

二者产生的感应电动势相反,故当二者的感应电动势大小相等时闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时金属棒b 中产生焦耳热最大,

设此时a 、b 的速度大小分别为与,由以上分析有:BL =2BL

对金属棒a 应用动量定理有: ⑨

对金属棒b 应用动量定理有: ⑩

联立⑧⑨⑩解得

由功能关系得电路产生的总电热为:

故金属棒b 中产生焦耳热最大值为11

210

Q Q mgh =

=总

14.如图所示,竖直平面存在宽度均为0.2m L =的匀强电场和匀强磁场区域,电场方向竖直向上,磁场方向垂直纸面向外,磁感应强度大小0.5T B =.电场的下边界与磁场的上边界相距也为L .电荷量4

2.510C -=?q 、质量0.02kg m =的带正电小球(视为质点)通过长度为

3.5L 的绝缘轻杆与边长为L 、电阻0.01ΩR =的正方形线框相连,线框质量

0.08kg M =.开始时,线框下边与磁场的上边界重合,现将该装置由静止释放,当线框

下边刚离开磁场时恰好做匀速运动;当小球刚要运动到电场的下边界时恰好返回.装置在运动过程中空气阻力不计,求:

(1)线框下边刚离开磁场时做匀速运动的速度大小; (2)线框从静止释放到线框上边匀速离开磁场所需要的时间; (3)经足够长时间后,小球能到达的最低点与电场上边界的距离; (4)整个运动过程中线框内产生的总热量.

【答案】(1)1m/s ;(2) 0.5s t =;(3)0.133m ; (4) 0.4J Q = 【解析】 【详解】

(1)设线框下边离开磁场时做匀速直线运动的速度为0v ,则有:

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高考物理63个经典压轴题

2020高考物理压轴题 63道题经典题例(答案在文末) 1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正 电荷还是负电荷? (2)物体与挡板碰撞前后的 速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向图12

2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A 以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰 撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止, C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上, 用手固定木板时,弹簧示数为F1,放 手后,木板沿斜面下滑,稳定后弹簧示 数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦

(完整word版)高考物理压轴题电磁场汇编

24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量 q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的 方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高三物理电磁场测试题

高三物理电磁场测试题 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.如图1所示,两根相互平行放置的长直导线a 和b 通有大小相等、方向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2 2.如图2所示,某空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一离子在电场力和磁场力作用下, 从静止开始沿曲线acb 运动,到达b 点时速度为 零,c 为运动的最低点.则 ( ) A .离子必带负电 B .a 、b 两点位于同一高度 C .离子在c 点速度最大 D .离子到达b 点后将沿原曲线返回 3.如图3所示,带负电的橡胶环绕轴OO ′以角速 a I I 图 图3 图2

度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是() A.N极竖直向下 B.N极竖直向上 C.N极沿轴线向左 D.N极沿轴线向右 4.每时每刻都有大量带电的宇宙射线向地球 射来,幸好地球磁场可以有效地改变这些 宇宙射线中大多数射线粒子的运动方向, 使它们不能到达地面,这对地球上的生命 有十分重要的意义。假设有一个带正电的 宇宙射线粒子垂直于地面向赤道射来(如图4,地球由西向东转,虚线表示地球自转轴,上方为地理北极),在地球磁场的作用下,它将向什么方向偏转?()A.向东B.向南C.向西D.向北 5.如图5所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平 地板上,地板上方空间有水平方向的匀强磁 场。现用水平恒力拉乙物块,使甲、乙无相 对滑动地一起水平向左加速运动, 在加速运动阶段()图5 图4

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

高考物理压轴题电磁场汇编

1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁 感应强度为B。一质量为m带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP= d)射入磁场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线 方向的夹角为φ (如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP 是直径。 设入射粒子的速度为V1,由洛伦兹力的表达式和牛顿第二定律得: v12 m qBv1 d/2 解得:v1-q B d 2m ⑵设O是粒子在磁场中圆弧轨道的圆心,连接 由几何关系得:QQQ Z = QQ^R Z R_d 由余弦定理得:/ 2 2 /2/ (QQ ) =R R -2RR COSr 解得:P Z d(2R-d) 2 ∣R(1 cos J - d 1 2 设入射粒子的速度为v,由m~v√ = qvB R Z 解出: qBd (2R-d) V 2m [R(1 + cos c P) -d 】 2、(17分)如图所示,在XQy平面的第一象限有一匀强电场,电场的方向 平行于y轴向下;在X轴和第四象限的射线QC之间有一匀强磁场,磁 感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带 有 电荷量+q的质点由电场左侧平行于X轴射入电场。质点到达X轴上A 点时,速度方向与X轴的夹角为φ , A点与原点Q的距离为d。接着, 质点进入磁场,并垂直于QC飞离磁场。不计重力影响。若QC与X 轴 的夹角也为φ ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的 场强大小。 D V

全国高中物理磁场大题(超全)

高中物理磁场大题 一.解答题(共30小题) 1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况) (1)求电压U0的大小. (2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径. (3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L 的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求: (1)正、负粒子的质量之比m1:m2; (2)两粒子相遇的位置P点的坐标;

(3)两粒子先后进入电场的时间差. 3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计. (1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ; (2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0; (3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值. 4.如图所示,直角坐标系xoy位于竖直平面内,在?m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10?19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:

---2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M = 6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u = 2.0m/s匀速运动.传送带的右边是一半径R = 1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m = 2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ= 0.1,传送带两轴之间的距离l = 4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g = 10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m = 2 × 104kg,每节动车提供的最大功率P = 600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a = 0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2 = 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600 角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A . 12 t ? B .2t ? C .13 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3π θ=3Bav C .θ=0时,杆受的安培力大小为20 3(2)R B av π+ D .3π θ=时,杆受的安培力大小为203(53)R B av π+

3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A 和v B ,最大动能分别为E kA 和E kB 。则 ( ) (A )m A 一定小于m B (B )q A 一定大于q B (C )v A 一定大于v B (D )E kA 一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V ,6W ”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A .120V ,0.10A B .240V ,0.025A C .120V ,0.05A D .240V ,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率t B ??的大小应为 A.πω0 4B B.πω0 2B C.πω0B D.π ω20B

备战高考物理临界状态的假设解决物理试题-经典压轴题

备战高考物理临界状态的假设解决物理试题-经典压轴题 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。 【答案】(1)3Bqr ;(2) (332) v m ≤ + 或 (332) v m ≥ - 【解析】 【分析】 【详解】 (1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示: 由几何知识可得: OO R '= ()222 (3)6sin OO R r rRθ '=+- 解得 3 R r = 根据牛顿第二定律可得 2 v Bqv m R = 解得 3Bqr v= (2)若速度较小,如图甲所示:

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题 1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水 平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。质量41.010kg m -=?、电荷量4 4.010C q -=?的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。求小球: (1)射出第1区域时的速度大小v (2)射出第2区域时的速度方向与竖直方向之间的夹角θ (3)从开始运动到最低点的时间t 。 2.如图甲所示,平行金属板M 、N 水平放置,板长L =5 m 、板间距离d =0.20m 。在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。比荷q m =1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求: (1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0; (2) P 、Q 两点的纵坐标y P 、y Q ; (3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

高考物理 法拉第电磁感应定律 推断题综合题附详细答案

一、法拉第电磁感应定律 1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别 垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求: (1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7 2L t g = 【解析】 【详解】 (1)线框开始时沿斜面做匀加速运动,根据机械能守恒有 2 1sin 302 mgL mv ?= , 则线框进入磁场时的速度 2sin30v g L gL =?= 线框ab 边进入磁场时产生的电动势E =BLv 线框中电流 E I R = ab 边受到的安培力 22B L v F BIL R == 线框匀速进入磁场,则有 22sin 30B L v mg R ?= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv

线框所受的安培力变为 22422B L v F BI L mg R ==''= 方向沿斜面向上 (2)设线框再次做匀速运动时速度为v ',则 224sin 30B L v mg R ?= ' 解得 4v v = '=根据能量守恒定律有 2211 sin 30222 mg L mv mv Q ?'?+=+ 解得4732 mgL Q = 线框ab 边在上侧磁扬中运动的过程所用的时间1L t v = 设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知: 22sin 302mg t BLIt mv mv ?-='- 其中 ()022BL L x I t R -= 联立以上两式解得 ()02432L x v t v g -= - 线框ab 在下侧磁场匀速运动的过程中,有 00 34x x t v v ='= 所以线框穿过上侧磁场所用的总时间为 123t t t t =++= 2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数 0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整 个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得

最新2021年高考物理压轴题训练含答案 (5)

1.如图所示,质量为m 的小物块以水平速度v 0滑上原来静止在光滑水平面上质量为M 的小车上,物块与小车间的动摩擦因数为μ,小车足够长。求: (1) 小物块相对小车静止时的速度; (2) 从小物块滑上小车到相对小车静止所经历的时间; (3) 从小物块滑上小车到相对小车静止时,系统产生的热量和物块相对小车滑行的距离。 解:物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示。由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律。 (1) 由动量守恒定律,物块与小车系统: mv 0 = ( M + m )V 共 ∴0 mv V M m =+共 (2) 由动量定理,: (3) 由功能关系,物块与小车之间一对滑动摩擦力做功之和(摩擦力乘以相对位移)等于系统机械能的增量: 2201()21 - f l M+m V mv 2 = -共 ∴2 02()Mv l μM+m g = 2如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。槽内 放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“ ”形槽 的宽度略小。现有半径r(r<

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

高三物理磁场大题知识讲解

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A .1 2t ? B .2t ? C .1 3 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3 π θ= 3Bav C .θ=0时,杆受的安培力大小为23(2)R B av π+

D. 3 π θ=时,杆受的安培力大小为 2 3 (53)R B av π+ 3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和 q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A和v B ,最大动能分别为E kA 和E kB 。则() (A)m A一定小于m B (B)q A一定大于q B (C)v A一定大于v B (D)E kA一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V,6W”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A.120V,0.10A B.240V,0.025A C.120V,0.05A D.240V,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度

高考物理(法拉第电磁感应定律提高练习题)压轴题训练及详细答案(1)

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ?Φ =? B S t t ?Φ?=?? 根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

高考物理压轴题(整理1学生)

压 轴 题 训 练 1 个人感觉最近几年最后的计算题的特点:1、江苏、北京在力求创新,全国卷稳定,过程复杂,对思维的长度,细心程度要求较高。2、高考最后压轴题的命题来源(1)、旧题翻新(2)、力求建模(3)思维长度上要求高,力求分层次设计问题。 1.【2016·海南卷】水平地面上有质量分别为m 和4m 的物A 和B ,两者与地面的动摩擦因数均为μ。细绳的一端固定,另一端跨过轻质动滑轮与A 相连,动滑轮与B 相连, 如图所示。初始时,绳出于水平拉直状态。若物块A 在水平向右的 恒力F 作用下向右移动了距离s ,重力加速度大小为g 。求: (1)物块B 克服摩擦力所做的功;(2)物块A 、B 的加速度大小。 【答案】(1)2μmgs (2) 32F mg m μ- 34F m g m μ- 2.(15分)【2016·四川卷】中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移 管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K 点沿 轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运 动,在漂移管间被电场加速,加速电压视为不变。设质子进入漂移管B 时速度为8×106 m/s ,进入漂移管E 时速度为1×107 m/s ,电源频率为 1×107 Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周 期的1/2。质子的荷质比取1×108 C /kg 。求: (1)漂移管B 的长度;(2)相邻漂移管间的加速电压。 【答案】(1)0.4 m (2)4610V ? 3.【2011·上海卷】如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。用大小为30N ,沿水平方向的外力拉此物体,经 02t s =拉至B 处。(已 知cos370.8?=,sin 370.6?=。取210/g m s =)

相关主题
文本预览
相关文档 最新文档