当前位置:文档之家› 最新机械原理习题卡答案

最新机械原理习题卡答案

最新机械原理习题卡答案
最新机械原理习题卡答案

最新机械原理习题卡答案

1. 平面运动副的最大约束数为____2_____,最小约束数为_____1_____。

2.平面机构中若引入一个高副将带入_____1____个约束,而引入一个低副将带入

_____2____个约束。平面机构中约束数与自由度数的关系是_约束数+自由度数=3_。

3. 在机器中,零件是最小制造的单元,构件是最小运动的单元。

4. 点或线接触的运动副称为高副,如齿轮副、凸轮副等。5.机器中的构件可以是单一的零件,也可以是由多个零件装配成的刚性结构。6.两个构件相互接触形成的具有确定相对运动的一种联接称为运动副。7.面接触的运动副称为低副,如转动副、移动副等。8.把两个以上的构件通过运动副的联接而构成的相对可动的系统称为是运动链,若运动链的各构件构成了首末封闭的系统称为闭链,若运动链的构件未构成首末封闭的系统称为开链。

9.平面机构是指组成机构的各个构件均在同一平面内运动。10.在平面机构中,平面低副提供 2 个约束,平面高副提供 1 个约束。

11.机构具有确定运动时所必须给定的独立运动参数的数目称为机构的自由度。

12.机构具有确定运动的条件是机构的原动件数等于自由度数。

二、简答题

1. 机构具有确定运动的条件是什么?

答:1.要有原动件;2.自由度大于0;3.原动件个数等于自由度数。

2. 何谓复合铰链、局部自由度和虚约束?在计算机构自由度时应如何处理?

答:复合铰链是三个或更多个构件组成两个或更多个共轴线的转动副。

在有些机构中, 其某些构件所能产生的局部运动并不影响其他构件的运动, 我们把这些构件所能产生的这种局部运动的自由度称为局部自由度。

虚约束是在机构中与其他约束重复而不起限制运动作用的约束。

在计算机构自由度时, K个构件汇交而成的复合铰链应具有(K-1)个转动副,同时应将机构中的局部自由度、虚约束除去不计。

三、计算题

1. 试计算图1所示凸轮——连杆组合机构的自由度。

解由图1a可知,F=3n –(2p l + p h–p’)–F’= 3×5 – (2×7+0 – 0) –0=1

由图1b可知,F=3n –(2p l + p h–p’)–F’= 3×4 – (2×6+0 – 0) –0=0

由图1c可知,F=3n –(2p l + p h–p’)–F’= 3×3 – (2×4+0 – 0) –0=1

a b c

图1

5. 试计算图2所示的压床机构的自由度。 解 由图2可知,该机构存在重复结构部分,故存在虚约束。实际上,从传递运动的独立性来看,有机构ABCDE 就可以了,而其余部分为重复部分,则引入了虚约束。

直接由图2知,n=14,pl=22(其中C ,C ”,C ’均为复合铰链),ph=0,p ’=3,F ’=0,由式(1.2)得 F=3n –(2pl + ph – p ’)– F ’ = 3×14 – (2×22+0 – 3) – 0=1

这里重复部分所引入的虚约束数目p ’可根据该重复部分中的构件数目n ’、低副数目pl ’和高副数目ph ’来确定,即

P ’=2pl ’ + ph ’ – 3n ’ =2×15 – 0 – 3×9=3

计算机构中的虚约束的数目在实际工程中是很有意义的,但就计算机构自由度而言,此类型题用前一种解法显得更省事。 10 试计算图10所示机构的自由度。 解 n=5,pl=7(B 处为复合铰链),ph=0,则 F=3n – 2pl – ph = 3×5 – 2×7 –0=1

试画出图示平面机构的机构示意图,并计算自由度(步骤:1)列出完整公式,2)带入数据,3)写出结果)。其中:

图a) 唧筒机构――用于水井的半自动汲水机构。图中水管4直通水下,当使用者来回摆动手柄2时,活塞3将上下移动,从而汲出井水。 解: 自由度计算: n= 3

pL= 4 pH= 0 p'= 0 F'= 0 F= 3n –(2pl + ph – p ’)– F ’

= 3×3 – (2×4+0 – 0) –0 = 1 画出机构示意图:

图b) 缝纫机针杆机构 原动件1绕铰链A 作整周转动,使得滑块2沿滑槽滑动,同时针杆作上下移动,完成缝线动作。

解: 自由度计算: n= 3

3

2

4

1

pL= 4 pH= 0 p'= 0 F'= 0

F= 3n -(2pl +ph -p ′)-F ′ = 3×3-(2×4+0-0)-0 = 1 画出机构示意图:

试绘出图a)所示偏心回转油泵机构的运动简图(各部分尺寸由图中直接量取)。图中偏心轮1绕固定轴心A 转动,外环2上的叶片a 在可绕轴心c 转动的圆柱3中滑动,将低压油从右湍吸入,高压油从左端排出。

解:1) 选取适当比例尺μl , 绘制机构运动简图(见图b) 2) 分析机构是否具有确定运动 n= 3

pL= 4 pH= 0 p'= 0 F'= 0

F=3n -(2pl +ph -p ′)-F ′ = 3×3-(2×4+0-0)-0 = 1

机构原动件数目= 1 ,机构有无确定运动?有确定运动。 想一想:

通过对本油泵机构运动简图的绘制,你对机构运动简图的作用和优点有何进一步的认识?

8 在图8所示的

运动链中,标上

圆弧箭头的构

件为原动件。已

知lAB=lCD ,

lAF=lDE ,

lBC=lAD=lFE 。

试求出该运动 解 虚约束p ’=1(EF 杆带入一个虚约束),则n=7,pl=10,ph=0,F ’=1;于是由式(1.2)得 F=3n –(2pl + ph – p ’)– F ’= 3×7– (2×10-1) – 0 –0=2 图8

图a 所示为一具有急回作用的冲床。图中绕固定轴心A 转动的菱形盘1为原动件,其与滑块2在B 点铰接,通过滑块2推动拨叉3绕固定轴心C 转动,而拨叉3与圆盘4为同一构件。当圆盘4转动时,通过连杆5使冲头6实现冲压运动。试绘制其机构运动简图,并计算自由度。

观察方向 4 3

2

1 b ) μl = 1 mm/mm A C B 1

3

2 4

解:1) 选取适当比例尺μl ,绘制机构运动简图(见图b) 2) 分析机构是否具有确定运动

n= 5 pL= 7 pH= 0 p'= 0 F'= 0 F=3n -(2pl +ph -p ′)-F ′= 3×5-(2×7+0-0)-0 = 1 机构原动件数目= 1 机构有无确定运动? 有确定运动

2 图a)所示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。

解 1) 选取适当比例尺μl ,绘制机构运动简图(见图b)

2) 分析是否能实现设计意图 n= 3 p L = 4 p H = 1

p '= 0 F '= 0

F= 3n –(2p l + p h – p’)– F’ = 3×3 – (2×4+1 – 0) –0 = 0

机构有无确定运动? 无 能否实现设计意图? 不能 3) 提出修改方案(图c )

b ) μl = 1 mm/mm

5

3 (4)

2

1 6

7

b ) μl = 300 mm/mm

c)

6计算图6所示平面机构的自由度,并指出复合铰链、局部自由度及虚约束,在进行高副低代后,分析机构级别。

解G处的滚子转动为局部自由度,即F’=1;而虚约束p’=0,则n=10,p l=13(D处为复合铰链),p h=2,于是由式(1.2)得

F=3n –(2p l + p h–p’)–F’= 3×10 – (2×13+2 – 0) –1=1

Ⅱ级机构

图6

7 求图7所示机构的自由度,并在图中标明构件号,说明运动副的数目及其所在位置,最后分析机构为几级机构。

解B处的滚子转动为局部自由度,即F’=1;而虚约束p’=0,则n=7,p l=9(O,B,C处为复合铰链),p h=1,于是由式(1.2)得

F=3n –(2p l + p h–p’)–F’= 3×7 – (2×9+1 – 0) –1=1

Ⅲ级机构

图7

9. 试计算图9所示凸轮——连杆组合机构的自由度。

解由图1可知,B,E两处的滚子转动为局部自由度,即F’=2;而虚约束p’=0,则n=7,p l=8(C,F处虽各有两处接触,但都各算一个移动副),p h=2,于是由式(1.2)得

F=3n –(2p l + p h–p’)–F’= 3×7– (2×8+2 – 0) –2=1

这里应注意:该机构在D处虽存在轨迹重合的问题,但由于D处相铰接的双滑块为一个Ⅱ级杆组,未引入约束,故机构不存在虚约束。如果将相铰接的双滑块改为相固联的十字滑块时,该机构就存在一个虚约束或变成含有一个公共约束m=4的闭环机构了。

图9

11试计算图11所示机构的自由度,若有复合铰链、局部自由度或虚约束时,应予以指出,并进行高副低代,确定该机构的级别。

解B处的滚子转动为局部自由度,即F’=1;而虚约束p’=0,则n=9,p l=12(E处为复合铰链),p h=1,于是由式(1.2)得

F=3n –(2p l + p h–p’)–F’= 3×9 – (2×12+1 – 0) –1=1

Ⅲ级机构

图11

12 判别图12所示机构的运动是否确定,为什么?对该机构进行高副低代,拆组分析,并确定机构的级别。

解E处的滚子转动为局部自由度,即F’=1;而虚约束p’=0,则n=6,p l=7,p h=1,于是由式(1.2)得

F=3n –(2p l + p h–p’)–F’= 3×6 – (2×7+1 – 0) –1=2

机构运动确定,为Ⅱ级机构。

13 1)按传动顺序用数字1、2、3…在图示机构上给构件编号。

2)计算自由度,并判断机构有无确定运动:

在图中指明:复合铰链、局部自由度和虚约束

n= 10 p L= 14 p H= 1

p'= 1 F'= 1

F =3n -(2p l +p h -p ′)-F ′

=3×10-(2×14+1-1)-1= 1 机构原动件数目= 1

机构有无确定运动? 有确定运动

14 传动顺序用数字1、2、3…在图示机构上给构件编号。 2)计算自由度,并判断有无确定运动: 在图中指明复合铰链、局部自由度和虚约束 n= 9 p l = 13 p h = 0 p '= 1 F '= 0

F= 3n –(2p l + p h – p’)– F’= 3×9 – (2×13+0 ) –0=1 机构原动件数目= 1 ,机构有无确定运动? 有 。 3)杆组拆分,并判断机构级别:(从远离原动件的方向开始拆分)

编号暂

复合铰

虚约

局部自由度

可见,该机构为 Ⅱ 级机构。

15 按传动顺序用数字1、2、3…在图示机构上给构件编号。 2)计算自由度,并判断有无确定运动:

请在图中指明:复合铰链、局部自由度和虚约束

n= 7 p L = 10 p H = 0 p '= 0 F '= 0

F= 3n –(2p l + p h – p’)– F

= 3×7 – (2×10+0 – 0) –0 = 1

机构原动件数目= 1 机构有无确定运动? 有 3)杆组拆分,并判断机构级别:(从远离原动件的方向开始拆分)

可见,该机构为Ⅱ级机构。

3-1填空题:

1.速度瞬心是两刚体上瞬时速度相等的重合点。

2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心;

若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。

3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。

4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。

5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。

6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。

7.铰链四杆机构共有6个速度瞬心,其中3个是绝对瞬心。

8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。

加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。

9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。

10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。

3-2试求出图示各机构在图示位置时全部瞬心的位置(用符号

ij

P直接标注在图上)。

3-3

l AD=l

1

2)

一点E 的位置及速度的大小;

3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) v C =ω33413

P P μl

=34132313B

l l

v P P P P μμ =1060583833

????≈2.4×174=418(mm/s) 3)定出构件3的BC 线上 速度最小的点E 的位置:

E 点位置如图所示。 v E =ω313EP μl ≈2.4×52×3 =374(mm/s)

4)定出v C =0时机构的两个位置(作于图c ),量出:

φ1≈45° φ2≈27°

3-4 在图示机构中,已知滚轮2与地面做纯滚动,构件3以已知速度V3向左移动,试用瞬心法求滑块5的速度V5的大小和方向,以及轮2的角速度ω2的大小和方向。 解:233P V V =

321

V AB ωμ=

,方向为逆时针 53232512D D V P P μω=,方向向左 5353D D V V V =+,方向向左

3-5 已知铰链四杆机构的位置(图a )及其加速度矢量多边形(图b ),试根据图b 写出构件2与构件3的角加速度a 2、a 3的表达式,并在图a 上标出他们的方向。 解:

''

221

t CB a BC a n c a l BC μμ==

,逆时针方向 μl =0.003m/mm

c )

1 A B 1

B 2

φ2

C 1(P 13) C 2(P 13)

φ2

φ1 D

B C μl =0.003m/mm

b )

1

2

3

4

A D

φ=165° P 12

ω2

P 12 P 23

P 34

P 14

P E

''321

t C a CD a n c a l CD μμ==

,逆时针方向 3-6已知:在图示机构中,l AB =l BC =l CD =l ,且构件1以ω1匀速转动。AB 、BC 处于水平位置CD ⊥BC ,试用相对运动图解法求ω3,α3 (μv 和μa 可任意选择)。 解: 属于两构件间重合点的问题

思路:因已知B 2点的运动,故通过B 2点求B 3点的运动。 1) 速度分析

方向:⊥BD ⊥AB ∥CD 大小: ? ω12

l ?

在速度多边形中,∵b 3与极点p 重合,∴v B3=0 且ω3=v B3/ l BD =0,由于构件2与构件3套在一起,∴ω2=ω3=0 2) 加速度分析

方向: ⊥BD B →A ∥CD 大小: 0 ? ω12

l 0 ? 在加速度多边形中,矢量'3b π代表3t

B a

则有:223

31t

B BD a l αω=== 将矢量'

3b π移至B 3点,可见为α3逆时针。

3-7 在图示摆动导杆机构中,∠BAC =90°,L AB =60mm ,L AC =120mm ,曲柄AB 以等角速度ω1=30rad/s 转动。请按照尺寸按比例重新绘制机构运动简图,试用相对运动图解法求构件3的角速度和角加速度。

解:取长度比例尺mm m l /001.0=μ

v B2=ω1?l AB =30?60=1800mm/s =1.8m/s a B2=ω12

?l AB =302

?60=54m/s 2

3B

v

方向:⊥BC ⊥AB ∥BC

大小: ? ω1≈6rad/s 方向:B →C ⊥BC B →A C →B ⊥CB 大小:ω32

l BC ? ω12

l AB 2ω2v B3B2 ?

b 2

=V μ0.1mm s m //

32k B B a

α1≈210rad/s 2

,逆时针

3-8已知铰链四杆机构的位置、速度多边形和加速度多边形如下图所示。试求: ①构件1、2和3上速度均为X v 的点X 1、X 2和X 3的位置; ②构件2上加速度为零的点Q 位置,并求出该点的速度Q v ; ③构件2上速度为零的点H 位置,并求出该点的加速度H a ;

3-9 图示连杆机构,长度比例尺μl =0.001m/mm ,其中l AB =15mm ,l CD =40mm ,l BC =40mm ,l BE =l EC =20mm ,l EF =20mm ,ω1=20rad/s ,试用相对韵达图解法求:

(1) ω2、

ω3、ω4、ω

5的大小和方向;

2) α2、α3、

α4、α5的大

小和方向;

(3) 构件4

上的点F 4的速度v F 4和加速度a F 4

(4) 构件5上的点F 5的速度v F 5和加速度a F 5。(速度多边形和加速度多边形的比例尺分

别为μv =0.005(m/s )/mm ,μa =0.006(m/s 2)/mm ,要求列出相应的矢量方程式和计算关系式。)

解:速度多边形和加速度多边形如图所示

b 3’

b 3’’

b 2’

b ′

c

(1)ω2=7.75rad/s ,ω3=9rad/s ,逆时针方向

ω4=ω5=5rad/s ,顺时针方向

(2)α2=165rad/s 2,顺时针方向;α3=67.5rad/s 2,逆时针方向;α4=α5=52.34rad/s 2,顺时针方向

(3)a F 4=4360.0050.18/v pf m s μ=?=,''244 2.52/F a a p f m s μ== (4)v F 5=5300.0050.15/v pf m s μ=?=,'255' 1.62/F a a p f m s μ==

第4章 平面机构的力分析 第5章机械的效率和自锁 概念:

1. 凡是驱动机械产生运动的力统称为 力,其特征是该力与其作用点的速度方向 或成 ,其所作的功为 。

A .驱动;

B .平衡;

C .阻抗;

D .消耗功;

E .正功;

F .相同;

G .相反;

H .锐角;

I .钝角;

J .负功 答:AFHE

2. 简述进行质量代换需要满足的三个条件?动代换和静代换各应满足什么条件? 答:质量代换法需满足三个条件:

1、 代换前后构件的质量不变;

2、 代换前后构件的质心位置不变;

3、 代换前后构件对质心轴的转动惯量不变;

其中:动代换需要满足前面三个条件;静代换满足前两个条件便可。 3. 什么是当量摩擦系数?分述几种情况下的当量摩擦系数数值。

答:为了计算摩擦力简便,把运动副元素几何形状(接触面形状)对运动副的摩擦力的影响因素计入到摩擦系数中,这种转化后的摩擦系数称为当量摩擦系数。 对单一平面 f f V =;槽角为θ2时θ

sin f

f v =

;半圆柱面接触时kf f V =,2/~1π=k 4.移动副中总反力的方位如何确定?

答:1)总反力与法向反力偏斜一摩擦角2)总反力的偏斜方向与相对运动方向相反。 5. 移动副的自锁条件是 驱动力作用在移动副的摩擦角内 。

6. 转动副的自锁条件是 驱动力臂≤摩擦圆半径 。

7. 判定机械自锁的条件有哪些?

答:1)驱动力位于摩擦锥或摩擦圆内; 2)机械效率小于或等于0

3)能克服的工作阻力小于或等于0 8.判断对错,在括号中打上 √ 或 ×:

在机械运动中,总是有摩擦力存在,因此,机械功总有一部分消耗在克服摩擦力上。 (√ )

分析与计算:

1. 图示为一曲柄滑块机构的a)、b)、c)三个位置,F 为作用在活塞上的力,转动副A 及B 上所画的虚线小圆为摩擦圆,试决定在此三个位置时作用在连杆AB 上的作用力的真实方向(构件重量及惯性力略去不计)。

2. 图示为一摆动推杆盘形凸轮机构,凸轮1沿逆时针方向回转,F 为作用在推杆

2上的外载荷,试确定各运动副中总反力(F R31、F R12及F R32)的方位(不考虑构件的重量及惯性力,图中虚线小圆为摩擦圆,运动副B 处摩擦角φ如图所示)。

3. 图示为一带式运输机,由电动机1经带传动及一个两级齿轮减速器,带动运输带8。设已知运输带8所需的曳引力P=5500N ,运送速度u=1.2m/s 。带传动(包括轴承)的效率η1=0.95,每对齿轮

(包括其轴承)的效率η2=0.97,运输带8的机械效率η3=0.9。试求该系统的总效率及电动机所需的功率。 解:该系统的总效率为 电动机所需的功率为

4.如图所示为一输送辊道的传动简图。设已知一对圆柱齿轮传动的效率为0.95;一对圆锥齿轮传动的效率为0.92 (均已包括轴承效率)。求该传动装置的总效率。

解:此传动装置为一混联系统。 圆柱齿轮1、2、3、4为串联

圆锥齿轮5-6、7-8、9-10、11-12为并联。 此传动装置的总效率

5.图示为由几种机构组成的机器传动简图。已知:η1=η2=0.98,η3=η4=0.96,η5=η6=0.94,η7=0.42,P r ’=5KW ,P r ’’=0.2KW 。求机器的总效率η。

解:设机构3、4、5、6、7 组成的效率为η3’,则机器的总效率为η=η1η2η3’

而''2

'2''''

3

P P P P r r ++=η, P 2’ η3η4= P r ’ ,P 2’’ η5η6η7= P r ’’ 将已知代入上式可得总效率η=η1η2η3’=0.837

6. 如图所示,构件1为一凸轮机构的推杆,它在力F 的作用下,沿导轨2向上运动,设两

者的摩擦因数f=0.2,为了避免发生自锁,导轨的长度L 应满足什么条件(解题时不计构件

1的质量)?

解:力矩平衡0=∑M 可得:

L R F ?=?100, 得:L F R /100?= ,其中21R R R ==

5 6 1 2 3 4 7 η1 η2 η5 η6 η7

η3 η4

P r ’

P r ’’

2

341295.0'==ηηη92.0''56==ηη83

.092.095.0'''2563412=?==?=ηηηηηη

R 正压力产生的磨擦力为:L F f R F f /1002.0??=?= 要使推杆不自锁,即能够上升,必须满足:f F F 2>,即L F F /1002.02???>

解得:mm L 401004.0=?>

7. 图示为一焊接用的楔形夹具,利用这个夹具把两块要焊接的工件1及1’预先夹妥,以便焊接。图中2为夹具体,3为楔块,试确定此夹具的自锁条件(即当夹紧后,楔块3不会自

动松脱出来的条件)。

解:此题是判断机构的自锁条件,因为该机构简单,故可选用多种方法进行求解。 解法一:根据反行程时0≤'η的条件来确定。

反行程时(楔块3退出)取楔块3为分离体,其受工件1、1′和夹具2作用的总反力F R13

和F R23以及支持力F ′。各力方向如图5-5(a )、(b)所示 ,根据楔块3的平衡条件,作力矢量三角形如图5-5(c )所示 。由正弦定理可得

()

φαφ

2sin cos 23-'

=F F R 当0=φ时,α

sin 230F F R '

=

于是此机构反行程的效率为

()

α

φαηsin 2sin 32320-==

'R R F F 令0≤'η,可得自锁条件为:φα2≤ 。

解法二:根据反行程时生产阻力小于或等于零的条件来确定。 根据楔块3的力矢量三角形如图5-5(c ),由正弦定理可得

()

φ

φαcos 2sin 23-=

'R F F 若楔块不自动松脱,则应使0≤'F 即得自锁条件为:φα2≤

解法三:根据运动副的自锁条件来确定。

由于工件被夹紧后F ′力就被撤消,故楔块3的受力如图5-5(b)所示,楔块3就如同受到F R23(此时为驱动力)作用而沿水平面移动的滑块。故只要F R23作用在摩擦角φ之内,楔块3即发生自锁。即 φφα≤- ,由此可得自锁条件为:φα2≤ 。

讨论:本题的关键是要弄清反行程时F R23为驱动力。用三种方法来解,可以了解求解这类问题的不同途径。

8. 图示楔块机构。已知:αβ==60o

,各摩擦面间的摩擦系数均为f =015

.,阻力 Q =1000N 。试:

①画出各运动副的总反力;

②画出力矢量多边形;

③求出驱动力P 值及该机构效率。 由正弦定理:

R 1 F R 2

F f

)90sin()2180sin(0210?βγ?-=--+R P 和)90sin()2sin(012??β+=

-R Q

于是

代入各值得:N P 7007.1430=

取上式中的0

0=?,可得N P 10000=于是

6990.00

==

P P η

第6章 机械的平衡 概念:

1. 在转子平衡问题中,偏心质量产生的惯性力可以用 相对地表示。 答:质径积

2. 刚性转子的动平衡的条件是 。

答:偏心质量产生的惯性力和惯性力矩矢量和为0

3.转子静平衡和动平衡的力学条件有什么异同? 答:静平衡:偏心质量产生的惯性力平衡

动平衡:偏心质量产生的惯性力和惯性力矩同时平衡 4.造成转子不平衡的原因是什么?平衡的目的又是什么? 答:原因:转子质心与其回转中心存在偏距;

平衡目的:使构件的不平衡惯性力和惯性力矩平衡以消除或减小其不良影响。 5. 造成转子动不平衡的原因是什么?如何平衡?

答:转子的偏心质量产生的惯性力和惯性力偶矩不平衡;

平衡方法:增加或减小配重使转子偏心质量产生的惯性力和惯性力偶矩同时得以平衡。 6. 回转构件进行动平衡时,应在 两 个平衡基面上加平衡质量。

7. 质量分布在同一平面内的回转体,经静平衡后_______________(一定、不一定、一定不)满足动平衡,经动平衡后___________(一定、不一定、一定不)满足静平衡;质量分布于不同平回转面内的回转体,经静平衡后____________(一定、不一定、一定不)满足动平衡,经动平衡后____________(一定、不一定、一定不)满足静平衡。 答:一定 一定 不一定 一定

8. 机构的完全平衡是使机构的 总惯性力 恒为零,为此需使机构的质心 恒固定不动 。

9. 平面机构的平衡问题中,对“动不平衡”描述正确的是 B 。

A 只要在一个平衡面内增加或出去一个平衡质量即可获得平衡

B 动不平衡只有在转子运转的情况下才能表现出来

C 静不平衡针对轴尺寸较小的转子(转子轴向宽度b 与其直径

D 之比b/D<0.2)

D 使动不平衡转子的质心与回转轴心重合可实现平衡

10.平面机构的平衡问题,主要是讨论机构惯性力和惯性力矩对 的平衡。 A. 曲柄 B. 连杆 C. 机座 答:C

11.判断对错,在括号中打上 √ 或 ×:

①经过动平衡校正的刚性转子,任一回转面内仍可能存在偏心质量。 ( √ ) ②若刚性转子满足动平衡条件,这时我们可以说该转子也满足静平衡条件。 ( √ ) ③设计形体不对称的回转构件,虽已进行精确的平衡计算,但在制造过程中仍需安排平衡校正工序。 ( √ ) ④不论刚性回转体上有多少个平衡质量,也不论它们如何分布,只需要在任意选定两个平面内,分别适当地加平衡质量即可达到动平衡。 ( √ ) ⑤通常提到连杆机构惯性力平衡是指使连杆机构与机架相联接的各个运动副内动反力全为零,从而减小或消除机架的振动。 ( × ) ⑥作往复运动或平面复合运动的构件可以采用附加平衡质量的方法使它的惯性力在构件内部得到平衡。 ( × ) ⑦若机构中存在作往复运动或平面复合运动的构件,则不论如何调整质量分布仍不可能消除运动副中的动压力。 ( √ ) ⑧绕定轴摆动且质心与摆动轴线不重合的构件,可在其上加减平衡质量来达到惯性力系平衡的目的。 ( √ )

⑨为了完全平衡四杆铰链机构ABCD 的总惯性力,可以采用在原机构上附加另一四杆铰链机

构AB ’C ’D 来达到。条件是l AB =l AB ’,l BC =l BC ’l CD =l CD ’,各杆件质量分布和大小相同。 ( × )

⑩为了完全平衡四杆铰链机构的总惯性力,可以采用在AB 杆和CD 杆上各自加上平衡质量

m '

m ''来达到。平衡质量的位置和大小应通过计算求得。

( × )

12.在图示a 、b 、c 三根曲轴中,已知

4

4332211r m r m r m r m ===,并

作轴向等间隔布置,且都在曲轴的同一含轴平面内,则其中 轴已达静平衡, 轴已达动平衡。

答:(a )、(b )、(c );(c )

分析与计算:

1. 图示为一钢制圆盘,盘厚b=50mm ,位置Ⅰ处有一直径φ=50mm 的通孔,位置Ⅱ处是一质量m 2=0.5kg 的重块。为了使圆盘平衡,你在圆盘上r=200mm 处制一通孔。试求此孔的直径与位置。(钢的密度γ=7.8g/cm 3)

解:解法一:先确定圆盘的各偏心质量大小 设平衡孔质量

γπb d m b 4

2

-= 根据静平衡条件

02211=++b b r m r m r m

由mm r b 200= kg m b 54.0=∴ mm b m d b

2.424==γ

π 在位置b θ相反方向挖一通孔 解法二:

由质径积矢量方程式,取 mm

mm

kg W ?=2μ 作质径积矢量多边形如图

平衡孔质量 kg r W m b

b

W

b 54.0==μ 量得 ?=6.72b θ

2. 在图示的转子中,已知各偏心质量m 1=10kg ,m 2=15kg ,m 3=20kg ,m 4=10kg ,它们的回转半径分别为r 1=40cm ,r 2=r 4=30cm ,r 3=20cm ,又知各偏心质量所在的回转平面的距离为l 12=l 23=l 34=30cm ,各偏心质量的方位角如图。若置于平衡基面Ⅰ及Ⅱ中的平衡质量m b Ⅰ及m b Ⅱ的回转半径均为50cm ,试求m b Ⅰ及m b Ⅱ的大小和方位。

解:解法一:先确定圆盘的各偏心质量在两平衡基面上大小 根据动平衡条件 同理

解法二:

根据动平衡条件

由质径积矢量方程式,取mm

mm

kg W ?=10

μ 作质径积矢量多边形如图6-2(b ) 提高思考题:如图所示转子,其工作的转速n =300r/min ,其一阶临界转速

01n =6000r/min ,

现在两个支撑轴承的垂直方向分别安装测振传感器,测得的振动线图如图9-15(b )所示,试问:

1) 该转子是刚性转子还是挠性转子?若此转子的工作转速为6500r/min,该转子又属于哪种转子?

2) 该转子是否存在不平衡质量?

3) 能否从振动线图上判断其是静不平衡还是动不平衡?

第7章 机械的运转及其速度波动的调节 概念:

1. 等效构件的 等效质量 或 等效转动惯量 具有的动能等于原机械系统的总动能;等

效质量(或等效转动惯量)的值是 ? 的函数,只与 位置 有关,而与机器的 运动 无关。按 功率等效 的原则来计算等效力矩,按 动能等效 的原则来计算转动惯量。

2. 机器产生速度波动的主要原因是 输入功不等于输出功 。

3. 速度波动的类型有 周期性 和 非周期性 两种。

4. 什么是机械系统的等效动力学模型?

具有等效质量或等效转动惯量,其上作用有等效力或等效力矩的等效构件称为原机械系统的等效动力学模型。

5. 等效构件上 作用的等效力或力矩 产生的瞬时功率等于原机械系统 所有外力产生的瞬时功率之和 。

6. 试论述飞轮在机械中的作用。 答案:

飞轮在机械中的作用,实质上相当于一个储能器。

当外力对系统作盈功时,它以动能形式把多余的能量储存起来,使机械速度上升的幅度减小; 当外力对系统作亏功时,它又释放储存的能量,使机械速度下降的幅度减小。 另外还有一种应用,渡过死点

7. 飞轮在机械中的作用,实质上相当于一个 储能器 。

(a) (b)

8. 机器周期性速度波动的调节方法一般是加装 飞轮___,非周期性速度波动调节方法是除机器本身有自调性的外一般加装 调速器 。

9. 机器安装飞轮后,原动机的功率可以比未安装飞轮时 D 。 A.一样 B.大 C.小 D. A 、C 的可能性都存在 10.机器运转出现周期性速度波动的原因是 C 。 A .机器中存在往复运动构件,惯性力难以平衡; B.机器中各回转构件的质量分布不均匀;

C.在等效转动惯量为常数时,各瞬时驱动功率和阻抗功率不相等,但其平均值相等,且有公共周期;

D.机器中各运动副的位置布置不合理。

11.采用飞轮进行机器运转速度波动的调节,它可调节 B 速度波动。 A .非周期性; B .周期性;

C .周期性与非周期性;

D .前面的答案都不对

12.机器等效动力学模型中,等效力的等效条件是什么?不知道机器的真实运动,能否求出等效力?为什么?

答:等效力的等效条件:作用在等效构件上的外力所做之功,等于作用在整个机械系统中的所有外力所做之功的总和。不知道机器的真实运动,可以求出等效力,因为等效力只与机构的位置有关,与机器的真实运动无关。 13.机器产生周期性速度波动的原因是什么? 答:1)

ed

M 和

er M 的变化是具有规律地周而复始,Je 为常数或有规律地变化

2)在一个周期内,能量既没有增加也没有减少。 14.判断对错,在括号中打上 √ 或 ×:

①机器中安装飞轮后,可使机器运转时的速度波动完全消除。 ( × ) ②为了减轻飞轮的重量,最好将飞轮安装在转速较高的轴上。 ( √ ) ③机器稳定运转的含义是指原动件(机器主轴)作等速转动。 ( × ) ④机器作稳定运转,必须在每一瞬时驱动功率等于阻抗功率。 ( × ) ⑤机器等效动力学模型中的等效质量(转动惯量)是一个假想质量(转动惯量),它的大小等于原机器中各运动构件的质量(转动惯量)之和。 ( × ) ⑥机器等效动力学模型中的等效力(矩)是一个假想力(矩),它的大小等于原机器所有作用外

力的矢量和。 ( × ) ⑦机器等效动力模型中的等效力(矩)是根据瞬时功率相等原则转化后计算得到的,因而在未求得机构的真实运动前是无法计算的。 ( × ) ⑧机器等效动力学模型中的等效质量(转动惯量)是根据动能相等原则转化后计算得到的,因而在未求得机构的真实运动前是无法计算的。 ( × ) ⑨为了调节机器运转的速度波动,在一台机器中可能需要既安装飞轮,又安装调速器。( × ) ⑩为了使机器稳定运转,机器中必须安装飞轮。 ( × )

分析与计算:

1. 某内燃机的曲柄输出力矩Md 随曲柄转角φ的变化曲线如图所示,其运动周期φT=π,曲柄的平均转速nm=620r/min 。当用该内燃机驱动一阻抗力为常数的机械时,如果要求其运转不均匀系数δ=0.01。试求

⑴曲柄最大转速nmax 和相应的曲柄转角位置φmax ;

⑵装在曲柄上的飞轮转动惯量JF (不计其余构件的转动惯量)。

解 选定曲柄为等效构件,所以 等效驱动力矩Med=Md 等效阻力矩Mer=常数 在一个运动循环内,驱动功Wd 应等于阻抗功Wr ,即

Mer ·π= Wr =Wd=(π/9)·200/2+(π/6)·200+(13π/18)·200/2=350π/3 所以 Mer=350/3 N ·m

画出等效阻力矩Mer 曲线,如答图a)所示。

由35032009DE π=得DE=7π/108,由35031320018FG

π=得FG=91π/216,EF=π-DE -FG=111π

/216

a)

b)

机械原理考试试题及答案详解 (1)

机械原理模拟试卷 一单向选择(每小题1分共10分) 1. 对心直动尖顶盘形凸轮机构的推程压力角超过了许用值时,可采用措施来解决。 (A 增大基圆半径 B 改为滚子推杆 C 改变凸轮转向) 2. 渐开线齿廓的形状取决于的大小。 (A 基圆 B 分度圆 C 节圆) 3. 斜齿圆柱齿轮的标准参数指的是上的参数。 (A 端面 B 法面 C 平面) 4. 加工渐开线齿轮时,刀具分度线与轮坯分度圆不相切,加工出来的齿轮称为齿轮。 (A 标准 B 变位 C 斜齿轮) 5. 若机构具有确定的运动,则其自由度原动件数。 ( A 大于 B 小于 C 等于) 6. 两齿轮的实际中心距与设计中心距略有偏差,则两轮传动比__ _____。 ( A 变大 B 变小 C 不变 ) 7.拟将曲柄摇杆机构改变为双曲柄机构,应取原机构的_____ __作机架。 ( A 曲柄 B 连杆 C 摇杆 ) 8. 行星轮系是指自由度。 ( A 为1的周转轮系 B 为1的定轴轮系 C 为2的周转轮系) 9. 若凸轮实际轮廓曲线出现尖点或交叉,可滚子半径。 ( A 增大 B 减小 C 不变) 10.平面连杆机构急回运动的相对程度,通常用来衡量。 ( A 极位夹角θ B 行程速比系数K C 压力角α) 二、填空题(每空1分共10分) 1. 标准渐开线直齿圆锥齿轮的标准模数和压力角定义在端。 2. 图(a),(b),(c)中,S为总质心,图中转子需静平衡,图中转子需动平衡。

3. 平面移动副自锁条件是,转动副自锁条件是。 4. 周期性速度波动和非周期性速度波动的调节方法分别为应用和。 5. 惰轮对并无影响,但却能改变从动轮的。 6. 平面连杆机构是否具有急回运动的关键是。 三、简答题(每小题6分共24分) 1. 什么是运动副、低副、高副?试各举一个例子。平面机构中若引入一个高副将带入几个约束?若引入一个低副将带入几个约束? 2.何谓曲柄?铰链四杆机构有曲柄存在的条件是什么?当以曲柄为主动件时,曲柄摇杆机构的最小传动角将可能出现在机构的什么位置? 3.什么是渐开线齿廓的根切现象?产生根切原因是什么?标准直齿圆柱齿轮不根切的最小齿数是多少? 4.如图所示平面四杆机构,试回答: (1) 该平面四杆机构的名称; (2) 此机构有无急回运动,为什么? (3) 此机构有无死点,在什么条件下出现死点; (4) 构件AB为主动件时,在什么位置有最小传动角。 四、计算题(共36分) 1. 图所示穿孔式计算机中升杆和计算卡停止机构,有箭头标记的为原动件,试判断此机构运动是否确定。(若有复合铰链、局部自由度、虚约束请指出来)(8分) 2. 在电动机驱动的剪床中,作用在剪床主轴上的阻力矩M r的变化规律如图所示,等效驱动力矩I H

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

机械原理试题及答案2份

试题1 一、填空题(每小题2分,共20分) 1、 平面运动副的最大约束数为2个,最小约束数为 1个。 2、 当两构件组成转动副时,其相对速度瞬心在转动副中心处。 3、 对心曲柄滑块机构,若以连杆为机架,则该机构演化为曲柄摇块机构。 4、 传动角越大,则机构传力性能越好。 5、 凸轮机构推杆的常用运动规律中,二次多项式运动规律具有柔性冲击。 6、 蜗杆机构的标准参数从中间平面中取。 7、 常见间歇运动机构有:棘轮机构、槽轮机构等。 8、 为了减小飞轮的重量和尺寸,应将飞轮装在高速轴上。 9、 实现往复移动的机构有:曲柄滑块机构、凸轮机构等。 10、 外啮合平行轴斜齿轮的正确啮合条件为: 212121n n n n m m ααββ==-=,,。 二、简答题(每小题5分,共25分) 1、何谓三心定理? 答:三个彼此作平面运动的构件的三个瞬心必位于同一直线上。 2、 简述机械中不平衡惯性力的危害? 答:机械中的不平衡惯性力将在运动副中引起附加的动压力,这不仅会增大运动副中的摩擦和构件中的内应力,降低机械效率和使用寿命,而且会引起机械及其基础产生强迫振动。 3、 铰链四杆机构在死点位置时,推动力任意增大也不能使机构产生运动,这与机构的自锁 现象是否相同?试加以说明? 答:(1)不同。 (2)铰链四杆机构的死点指:传动角=0度时,主动件通过连杆作用于从动件上的力恰好通过其回转中心,而不能使从动件转动,出现了顶死现象。 死点本质:驱动力不产生转矩。 机械自锁指:机构的机构情况分析是可以运动的,但由于摩擦的存在,却会出现无论如何增大驱动力,也无法使其运动的现象。 自锁的本质是:驱动力引起的摩擦力大于等于驱动力的有效分力。 4、 棘轮机构与槽轮机构均可用来实现从动轴的单向间歇转动,但在具体的使用选择上,又 有什么不同? 答:棘轮机构常用于速度较低和载荷不大的场合,而且棘轮转动的角度可以改变。槽轮机构较棘轮机构工作平稳,但转角不能改变。 5、 简述齿廓啮合基本定律。 答:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线被其啮合齿廓在接触

机械原理习题及课后答案(图文并茂)

机械原理 课后习题及参考答案

机械原理课程组编 武汉科技大学机械自动化学院

习题参考答案 第二章机构的结构分析 2-2 图2-38所示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。 4 3 5 1 2 解答:原机构自由度F=3?3- 2 ?4-1 = 0,不合理,改为以下几种结构均可: 2-3 图2-396为连杆;7为齿轮及偏心轮;8为机架;9为压头。试绘制其机构运动简图,并计算其自由度。

O 齿轮及偏心轮ω A 齿轮及凸轮 B E F D C 压头 机架 连杆 滑杆滑块 摆杆滚子 解答:n=7; P l =9; P h =2,F=3?7-2 ?9-2 = 1 2-6 试计算图2-42所示凸轮—连杆组合机构的自由度。 解答:a) n=7; P l =9; P h =2,F=3?7-2 ?9-2 =1 L 处存在局部自由度,D 处存在虚约束 b) n=5; P l =6; P h =2,F=3?5-2 ?6-2 =1 E 、B 处存在局部自由度,F 、C 处存在虚约束

b) a)A E M D F E L K J I F B C C D B A 2-7 试计算图2-43所示齿轮—连杆组合机构的自由度。 B D C A (a) C D B A (b) 解答:a) n=4; P l =5; P h =1,F=3?4-2 ?5-1=1 A 处存在复合铰链 b) n=6; P l =7; P h =3,F=3?6-2 ?7-3=1 B 、C 、D 处存在复合铰链 2-8 试计算图2-44所示刹车机构的自由度。并就刹车过程说明此机构自由度的变化情况。

机械原理测试题及答案

一、填空题(10 道小题,20 个空,每空1 分,共20 分) 1.平面运动副的最大约束数为,最小约束数为。 2.移动副的自锁条件是,转动副的自锁条件是。 93.969mm,3.已知一对渐开线直齿圆柱齿轮传动,其主动轮齿数z1= 20 ,基圆直径d b1= 从动轮齿数z2= 67 ,则从动轮的基圆直径d b2=。 4.正变位齿轮与标准齿轮比较,其分度圆齿厚,齿根高。 5.在凸轮机构推杆的四种常用运动规律中,运动规律有刚性冲击; 运动规律无冲击。 功之比,它反映了功在机械中的有效利用程6.机械效率等于输入功与 度。 7.刚性转子的动平衡条件是,。 8.在单销四槽外接槽轮机构中,已知主动拨盘的角速度为ω = π / 4 rad/s, 则在主动拨盘运动 一周的时间内,槽轮运动了秒,停歇了秒;槽轮机构的运动系数 为。 9.微动螺旋机构的两段螺纹的旋向应,两导程应。 10.当两构件组成转动副时,其速度瞬心在处,组成移动副时,其瞬心在处。 二、简答题(4 道小题,每道小题5 分,共20 分) 1.何谓急回运动?试列出三种具有急回运动的连杆机构。 2.何谓周期性速度波动和非周期性速度波动?为什么要加以调节?各用什么办法来加以调节? 3.平底推杆凸轮机构的压力角为多少?这种凸轮机构是否存在自锁现象?为什么? 4.设计直动推杆盘形凸轮机构的凸轮轮廓时,若机构的最大压力角超过了许用值,试问可采取 哪几种措施以减小最大压力角? 注:学生必须在答题纸上答题,否则没有成绩。第 1 页共 4 页

= 250mm,cm, 图三、1 ,而其他各杆的长度不变,则当分别以1、2、3 图三、2 分) 所示冲床机构的自由度,若存在局部自由度、复合铰链或虚约束,请指出其 注:学生必须在答题纸上答题,否则没有成绩。第 2 页共 4 页

机械原理习题及解答

第二章习题及解答 2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。 (a)(b) 题图2-1 解: 1)分析 该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。 2)绘制机构运动简图 选定比例尺后绘制机构运动简图如图(b)所示。 3)自由度计算 其中n=5,P L=7, P H=0, F=3n-2P L-P H=3×5-2×7=1 故该机构具有确定的运动。 2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。

(a)(b) 题图2-2 解: 1)分析 该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。 2) 绘制机构运动简图 选定比例尺后绘制机构运动简图如图(b)所示。 3)自由度计算 其中n=4,P L=5, P H=1 F=3n-2P L-P H=3×4-2×5-1=1 故该机构具有确定的运动。 2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。试根据机构自由度分析该方案的合理性,并提出修改后的新方案。

机械原理作业答案A

第一章绪论 1—1 试说明机器与机构的特征、区别和联系。 解:机器具有如下三个特征: 1、人造的实物组合体 2、各部分具有确定的相对运动 3、代替或减轻人类劳动,完成有用功或实现能量的转换 机构则具有机器的前两个特征。 机器与机构的区别:研究的重点不同: 机构:实现运动的转换和力的传递; 机器:完成能量的转换或作有益的机械功。 机器与机构的联系:机器由机构组成,一部机器包含不同的机构;不同的机器可能包含相同的机构。 1—2 试举出两个机器实例,并说明其组成、功能。 解:车床:由原动部分(电动机)+传动系统(齿轮箱)+执行部分(刀架、卡盘等),其主要功能为切削,代替人作功。 汽车:由原动部分(发动机)+传动系统(变速箱)+执行部分(车轮等),其主要功能为行走、运输,代替人作功。 第二章平面机构的结构分析 2—1 试画出唧筒机构的运动简图,并计算其自由度。 2—2 试画出缝纫机下针机构的运动简图,并计算其自由度。 2—3 试画出图示机构的运动简图,并计算其自由度。 2—4 试画出简易冲床的运动简图,并计算其自由度。 1 4 2 3 3 2 3 4 3 = ? - ? = - - = = = = h l h l p p n F p p n, , 解: 解: 1 4 2 3 3 2 3 4 3 = ? - ? = - - = = = h l h l p p n F p p n, , 解: 或1 7 2 5 3 2 3 7 5 = ? - ? = - - = = = = h l h l p p n F p p n, ,

2—5 图示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A 连续回转,而装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的,试绘出其机构运动简图,分析是否能实现设计意图,并提出修改方案。 解:机构简图如下: 机构不能运动。 可修改为: 2—6 计算图示自动送料剪床机构的自由度,并指出其中是否有复合铰链、局部自由度或虚约束。 2—7 计算图示机构的自由度,并指出其中是否有复合铰链、局部自由度或虚约束。说明该机构具 有确定运动的条件。 J A B C D E F G H I J 解: 1725323143=-?-?=--====h l h l p p n F p p n ,,或 解1:C 为复合铰链,F 、I 为局部自由度。 解1:C 、F 为复合铰链,I 为局部自由度, EFGC 为虚约束。 解2:C 为复合铰链,I 为局部自由度(焊死), EFGC 为虚约束(去掉)。 1 310283233108=-?-?=--====h l h l p p n F p p n ,,1 23122103230 231210=--?-?='+'---=='='===p F p p n F p F p p n h l h l ,,,,2:C 为复合铰链,F 、I 为局部自由度(焊死)。

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

最新机械原理期末考试及答案

《机械原理》试卷参考答案 开课单位:机械工程学院,考试形式:闭卷,允许带 计算器、绘图仪器 入场 题序 一 二 三 四 五 六 七 八 总 分 得分 评卷人 一、是非题(共10分,每小题2分,对者在括号内打“√”,错者打“×”)得分︳ 1、(× ) 当机构的自由度数小于机构的原动件数时,机构将具有确定的相对运动。 2、(√ ) 不论刚性转子上有多少个不平衡质量,也不论它们如何分布,只需在任意选定的两个平面内,分别 适当地加一平衡质量,即可达到动平衡。 3、(× ) 在其他参数不变的前提下,槽面摩擦较平面摩擦的摩擦力较大,是因为前者摩擦系数较大。 4、(√ ) 在移动副中,当驱动力作用线在摩擦锥之内,则发生自锁。 5、(√ ) 对于单自由度的机械系统,若选定等效构件为移动件时,其等效质量是按等效前后动能相等的条 件进行计算的。 二、填空题(共10分,每空1分)得分︳ 1、飞轮主要用以调节 周期性 速度波动,若不考虑其他因素,只为了减小飞轮尺寸和重量,应将其安装 在 高速 轴上。 2、刚性转子的静平衡就是要使 惯性力 之和为零;而刚性转子的动平衡则要使 惯性力 之和及 惯性力偶矩 之和均为零。 3、三个彼此作平面相对运动的构件共有 3 个瞬心,且必位于 同一直线 上。 4、在机构运动分析的速度多边形中,机架的速度影像是 极点 。速度影像和加速度影像原理只适用 于 同一构件 。 5、当机械的效率0≤η时,机构则发生 自锁 。 三、(共10分)计算图1所示机构的自由度,并判断机构的运动确定性,如机构中存在复合铰链、局部自由度和虚约束,请在图上示出。得分︳ 图1 虚约束 局部自由度 复合铰链 复合铰链 b) a)

机械原理课后全部习题答案

机械原理课后全部习题答案 目录 第1章绪论 (1) 第2章平面机构的结构分析 (3) 第3章平面连杆机构 (8) 第4章凸轮机构及其设计 (15) 第5章齿轮机构 (19) 第6章轮系及其设计 (26) 第8章机械运动力学方程 (32) 第9章平面机构的平衡 (39)

第一章绪论 一、补充题 1、复习思考题 1)、机器应具有什么特征机器通常由哪三部分组成各部分的功能是什么 2)、机器与机构有什么异同点 3)、什么叫构件什么叫零件什么叫通用零件和专用零件试各举二个实例。 4)、设计机器时应满足哪些基本要求试选取一台机器,分析设计时应满足的基本要求。 2、填空题 1)、机器或机构,都是由组合而成的。 2)、机器或机构的之间,具有确定的相对运动。 3)、机器可以用来人的劳动,完成有用的。 4)、组成机构、并且相互间能作的物体,叫做构件。 5)、从运动的角度看,机构的主要功用在于运动或运动的形式。 6)、构件是机器的单元。零件是机器的单元。 7)、机器的工作部分须完成机器的动作,且处于整个传动的。 8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。 9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。 3、判断题 1)、构件都是可动的。() 2)、机器的传动部分都是机构。() 3)、互相之间能作相对运动的物件是构件。() 4)、只从运动方面讲,机构是具有确定相对运动构件的组合。()5)、机构的作用,只是传递或转换运动的形式。() 6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。()

7)、机构中的主动件和被动件,都是构件。() 2 填空题答案 1)、构件2)、构件3)、代替机械功4)、相对运动5)、传递转换6)、运动制造7)、预定终端8)、中间环节9)、确定有用构件 3判断题答案 1)、√2)、√3)、√4)、√5)、×6)、√7)、√

机械原理考试试题及答案3篇

试题1 一、选择题(每空2分,共10分) 1、平面机构中,从动件的运动规律取决于 D 。 A、从动件的尺寸 B、机构组成情况 C、原动件运动规律 D、原动件运动规律和机构的组成情况 2、一铰链四杆机构各杆长度分别为30mm ,60mm,80mm,100mm,当以30mm的杆为机架时,则该机构为 A 机构。 A、双摇杆 B、双曲柄 C、曲柄摇杆 D、不能构成四杆机构 3、凸轮机构中,当推杆运动规律采用 C 时,既无柔性冲击也无刚性冲击。 A、一次多项式运动规律 B、二次多项式运动规律 C、正弦加速运动规律 D、余弦加速运动规律 4、平面机构的平衡问题中,对“动不平衡”描述正确的是 B 。 A、只要在一个平衡面内增加或出去一个平衡质量即可获得平衡 B、动不平衡只有在转子运转的情况下才能表现出来 C、静不平衡针对轴尺寸较小的转子(转子轴向宽度b与其直径D之比b/D<0.2) D、使动不平衡转子的质心与回转轴心重合可实现平衡 5、渐开线齿轮齿廓形状决定于 D 。 A、模数 B、分度圆上压力角 C、齿数 D、前3项 二、填空题(每空2分,共20分) 1、两构件通过面接触而构成的运动副称为低副。 2、作相对运动的三个构件的三个瞬心必在同一条直线上。 3、转动副的自锁条件是驱动力臂≤摩擦圆半径。 4、斜齿轮传动与直齿轮传动比较的主要优点: 啮合性能好,重合度大,结构紧凑。 5、在周转轮系中,根据其自由度的数目进行分类:若其自由度为2,则称为差动轮系, 若其自由度为1,则称其为行星轮系。 6、装有行星轮的构件称为行星架(转臂或系杆)。 7、棘轮机构的典型结构中的组成有:摇杆、棘爪、棘轮等。 三、简答题(15分) 1、什么是构件? 答: 构件:机器中每一个独立的运动单元体称为一个构件;从运动角度讲是不可再分的单位体。

机械原理期末考试试卷(及答案)2017

2016-2017 学年第 二 学期 期末 考试试题 B 卷 第 1 页 共 6 页 考试科目:机械原理 考试时间:120分钟 试卷总分:100分 考试方式: 闭卷 考生院系: 机械工程学院 一、判断题(每题 2 分,共 10 分 1、两构件通过面接触而构成的运动副称为高副。 ( X ) 2、作相对运动的三个构件的三个瞬心必在同一条直线上。 ( √ ) 3、转动副的自锁条件是驱动力臂≤摩擦圆半径。 ( √ ) 4、渐开线的形状取决于基圆的大小。 ( √ ) 5、斜齿轮传动与直齿轮比较的主要优点是啮合性能好,重合度大,结构紧凑。( √ ) 二、选择题(每题 2 分,共 10 分) 1、平面机构中,从动件的运动规律取决于 D 。 A 、 从动件的尺寸 C 、机构组成情况 B 、 原动件运动规律 D 、原动件运动规律和机构的组成情况 2、一铰链四杆机构各杆长度分别为30mm ,60mm ,80mm ,100mm ,当以30mm 的杆为 机架时,则该机构为 A 机构。 A 、双摇杆 B 、双曲柄 C 、曲柄摇杆 D 、不能构成四杆机构 3、凸轮机构中,当推杆运动规律采用 B 时,既无柔性冲击也无刚性冲击。 A 、 一次多项式运动规律 C 、二次多项式运动规律 B 、 正弦加速运动规律 D 、余弦加速运动规律 4、平面机构的平衡问题中,对“动不平衡”描述正确的是 B 。 A 、 只要在一个平衡面内增加或出去一个平衡质量即可获得平衡 B 、 动不平衡只有在转子运转的情况下才能表现出来 C 、 静不平衡针对轴尺寸较小的转子(转子轴向宽度b 与其直径 D 之比b/D<0.2) D 、 使动不平衡转子的质心与回转轴心重合可实现平衡 5、渐开线齿轮齿廓形状决定于 D 。 A 、 模数 C 、分度圆上压力角 B 、 齿数 D 、前三项 三、简述题(每题 4 分,共 20 分)

机械原理课后答案第8章

第8章作业 8-l 铰链四杆机构中,转动副成为周转副的条件是什么?在下图所示四杆机构ABCD 中哪些运动副为周转副?当其杆AB 与AD 重合时,该机构在运动上有何特点?并用作图法求出杆3上E 点的连杆曲线。 答:转动副成为周转副的条件是: (1)最短杆与最长杆的长度之和小于或等于其他两杆长度之和; (2)机构中最短杆上的两个转动副均为周转副。图示ABCD 四杆机构中C 、D 为周转副。 当其杆AB 与AD 重合时,杆BE 与CD 也重合因此机构处于死点位置。 8-2曲柄摇杆机构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么? 答:机构不一定存在急回运动,但一定无死点,因为: (1)当极位夹角等于零时,就不存在急回运动如图所示, (2)原动件能做连续回转运动,所以一定无死点。 8-3 四杆机构中的极位和死点有何异同? 8-4图a 为偏心轮式容积泵;图b 为由四个四杆机构组成的转动翼板式容积泵。试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么? 解 机构运动简图如右图所示,ABCD 是双曲柄机构。 因为主动圆盘AB 绕固定轴A 作整周转动,而各翼板CD 绕固定轴D 转动,所以A 、D 为周转副,杆AB 、CD 都是曲柄。 8-5试画出图示两种机构的机构运动简图,并说明它们各为何种机构。 图a 曲柄摇杆机构 图b 为导杆机构。 8-6如图所示,设己知四杆机构各构件的长度为240a mm =,600b =mm ,400,500c mm d mm ==。试问: 1)当取杆4为机架时,是否有曲柄存在? 2)若各杆长度不变,能否以选不同杆为机架的办法获得双曲柄机构和双摇杆机构?如何获得?

机械原理考试题及答案

机械原理考试题 一、(10分)单项选择题(从给出的A、B、C、D中选一个答案,每小题1分) 1.由机械原理知识可知,自行车应属于。 A机器B机构C通用零件D专用零件 2.平面运动副按其接触特性,可分成。 A移动副与高副B低副与高副C转动副与高副D转动副与移动副3.铰链四杆机构的压力角是指在不计摩擦情况下作用与上的力与该力作用点速度间所夹的锐角。 A主动件B连架杆C机架D从动件 4.与连杆机构相比,凸轮机构最大的缺点是。 A惯性力难于平衡B点、线接触,易磨损C设计较为复杂D不能实现间歇运动 5.盘形凸轮机构的压力角恒等于常数。 A摆动尖顶推杆B直动滚子推杆C摆动平底推杆D摆动滚子推杆6.对心直动尖顶从动件盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A增大基圆半径B改变凸轮转向C改用滚子从动件D减小基圆半径7.齿数z=42,压力角α=20°的渐开线标准直齿外齿轮,其齿根圆基圆 A大于B等于C小于D小于且等于 8.渐开线直齿圆柱齿轮传动的重合度是实际啮合线段与的比值。 A齿距B基圆齿距C齿厚D齿槽宽 9.渐开线标准齿轮是指m、α、h a*、c*均为标准值,且分度圆齿厚齿槽宽的齿轮。A大于B等于C小于D小于且等于 10.在单向间歇运动机构中,的间歇回转角在较大的范围内可以调节。 A槽轮机构B不完全齿轮机构C棘轮机构D蜗杆凸轮式间歇运动机构 二、(10分)试计算下列运动的自由度数。(若有复合铰链,局部自由度和虚约束,必须明确指出),打箭头的为原动件,判断该运动链是否成为机构。

三、已知一偏置曲柄滑块机构,主动件曲柄AB顺时钟回转,滑块C向左为工作行程,行程速比系数为K=1.1,滑块形成S=40mm,偏距e=10mm。 1.试合理确定其偏置方位,用图解法设计该机构,求曲柄AB、连杆BC,并画出机构草图。2.试用解析法求其非工作形成时机构的最大压力角αmax。 3.当滑块C为主动件时,画出机构的死点位置。 4.当要求偏置曲柄滑块机构尺寸不变的条件下,试串联一个机构,使输出滑块C的行程有所扩大(不必计算尺寸,用草图画出方案即可)。 四、现需设计一偏心直动滚子从动件盘形凸轮机构,设已知凸轮以等角速度ω1=1rad/s沿逆时钟方向回转,从动件向上为工作行程,从动件的行程为h=35mm,偏距e=10mm,滚子半径r r=5mm,凸轮的推程运动角φ1=120°,回程运动角φ2=120°,近停运动角φ3=120°,推程段的许用压力角[α]=30°。 =200mm/s,位移S=20mm的条件下,确定凸轮的基圆1.试根据在推程段从动件最大速度V max 半径r 。 b 2.合理确定从动件的偏置方位,用草图画出所设计的凸轮机构。 3.画出凸轮从最低位置转过φ=90°时,机构的压力角α及其位移S。 五、(22分)(一)采用标准齿条刀具加工渐开线直齿圆柱齿轮,已知刀具齿形角α=20°,齿距为4πmm,加工时刀具移动速度v=60mm/s,轮坯转动角速度为1rad/s。 1.试求被加工齿轮的参数:模数m、压力角α、齿数z,分度圆直径d,基圆直径d b;2.如果刀具中心线与齿轮毛坯轴心的距离L=58mm,问这样加工的齿轮是正变位还是负变位齿轮,变位系数是多少? (二)已知斜 机械原理试卷答案 一、填空及选择(每题1分,共20分)

机械原理作业册答案

第二章机构的结构分析- 一、填空与选择题 1、B、A 2、由两构件直接接触而产生的具有某种相对运动 3、低副,高副,2,1 4、后者有作为机架的固定构件 5、自由度的数目等于原动件的数目;运动不确定或机构被破坏 6、√ 7、 8、m-1 9、受力情况10、原动件、机架、若干个基本杆组 11、A、B 12、C 13、C 二、绘制机构简图 1、计算自由度n=7, P L=9,P H=2 F=3n-2P L-P H=3×7-2×9-2=1 2、3、 4、 三、自由度计算 (a)E处为局部自由度;F处(或G处)为虚约束 计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (b)E处(或F处)为虚约束 计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (c) B处为局部自由度;F处为复合铰链;J处(或K处)为虚约束 计算自由度n=9,P L=12,P H=2 F=3n-2P L-P H=3×9-2×12-2=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (d) B处为局部自由度;C处为复合铰链;G处(或I处)为虚约束 计算自由度n=7,P L=9,P H=1 F=3n-2P L-P H=3×7-2×9-1=2 自由度的数目大于原动件的数目所以该机构不具有确定的运动。

(e) 构件CD(或EF)及其两端的转动副引入一个虚约束 计算自由度n=3,P L=4,P H=0 F=3n-2P L-P H=3×3-2×4=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (f) C处为复合铰链; 计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (g) B处为局部自由度;F处为复合铰链;E处(或D处)为虚约束 计算自由度n=6,P L=8,P H=1 F=3n-2P L-P H=3×6-2×8-1=1 (h)去掉杆8此处存在虚约束;B和C处为复合铰链 计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1 (i) C处为复合铰链 计算自由度n=5,P L =7,P H=0 F=3n-2P L-P H=3×5-2×7=1 自由度的数目等于原动件的数目,所以该机构具有确定的运动。 四、试计算下图所示机构的自由度,并作出它们仅含低副的替代机构。 替代机构如下图所示: (1)计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1 (2)计算自由度n=3,P L=3,P H=2 F=3n-2P L-P H=3×3-2×3-2=1 五、计算下图所示机构的自由度,并通过结构分析确定当构件1、5分别为原动件时机构 的级别。 计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1 机构分析如下图所示。

2机械原理考试试题及答案

试题 1 一、填空题(每空 2 分,共20 分) 1、两构件通过面接触而构成的运动副称为低副。 2、斜齿轮传动与直齿轮传动比较的主要优点:啮合性能好,重合度大,结构紧凑。 二、简答题(15 分) 1、何谓四杆机构的“死点”? 答:当机构运转时,若出现连杆与从动件共线时,此时γ=0 ,主动件通过连杆作用于从动件上的力将通过其回转中心,从而使驱动从动件的有效分力为零,从动件就不能运动,机构的这种传动角为零的位置称为死点。 2、用范成法制造渐开线齿轮时,出现根切的根本原因是什么?避免根切的方法有哪些? 答:出现根切现象的原因: 刀具的顶线(不计入齿顶比普通齿条高出的一段c*m )超过了被切齿轮的啮合极限点 N1,则刀具将把被切齿轮齿根一部分齿廓切去。 避免根切的方法: a) 减小齿顶高系数ha* b) 加大刀具角α c) 变位修正 三、计算题(45 分) 1、计算如图 1 所示机构的自由度,注意事项应说明?(5*2 ) C D E G F C D B B A A a b 图 1 小题a: 其中A 、B 处各有一个转动副, B 处有一个移动副,C、D 处的移动副记作一个移动副。即n 3, p l 4, p h0, p' F ' 0 ;所以该机构自由度为: F 3n ( 2 p l p h p' ) F ' 3 3 (2 4 1 0 0)0 小题b: 其中A 、B 、C、G、H 处各有一个转动副, F 处为复合铰链有两个转动副, B 处有一个局部自由度, D 、 E 处的两个移动副记作一个移动副。即 n 7, p l 9, p h 1, p' 0,F ' 1 ;所以该机构自由度为:

机械原理习题及答案..

第1章平面机构的结构分析 1.1解释下列概念 1.运动副; 2.机构自由度; 3.机构运动简图; 4.机构结构分析; 5.高副低代。 1.2验算下列机构能否运动,如果能运动,看运动是否具有确定性,并给出具有确定运动的修改办法。 题1.2图题1.3图 1.3 绘出下列机构的运动简图,并计算其自由度(其中构件9为机架)。 1.4 计算下列机构自由度,并说明注意事项。 1.5计算下列机构的自由度,并确定杆组及机构的级别(图a所示机构分别以构件2、4、8为原动件)。

题1.4图 题1.5图 第2章平面机构的运动分析2.1试求图示各机构在图示位置时全部瞬心。

题2.1图 2.2在图示机构中,已知各构件尺寸为l AB=180mm , l BC=280mm , l BD=450mm ,l CD=250mm ,l AE =120mm ,φ=30o, 构件AB上点E的速度为v E=150 mm /s ,试求该位置时C、D两点的速度及连杆2的角速度ω2。 2.3 在图示的摆动导杆机构中,已知l AB=30mm , l AC=100mm , l BD=50mm ,l DE=40mm ,φ1=45o,曲柄1以等角速度ω1=10 rad/s沿逆时针方向回转。求D点和E点的速度和加速度及构件3的角速度和角加速度(用相对运动图解法)。 题2.2图 题2.3图 2.4 在图示机构中,已知l AB=50mm , l BC=200mm , x D=120mm , 原动件的位置φ1=30o, 角速度ω1=10 rad/s,角加速度α1=0,试求机构在该位置时构件5的速度和加速度,以及构件2的角速度和角加速度。

机械原理(第七版)试题及概念总结

机械原理(第七版)重要概念总结(附)及复习试题 (认真看完,考试必过) 卷一 一、填空题(每小题2分,共20分) 1、 平面运动副的最大约束数为 2 个 ,最小 约束数为 1 个。 2、 当两构件组成转动副时,其相对速度瞬心在 转动副中心 处。 3、 对心曲柄滑块机构,若以连杆为机架,则该机构演 化为 曲柄摇块机构 。 4、 传动角越大,则机构传力性能越 好 。 5、 凸轮机构推杆的常用运动规律中,二次多项式运动 规律具有 柔性 冲击。 6、 蜗杆机构的标准参数从 中间平面 中取。 7、 常见间歇运动机构有: 棘轮机构 、 槽轮 机构 等。 8、 为了减小飞轮的重量和尺寸,应将飞轮装在 高 速 轴上。 9、 实现往复移动的机构有: 曲柄滑块机 构 、 凸轮机构 等。 10、 外啮合平行轴斜齿轮的正确啮合条件为: 212121n n n n m m ααββ==-=,, 。 二、简答题(每小题5分,共25分) 1、何谓三心定理? 答:三个彼此作平面运动的构件的三个瞬心必位于同一 直线上 。 2、 简述机械中不平衡惯性力的危害? 答:机械中的不平衡惯性力将在运动副中引起附加的动 压力,这不仅会增大运动副中的摩擦和构件中的内应 力,降低机械效率和使用寿命,而且会引起机械及其基 础产生强迫振动。 3、 铰链四杆机构在死点位置时,推动力任意增大也不 能使机构产生运动,这与机构的自锁现象是否相 同?试加以说明? 答:(1)不同。 (2)铰链四杆机构的死点指:传动角=0度时,主动 件通过连杆作用于从动件上的力恰好通过其回转中心, 而不能使从动件转动,出现了顶死现象。 死点本质:驱动力不产生转矩。 机械自锁指:机构的机构情况分析是可以运动 的,但由于摩擦的存在,却会出现无论如何增大驱动力, 也无法使其运动的现象。 自锁的本质是:驱动力引起的摩擦力 大于等 于 驱动力的有效分力。 4、 棘轮机构与槽轮机构均可用来实现从动轴的单向间 歇转动,但在具体的使用选择上,又有什么不同? 答:棘轮机构常用于速度较低和载荷不大的场合,而且 棘轮转动的角度可以改变。槽轮机构较棘轮机构工作平 稳,但转角不能改变。 5、 简述齿廓啮合基本定律。 答:相互啮合传动的一对齿轮,在任一位置时的传动比, 都与其连心线被其啮合齿廓在接触点处的公法线所分 成的两段成反比。 三、计算题(共45分) 1、绘制偏心轮机构简图(草图),并求机构自由度。(10分) 1 2 3 4 A B C

机械原理试题及答案(试卷和答案)

Print 机械原理试题及答案(试卷+答案)、 仅供测试与学习交流,请下载后24小时内删除。? Array 2013年机械原理自测题(一)?一.判断题(正确得填写?T?,错误得填写?F?)(20分)?1、根据渐开线性质,基圆内无渐开线,所以渐开线齿轮得齿根圆必须设计比基 3、圆大。(F)?2、对心得曲柄滑块机构,其行程速比系数K一定等于一。( T )? 在平面机构中,一个高副引入二个约束。(F)?4、在直动从动件盘形凸轮机构中,若从动件运动规律不变,增大基圆半径,?则压力角将减小(T) 5、在铰链四杆机构中,只要满足杆长与条件,则该机构一定有曲柄存在。?(F)?6、滚子从动件盘形凸轮得实际轮廓曲线就是理论轮廓曲线得等距曲线。?(T) 7、在机械运动中,总就是有摩擦力存在,因此,机械功总有一部分消耗在克服摩 擦力上。( T)?8、任何机构得从动件系统得自由度都等于零。( T )?9、一对直齿轮啮合传动,模数越大,重合度也越大。( F ) 10、在铰链四杆机构中,若以曲柄为原动件时,机构会出现死点位置。。( F )?二、填空题。(10分)?1、机器周期性速度波动采用(飞轮)调节,非周期性速度波?动采用(调速器)调节。 2、对心曲柄滑块机构得极位夹角等于( 0 )所以(没有)急回 特性。 3、渐开线直齿圆柱齿轮得连续传动条件就是(重合度大于或 等于1)。 4、用标准齿条形刀具加工标准齿轮产生根切得原因就是(齿条形刀具齿顶线超过 极限啮合点N1 )。 5、三角螺纹比矩形螺纹摩擦(大),故三角螺纹多应用( 联接),矩形螺纹多用于(传递运动与动力)。?三、选择题(10分) 1、齿轮渐开线在()上得压力角最小。?A)齿根圆;B)齿顶圆; C)分度圆;D)基圆。 2、静平衡得转子(①)就是动平衡得。动平衡得转子(②)就是静平衡?得。 ①A)一定; B)不一定; C)一定不。?②A)一定;B)不一定:C)一定不。 3、满足正确啮合传动得一对直齿圆柱齿轮,当传动比不等于一时,她们得渐开 机械原理第 1 页共 32 页Array 线齿形就是()。?A)相同得; B)不相同得。?4、对于转速很高得凸轮机构,为了减小冲击与振动,从动件运动规律最好采用?()得运动规律。?A)等速运动; B)等加等减速运动; C)摆线运动。?5、机械自锁得效率条件就是()。?A)效率为无穷大: B)效率大于等于1; C)效率小于零。? 四、计算作图题:(共60分)?注:凡图解题均需简明写出作图步骤,直接卷上作图,保留所有作图线。

机械原理考试试题及答案

试题 1 一、选择题(每空2分,共10分) 1、平面机构中,从动件的运动规律取决于 D 。 A、从动件的尺寸 B、机构组成情况 C、原动件运动规律 D、原动件运动规律和机构的组成情况 2、一铰链四杆机构各杆长度分别为30mm ,60mm,80mm,100mm,当以30mm的杆为机架时,则该机构为 A 机构。 A、双摇杆 B、双曲柄 C、曲柄摇杆 D、不能构成四杆机构 3、凸轮机构中,当推杆运动规律采用 C 时,既无柔性冲击也无刚性冲击。 A、一次多项式运动规律 B、二次多项式运动规律 C、正弦加速运动规律 D、余弦加速运动规律 4、平面机构的平衡问题中,对“动不平衡”描述正确的是 B 。 A、只要在一个平衡面内增加或出去一个平衡质量即可获得平衡 B、动不平衡只有在转子运转的情况下才能表现出来 C、静不平衡针对轴尺寸较小的转子(转子轴向宽度b与其直径D之比b/D<0.2) D、使动不平衡转子的质心与回转轴心重合可实现平衡 5、渐开线齿轮齿廓形状决定于 D 。

A、模数 B、分度圆上压力角 C、齿数 D、前3项 二、填空题(每空2分,共20分) 1、两构件通过面接触而构成的运动副称为低副。 2、作相对运动的三个构件的三个瞬心必在同一条直线上。 3、转动副的自锁条件是驱动力臂≤摩擦圆半径。 4、斜齿轮传动与直齿轮传动比较的主要优点: 啮合性能好,重合度大,结构紧凑。 5、在周转轮系中,根据其自由度的数目进行分类:若其自由度为2,则称为差动轮系, 若其自由度为1,则称其为行星轮系。 6、装有行星轮的构件称为行星架(转臂或系杆)。 7、棘轮机构的典型结构中的组成有:摇杆、棘爪、棘轮等。 三、简答题(15分) 1、什么是构件? 答: 构件:机器中每一个独立的运动单元体称为一个构件;从运动角度讲是不可再分的单位体。 2、何谓四杆机构的“死点”? 答: 当机构运转时,若出现连杆与从动件共线时,此时γ=0,主动件通过连杆作用于从动件上的力将通过其回转中心,从而使驱动从动件的有效分力为零,从动件就不能运动,机构的这种传动角为零的位置称为死点。

相关主题
文本预览
相关文档 最新文档