当前位置:文档之家› 放线菌的分离和鉴定

放线菌的分离和鉴定

放线菌的分离和鉴定
放线菌的分离和鉴定

放线菌的分离和鉴定

实验器材:

1.土壤材料 5 ---10cm 处土壤,放于采集袋中带回实验室。

2.培养基

淀粉琼脂培养基(高氏Ⅰ号培养基( w /v))

可溶性淀粉2%,KNO3 0. 1%,NaCL 0. 05%,K2HP04 0. 05%,MgSO4 0. 05%,FeSO4 0. 001%,琼脂2% 3.溶液和试剂

(1) 20% 甘油( 2) 0. 1%美蓝 A 液: 美蓝0. 3g ,95% 乙醇300ml;B 液: 0. 01% KOH 100ml 混合A 和B 液即成

革兰氏染液3( 1) 结晶紫染色液: 甲液结晶紫2g,95% 乙醇20ml;乙液草酸铵0. 8g,蒸馏水80ml。甲乙液先分别溶解,然后混合在一起,过滤除去残渣后装入滴瓶中备用。

( 2) 碘液: 碘1g,碘化钾2 个,蒸馏水100ml 先取少量蒸馏水加入碘和碘化钾,使碘完全溶解后再加入全部蒸馏水,分装于滴瓶中备用。

( 3) 复红酒精溶液: 碱性复红0. 4g,95%乙醇100ml,溶解装入滴瓶备用。

4.仪器和其他用品

无菌纸、带玻璃珠的三角烧瓶、1ml无菌吸管、无菌试管、无菌培养皿

一.目的要求:

1. 掌握倒平板的方法和常用分离纯化微生物的基本操作。

2. 初步观察土壤中放线菌菌落形态。

3. 初步了解掌握微生物分类的基本方法。

二.实验原理:

放线菌在自然界中主要生存于陆地和淡水中,土壤为这类微生物的主要习居场所,无论在种类和数量上都比其他地方繁多。在中性或偏碱性的土壤和有机质等丰富的土壤中较多。放线菌以孢子和菌丝片段的形式存在于土壤,每克土壤内含有数万、数十万的孢子。

放线菌的生活史和形态特征

放线菌的孢子和孢囊孢子在适宜的环境下吸收水分,膨胀萌发,生出芽管1 -3 个,芽管伸长长出分枝,分枝越来越多,形态菌丝体。因其菌丝体在培养基内,即基内菌丝或称营养菌丝体。基内菌丝体一般没有横隔,由于菌丝体长入培养基内和培养基表面,并纠缠在一起形成密集的菌落,所以用接种针将整个菌落培养基挑起而不破裂。基内菌丝体大部分呈黄、橙、蓝、紫、绿、徽,但也有无色。它产生的色素有溶于水的为水溶性色素; 溶于有机溶剂的为脂溶色素。由基内菌丝体向空间长出的菌丝体叫做气生菌丝体。在显微镜下观察时,气生菌丝体颜色较深,且较基内菌丝体粗两倍左右。气生菌丝体发育到一定阶段,在它上面形成孢子丝。孢子丝形状有直、波曲、螺旋、轮生之分。螺旋有松、紧、大、小之分,其螺旋的方向也有左旋与右旋之分,大多数种为左旋,少数为右旋。螺旋的数目也是种的特征之一。孢子具有不同的形状,有球形、椭球形、杆状、柱状,在光学显微镜下就能看清。因为从一个孢子丝分化出而来的孢子可能有各种不同的形状,不能一概以孢子的大小和形状作为区分种的重要指标之一,还要结合孢子表面结构来加以区分。电镜下可看到孢子表面,有的光滑,有的有小疣,有的有刺。孢子的表面结构在鉴定种时很重要,是形态特征不可缺少的项目之一。

本实验通过合适的分离和筛选手段,从土壤中筛选出孢子丝螺旋明显的两株放线菌,并通过形态和培养特征、生理生化特性初步鉴定出它们的类别。

三.操作步骤:

(1)倒平板:淀粉琼脂培养基加热熔化,冷至55-60℃时倒板。

(2)制备系列稀释

在无菌纸上称取样品5 g,放入三角瓶中,内含玻璃珠45ml 无菌水,涡旋振荡10min,用1ml 无菌吸管吸取0. 5ml 注入4. 5ml 无菌水的试管中充分混匀,此为10-1 稀释液,以此类推制成10-2、10-3、10-4、10-5

和10-6几种稀释度的土壤溶液。

(3)涂布

从稀释度为10-1,10-2、10-3,10 -4,10 -5,10 -6的菌悬液中分别吸取0. 1ml 涂布在高氏Ⅰ号平板培养基上,每个稀释度涂三个平板。

(4)划线

挑选出不同的单菌落,并在平板上进行三次划线.

(5)培养

将平板倒置于28℃温室中培养7d。

(6)挑菌落

挑取单菌落,并通过镜检,确定为纯培养。

四.实验报告:

1. 结果

(1)你所做的划线平板是否较好地得到单菌落?如果不是,请分析其原因并进行重做。

(2)仔细观察和比较各平板的放线菌形态特征,并对它们的菌落形态特征进行描述。

(3)制片观察,并绘图。

放线菌作为新的生物活性代谢产物的主要来源早已成为人们关注的焦点。自从链霉菌素的发现,大量抗生素从Streptomyces 和Streptovertieilliura分离得到,例如氯霉素、氨基苷类、四环素、大环内酯类和头孢霉素等…。因此,放线菌被认为是一类具有重要经济及研究价值的微生物。长期的研究重点集中在土壤中的优势菌链霉菌上。对这一类群菌的广泛筛选,的确发现了很多新种,而且它们能产生多种有用次生代谢产物。然而,随着大量生物活性物质的不断发现,从链霉菌得到新的生物活性物质的几率逐渐下降。同时,另一类菌——稀有放线菌逐渐引起了新药开发研究者们的注意。

本文主要从分离培养基的设计角度,介绍了几种主要的且能产生生物活性物质的稀有放线菌高选择性分离方法。根据目的菌对各种条件的耐受范围和有利于它们生长的条件,选择和设计培养基的成分、酸碱度等。

1 从沙漠土样选择性分离稀有放线菌培养基的设计

葡萄糖—天门冬酰胺改良培养基、淀粉—甘油培养基和甘油—酪素培养基成分均能促进稀有放线菌的生长。分离培养基中加入4种抗生素抑制细菌和真菌的生长,有利于稀有放线菌分离。

分离程序如下:沙漠土样用溶液稀释,溶液组成为:K2HPO4 0.38%,KH2PO4 0.12%,MgSO4·7H2O 0.51 %,NaCl 0.25%,Fe2 (SO4 )3·7 H2O 0.005%,MnSO4 0.005%。

选用3种分离培养基,分别是:

(1)葡萄糖一天门冬酰胺改良培养基:葡萄糖1 %,天门冬酰胺0.1 %,K2HPO4 0.1%,FeSO4·7H2O 0.0001%,MnC12·4 H2O 0.0001%,ZnSO4·7H2O 0.001%,琼脂1.5%,pH7.0;

(2)淀粉一甘油培养基:淀粉1.0%,甘油1.0%,(NH4)2SO4 0.2 %,CaCO3 0.2%,KH2PO4 0.1%,MgSO4·7 H2O 0.1 %,NaC1 0.1 %,脯氨酸l %,琼脂1.2%,pH7.0;

(3)甘油一酪素培养基:甘油1.0%,酪素0.03%,KNO3 0.2%,NaC1 0.2%,K2HPO4 0.2%,MgSO4·7 H2O 0.005%,FeSO4·7 H2O 0.001%,CaCO3 0.02%,琼脂1.8%,pH7.0。

制霉菌素12.5m g/m L,苯菌灵20mg/mL ,环丝氨酸50mg/m L,萘啶酸25 mg /m L均加入3种分离培养基。稀释涂布平板法分离,37℃培养,7 d 。

2 吉兰糖胶系列分离培养基的设计

吉兰糖胶是一种由Pseudomonas elodea产生的多糖。常用作植物组织培养的凝固基质,有促进植物细胞生长的作用。它也能促进很多放线菌气生菌丝的生长及气生孢子的形成,如Sporichthya ,Actinobispora ,Planobispora,Plano—monospora等。因此,可以用作稀有放线菌分离培养基的凝固基质。

通常分离产动孢的游动放线菌,如Planobispora ,Planomonospora等,利用它们孢子的游动性,可用诱饵捕集法、化学趋化法和离心法,如Nonomura等人用花粉或角蛋白诱饵捕集法成功地分离得到Actinoplanesspp.,Pilimelia和Planomonospora spp .;化学趋化法选择性分离Actinoplanes ,

Catenuloplanes和Dactylosporangium ;离心法将动孢菌与链霉菌等不产动孢的放线菌分开,选择性分离稀有产动孢的放线菌。Suzuki介绍了一些利用吉兰糖胶特异性分离此类放线菌的方法。

2.1 选择性分离Sporichthya Sporichthya polymorpha在查氏琼脂上形成的菌落小,难以辨别。而在HV 吉兰糖胶上形成的菌落大,便于快速鉴定。同样,Sporichthya在几丁质琼脂(Colloidal chitin agar )、放线菌分离琼脂( Actinomyceteisolation agar ) 、蛋清琼脂(Egg a lbuminagar ) 和HV琼脂上形成的气生菌丝都不及HV吉兰糖胶丰富。实验研究表明,Ca2+促进Sporichthya polymorpha 生长。Ca2+加入HV吉兰糖胶以提高对Sporichthya的选择性。

Suzuki等用脱脂牛奶对土样进行预处理,可刺激Spofichthya孢子的运动。需要引起注意的是,高温能够破坏脱脂牛奶中的刺激因子,所以脱脂牛奶不能进行高温灭菌。pH8.0时,孢子运动频率最大。吗啉丙磺酸( MOPS,pH8.0 ) 有助于Sporichthya孢子的运动,提高了分离效率。差速离心是分离动孢菌的有效分离方法之一。脱脂牛奶结合离心法提高了分离的选择性。分离程序如下:将风干土样在80℃干热处理,l h ,用含0.1%脱脂牛奶(未灭菌) 的MOPS ( morpholinepropanesulfonic acid,pH8.0) 浸液制成土壤悬液,27℃振荡培养1 h ,离心1000 r/m i n ,10 m i n,用无菌生理盐水梯度稀释后,涂布HVG平板( CaC12 2mM,放线酮50μg/m L) ,27℃培养,21~2 8d。

2.2 选择性分离Planobispora Planobispora通常形成棒状孢囊,孢囊内包含一对纵生的孢子。这是Planobispora 典型的形态特征。Planobispora在一些标准分离培养基,如淀粉一硝酸盐酪素琼脂、放线菌分离琼脂和蛋清琼脂上不能或稀疏形成孢囊。相比之下,在HSG上能够产生丰富的孢囊。有意思的是,当Planobom菌落数超50个时,在吉兰糖胶培养基上能够产生丰富的孢囊,而菌落数少于20个时,在气丝上不能形成孢囊。

HSG即腐殖酸微量盐吉兰糖胶。其中微量盐包括FeSO4·7H2O,MnCl2·4H2O,ZnSO4·7H2 O,NiSO4·6 H2O。它们在低浓度情况下,可以促进孢囊的形成。在高浓度条件下,却抑制孢囊的形成。碱性条件增加了有机物质的降解,利于产孢囊的动孢菌生长。pH 9.0比中性pH更利于Planobispora孢囊的形成。同时,碱性条件也可以抑制优势菌链霉菌的生长,提高对Planobispora的分离效果。当培养温度为32~37℃时,不利于非目的菌的生长,而对Planobispora的生长却不构成影响。Suzuki等采用32℃培养,以减少水分的蒸发,同样达到选择性分离的效果。

分离程序如下:风干土样在90℃干热处理,1h ,用CHES ( 5mM pH9.0 ) ,脱脂牛奶0.1%,吐温80 0.01%,三甲氧苄二氨嘧啶100μg/mL和萘啶酸100μg/mL 制成土壤悬液,35℃振荡l h ,离心1000g,10min ,用无菌生理盐水梯度稀释后,涂布HSG平板(三甲氧苄二氨嘧啶50g/ mL,萘啶酸50μg/mL ,依诺沙星20μg/mL ,氨苄青霉素钠盐2g/m L,硫酸链霉素1g/m L,放线酮50μg/m L,制霉菌素5 0μg/mL ,pH 9.0) ,32℃培养,14~21d 。

2.3选择性分离Planomonospora Planomonospora在一些分离培养基,如淀粉—硝酸盐酪素琼脂、放线菌分离琼脂和蛋清琼脂,不能形成特征性孢囊。而在HSG上能够产生丰富的孢囊。虽然在HV A上,Planomonospora 也形成孢囊,但与HSG相比,稀疏得多。分离培养基的碱性环境利于Planomonospora孢囊的形成。CHES ( pH 9.0 ) 和0.1 %脱脂牛奶对动孢菌的分离效果得到进一步的验证。

分离程序如下:风干土样在100℃干热处理,1 h ,用CHES ( 5 mM pH 9.0 ) 和0.1%脱脂牛奶制成土壤悬液,32℃振荡90 mi n ,离心1000 g,10 m i n,32℃再培养,1 h ,涂布HSG平板(三甲氧苄二氨嘧啶20μg/mL,萘啶酸20μg/m L,依诺沙星20μg/m L,氨苄青霉素钠盐2g/mL,放线酮50μg /m L,制霉菌素50μg/mE ),35℃培养,14-21d 。

2.4选择性分离Actinomadura rugatobispora Actinomadura rugatobispora形成绿色的气生菌丝,并在气生菌丝上产生丰富的纵向排列的成对孢子,孢子表面多皱,有脊。A.rugatobispora容易从形态特征进行鉴别。在一些分离培养基上,如淀粉—硝酸盐酪素琼脂、放线菌分离琼脂和蛋清琼脂,A.rugatobispora 不产生孢子。在HV A上,部分菌株当平板上菌落数只有5~20个时,产生稀疏的孢子。而在HMG上,都能产生丰富的孢子。

HMG即HVG中另外加入1g/L吗啉丙磺酸( MOPS ) ,维持培养基pH8.0,利于A.rugatobispora的生长。

分离培养基中加入硫酸庆大霉素和氨苄青霉素钠盐,用于抑制链霉菌等非目的菌的生长。

分离程序如下:风干土样在120℃干热处理,l h ,用无菌生理盐水梯度稀释制成土壤悬液,涂布平板( HMG,硫酸庆大霉素100 g/mL,氨苄青霉素钠盐20g/mL ,三甲氧苄二氨嘧啶50μg/mL,萘啶酸10μg/m L,放线酮50μg/mL ,制霉菌素50μg/mL ) ,35℃培养,2l~28 d 。

3 结束语

一些学者用荧光显微镜、电子显微镜直接观察活体,或使用dna探针等方法来检测自然界的活菌体,到目前为止

,一百多年来人们只分离到自然界实有放线菌的10%~20%(有人甚至估计为0.1%~1%到

10%。换言之,由于技术手段等限制因素,自然界实际存在的未知放线菌至少还有80%

~90%未分离得到纯培养,应进一步深入研究,设计出优良的分离培养基,以期得到更多的稀有放线菌新种。

古生菌、蓝细菌和粘细菌

一、古生菌1977年,Carl Woese以16S rRNA序列比较为依据,提出独立于真细菌和真核生物之外的生

命的第三种形式。在分类地位上与真细菌和真核生物并列为三域(Domain),并且在进化谱系上更接近真核生物。多生活于一些生存条件十分恶劣的极端环境中,例如高温、高盐、高酸等。

古菌细胞形态在显微镜下,古生菌与细菌具有类似的个体形态

在细胞的结构与功能上,古生菌既有类似真细菌之处,

也有类似真核生物之处,还具有一些自己独特的特点。

1、细胞壁

具有与细菌类似功能的细胞壁

细胞壁的结构和化学成分均差别甚大;

已研究过的一些古生菌,它们细胞壁中没有真正的肽聚糖,而是由多糖(假肽聚糖)、糖蛋白或蛋白质构成的。

N-乙酰葡糖胺和N-乙酰塔罗糖胺糖醛酸交替

连接而成,连在后一氨基糖上的肽尾由

L-glu、L-ala和L-lys三个L型氨基酸组成,

肽桥则由L-glu一个氨基酸组成

2、细胞膜

古生菌的质膜在本质上也是由磷脂组成,但它比

细菌或真核生物具有更明显的多样性

亲水头(甘油)与疏水尾(烃链)间是通过醚键而不是酯键连接的;

细胞膜的化学组分存在多样性

二、蓝细菌

也称蓝藻或蓝绿藻(blue-green algae),是一类含有叶绿素a、能以水作为供氢体和电子供体、通过光合作用将光能转变成化学能、同化CO2为有机物质的光合细菌。蓝细菌被认为是地球上生命进化过程中第一个产氧的光合生物,对地球上从无氧到有氧的转变、真核生物的进化起着里程碑式的作用。以前曾归于藻类,因为它和高等植物一样具有光和色素

----叶绿素a,能进行产氧型光合作用

蓝细菌的特性

1)分布极广;有植物先锋之美称。

2)形态差异大,有球状或杆状的单细胞和丝状两大类。

3)进行光和作用的部位是类囊体。

4)营养要求简单,多数能固氮,其异形胞是固氮场所。

5)分泌粘液层、荚膜或形成鞘衣,因此有强的抗干旱能力。

6)无鞭毛,但能在固体表面滑行,进行光趋避运动。

7)许多种类细胞质中有气泡,使菌体漂浮,保持在光线最充足的地方,以利光合作用。

二、粘细菌

粘细菌又名子实粘细菌,是一类具有最复杂的行为模式和生活史的原核微生物。

粘细菌的生活史

1、营养细胞:杆状、柔软、缺乏坚硬的细胞壁,无鞭毛,产生粘液,可在固体表面作“滑行”运动,以分裂方式进行繁殖。

2、子实体:营养细胞发育到一定阶段,在适宜的条件下彼此向对方移动,在一定位置聚集成团,形成形态各异,肉眼可见的子实体。

能形成子实体是粘细菌区别于其它原核微生物的最主要标志

第三节 奈瑟菌属

第三节奈瑟菌属(Neisseria) 致病菌脑膜炎奈瑟菌(N. meningitides) 淋病奈瑟菌(N. gonorrhoeae) 一、脑膜炎奈瑟菌(N. meningitides) (一)生物学性状形态与染色肾形,G-双球菌,有荚膜,菌毛培养特性专性需氧,培养基:巧克力培养基,5%CO2 菌落:光滑,透明,不溶血 1.抵抗力对干燥,热力,消毒剂均敏感 (二)致病性致病物质荚膜:菌毛:内毒素:主要致病物质 1.所致疾病流脑,人是其唯一易感宿主三种临床类型:普通型,爆发型,慢性败血病型 (三)免疫性:以体液免疫为主 (四)微生物学检查法标本采集涂片染色镜检分离培养与鉴定快速诊断法 (五)防治原则流脑荚膜多糖疫苗,治疗首选青霉素G :1云南大学药学院(昆明650091);2云南沃森生物技术有限公司(昆明6501l8 为制备四价脑膜炎球菌疫苗的需要2005 A群脑膜炎球菌多糖结合物的免疫原性研究上海生物制品研究所朱为2002 脑膜炎奈瑟菌(Neisseria meningitides)感染是细菌性脑膜炎的常见病因,按荚膜多糖可将其分成12个血清群,其中A、B 和C 群感染占所有感染者的90%。全球由脑膜炎球菌引起的脑膜炎发病率在30-50万,病死率约10%,有相当一部分儿童因脑膜炎球菌严重感染而发生致聋等永久后遗症。在我国,A群脑膜炎球菌是主要致病菌群,95%的病例由A群引起。80 年代以来,我国进行了A群脑膜炎球菌荚膜多糖疫苗的大面积接种,有效地控制了发病率。该荚膜多糖是N-乙酰-3-O-乙酰甘露糖胺磷酸盐的线形共聚物,属T细胞非依赖性(TI)抗原,具有中等免疫原性和年龄相关的保护力,不能诱导免疫记忆。现已证实它对2岁以上儿童和成人在短期内有效,但随时间延续保护力下降,尤其在幼龄儿童中。因此有必要改进现有疫苗,提高其对各年龄组(包括婴儿)的免疫效果。近期的研究集中在开发多糖结合疫苗,即将多糖共价结合到蛋白质上,使其转化为T细胞依赖性(TD)抗原,以增强免疫原性和诱导免疫记忆。本文报道将! 群脑膜炎球菌多糖共价结合到精制破伤风类毒素(TT)上制备结合物,观察其在小鼠中的免疫原性。 A+C群脑膜炎球菌多糖一DT结合疫苗与多糖疫苗诱导的抗多糖抗体间的功能活性差异[英]2004 多糖蛋白结合疫苗对预防由一些有荚膜细菌(包括b型流感杆菌、肺炎球菌和C群脑膜炎球菌)引起的侵袭性疾病高度有效。与未结合多糖疫苗相比,多糖一蛋白结合疫苗能在婴幼儿体内诱导更高浓度的血清抗荚膜抗体。而且,结合疫苗诱导的抗体亲和力更高,补体介导的杀菌活性更强。 。在限定剂量时,多糖疫苗诱导的血清抗荚膜抗体预防C群脑膜炎球菌感染婴鼠发生菌血症的效力弱于结合疫苗。结合疫苗组的抗C群抗体的亲和力指数高于多糖疫苗组。两种疫苗在成人中诱导的抗荚膜抗体的功能活性差异,意味着各自激活了不同的B细胞群。 (兰州生物制品研究所崔萱林2001 流行性脑脊髓膜炎是由脑膜炎球菌(Meningococcus)引起的细菌性脑膜炎(简称流脑),发病急,病死率高,且在各年龄组中都可发生,15岁以下儿童发病占75%以上。脑膜炎球菌根据荚膜多糖的结构可分为12个血清群,其中A、B、c群引发的流脑占90%以上。流脑的流行具有菌群漂移特点,如美国在1945年以前为A群流行,1960年以后以B群为主,1967年以后转为C群流行。我国以A群菌流行为主,B群和C群菌有少量病例,约占lO%左右。因此预防流脑的重点应是A、B、C群流脑球菌引起的疾病。由于流脑菌群的漂移现象,国外多采用多价多糖疫苗用于预防流行性脑脊髓膜炎,目前所使用的主要为A+C群二价疫苗(B群多糖对人体无效,主要研制外膜蛋白为基础的疫苗),其次为A、C、Y及WI35四价疫苗,其它相关菌群引起的流脑病例已少见。国内目前主要使用A群流脑多糖疫苗,自80年代初使用至今效果很好;对于其它菌群的预防.目前尚未有疫苗出现,因此我们研制了A+C群流脑多糖疫苗,即在现有的A群流脑多糖疫苗中加入C群流脑多糖抗原,形成二价疫苗以预防A、C群流脑球菌引起的脑脊髓膜炎。 A+C群脑膜炎球菌多糖疫苗的制造和检定均按照WHO(生物制品规程》的要求进行,C群流脑多糖原液的主要制造过程借鉴A群流脑多糖原液的生产工艺,在多糖纯化步骤另采用澄清过滤、苯酚抽提控制多糖浓度等措施,使得C群多糖原液的蛋白质和核酸含量符合要求。A群流脑多糖原液为选用的本所常规生产的原液制品。由于多糖原液在制备过程中未进行专门的除类毒素工艺,因而在原液检定中采用鲎试剂法对类毒素含量进行测定,以确保疫苗的安全性。 2岁以下年龄组儿童在接种A+C群脑膜炎球菌多糖疫苗一个月后,虽然同组儿童的免前及免后的血清杀菌抗体滴度有显著差.但血清4倍阳转率较大年龄组儿童低,而且免后血清中的杀菌抗体滴度的整体水平也相对较低。提示低年龄组儿童对多糖疫苗的免疫应答水平较高年龄组儿童低,有关该疫苗人体接种后的安全性和免疫持久性的结果将另文报告。 A群脑膜炎球菌多糖疫苗自80年代在我国研制成功并广泛接种以来效果明显。我国A群带菌率和发病率大幅度下降,预防效果达90%以上。至今在我国引起流脑的脑膜炎球菌仍以A群为主,同时B群和C群的病例也开始出现。欧美国家主要流行菌群由A群转为B群和c群的事实。提示我们在A群脑膜炎被控制之后要防止B群和C群变迁。 1994年法国由法国巴斯德梅里厄血清疫苗研究所(PasteurMerreux)提供生产的A+C群脑膜炎球菌多糖疫苗,申请在我国注册,中国药品生物制品检定所与河南省卫生防疫站协作,在河南省新县进行了人群安全性与免疫原性的现场考核,现将结果报告如下该疫苗较安全,免疫原性较强,且更具免疫持久性。2000 A群脑膜炎球菌多糖结合疫苗的研制2000杨丽华 (长春生物制品研究所,长春130062)李风祥(中国药品生物制品检定所, 本试验制备的A群脑膜炎球菌多糖结合疫苗的理化特性及免疫特性与国内外文献报道结果一致。制备的结合疫苗可诱导出高水平的保护性A群脑膜炎球菌多糖抗体和TT抗体。结合疫苗具有很好的免疫原性和安全性。制备工艺稳定,重复性好,可批量生产。本试验为进一步临床评价结合疫苗的人群免疫效果提供了实验基础。本试验选用Tr作为载体蛋白,因为这种蛋白目前已经标准化,作为载体蛋白的同时兼有预防伤风感染的作用,而用TT蛋白对于已经建立起的免疫程序和“自然”免疫并不产生干扰 A群脑膜炎球菌多糖结合疫苗的制备熊慧玲成都生物制品研究所 预防A群脑膜炎球菌引起的脑脊髓膜炎,我国目前采用A群脑膜炎球菌多糖疫苗,而疫苗接种后,小于1岁的婴儿,即使加强接种产生的抗体只能维持1年,1~1.5岁半的婴幼儿,加强后只能维持2年,1.5~2岁的幼儿,接种1针维持不到1年_l1 。wHO指出,按目前的免疫程序,婴儿在出生后5年内至少需要免疫接种4次才可提供中度抗体水平一。说明A群脑膜炎球菌多糖疫苗在婴幼儿中,尤其在2岁以下,免疫原性低,即使产生抗体,抗体水平也不能长久保持。因而提高疫苗免疫原性,使它能对各年龄组,尤其2岁以下婴幼儿提供高水平的长期保护作用,有特别重要的意义。b型流感嗜血杆菌结合疫苗的成功研制和应用给我们以深刻的启示。和流感嗜血杆菌荚膜多糖一样,A群脑膜炎球菌多糖为半抗原,为非T细胞依赖性抗原,当与蛋白结合后,可转化为T细胞依赖性抗原,可刺激机体产生高水平的保护抗体,重复接种有记忆抗体产生因此,我们进行了A群脑膜球菌多糖结合疫苗的研制,并对经中国药品生物制品检定所检定合格的连续3批 2003 流行性脑脊髓膜炎(流脑)被发现并确认已有l00多年.尽管对此病已有有效的预防和治疗措施,但它仍是一种急性传染病.而且病死率高、继续威胁着人类,尤其是儿童的身体健康。我国目前使用的预防制品是A群脑膜炎球菌多糖疫苗,该疫苗对4岁以上儿童有很好免疫效果,对幼儿免疫效果较差,保护时问较短。而脑膜炎球菌多糖与一种蛋白载体连接构成结合疫苗.可增强其对幼儿的免疫回忆反应,提高预防效果?。卫生部成都生物制品研究所已研制成功“A群脑膜炎球菌多糖结合疫苗”,并由中国药品生物制品检定所、卫生部成都生物制品研究所、江苏省疾病预防控制中心联合于2002年l0月~2003年1月在江苏省射阳县进行的“A群脑膜炎球菌多糖结合疫苗临床研究”已圆满结束。现将婴幼儿接种A群脑膜炎球菌多糖结合疫苗的安全性报告如下本次临床试验表明,3~4月婴幼儿接种A群脑膜炎球菌多糖结合疫苗具有良好的安全性,但由于该疫苗首次应用于人群,在大规模推广接种前,仍需对其安全性进一步进行观察 C群脑膜炎球菌结合疫苗的质量控制与生产的科学挑战2004 世界卫生组织(WHO)生物制品标准化专家委员会于1976年通过了脑膜炎球菌多糖疫苗的建议,并于1978年和1981年进行了修订。在临床研究中,疫苗的有效率至少达9O% ,证明其在疫苗接种计划中高度有效。然而,不能在幼婴中诱生保护性应答或免疫记忆制约了其在英国婴儿免疫接种计划中的应用。随着b型流感杆菌(Hib)结合疫苗的成功引入,C群脑膜炎球菌(MenC)荚膜多糖结合疫苗的研究取得了显著的进展。临床对照试验已证实它们在所有年龄组中均可诱生针对MenC多糖的保护性水平的抗体,并且作为T细胞依赖性抗原,能诱导免疫记忆和抗荚膜抗体的亲和力成熟。英国引入MenC结合疫苗后,证实该疫苗可提供保护性免疫。WHO已经制定了有关这些新疫苗生产和检定的建议。 脑膜炎球菌是细菌性脑膜炎和败血病的重要病原。根据荚膜多糖在化学和血清学上的不同,脑膜炎球菌可分为若干群,其中A、B、C、Y、Wl35群对人致病。A群在

酵母菌的分离筛选方法

酵母菌的分离筛选方法 酵母菌多数为腐生,一般生长在含糖较高,偏酸的环境中,在通气条 件下,液体培养比霉菌快。菌落与细菌相似,较大而厚,多数不透明, 菌落光滑湿润粘稠,乳白色,少数干皱,边缘整齐,呈红色或粉红色, 圆形椭圆卵形,液体培养基生长会生成沉淀或菌膜。 含高糖浓度(45%),分离蜂蜜酵母,球拟酵母属等嗜高渗透压的酵母。 1.培养基: 葡萄糖 50g/L 尿素1g/L (NH4)2SO41g/L L L MgSO41g/L FeSO4 L 酵母膏 L 孟加拉红 L (富集用) ★乳酸-马铃薯-葡萄糖培养基:马铃薯200g/L 葡萄糖(霉菌用蔗 糖)20g/L 乳酸5ml马铃薯去皮切片200g,加水煮沸30min,纱布 过滤,补足蒸馏水1L,PH自然。(去掉乳酸可用于酵母菌和霉菌培养 用)(富集用) ★麦芽汁培养基:1:4水60-65℃水浴3-4小时,4-6层纱布过 滤,可加一个蛋清加水20mL调均生泡沫,倒入糖化液中,煮沸过滤, 10-15波林,氯霉素L 121℃ 20min (分离保存 用) 灭菌后加入300u/ml硫酸链霉素(集菌用) ★虎红(孟加拉红)培养基:蛋白胨L 葡萄糖10g/L L L 孟加拉红L 氯霉素L 琼脂15g/L PH自然 (分离纯化用)

★豆芽汁培养基:黄豆芽100g/L 葡萄糖50g/L PH自然。100g黄豆芽,加水煮沸30min,纱布过滤,补足蒸馏水1L 察氏培养基:主要培养霉菌观察形态用 蔗糖30g/L 硝酸钠3g/L 磷酸氢二钾1g/L 氯化钾L 硫酸镁 L 硫酸亚铁L 琼脂15-20g/L 121℃ 20min PH自然 一般分离黄酒酵母酒精酵母使用曲汁培养基,啤酒酵母用酒花麦汁培养基,葡萄酒酵母用葡萄汁培养基。 2.集菌:研究酵母菌生态和某种基物或样品中的酵母菌区系,一般不进行集菌,以免改变其中不同种类数量间的对比,将样品制成菌悬液按常规法分离。若从样品中分离特定种类时先集菌。集菌发酵力强菌株,加酸性含糖的培养基,酸性豆汁,必要时注入高浓度的酒精(13-17%),霉菌在液体中形成菌丝体,酵母不形成菌丝,25-28℃2-3d,遇到菌丝体用接种环挑去烧掉,去掉上清液,取沉淀酵母一至两环移植另一液体培养基中,集菌连续两至三次才能完成,要配合镜检。 实例:将待分离的样品10g(ml)放入90ml无菌水或生理盐水/150ml 三角瓶(玻璃珠),摇床振荡20-30min,取上清液接种于酸性培养液(乳酸-马铃薯-葡萄糖培养基酸性麦芽汁或酸性豆芽汁)25-28℃2-3d,培养过程中若出现菌丝体跳出烧掉,集菌连续两至三次,培养液变成混浊,产生菌膜和沉淀物。镜检:美兰染液染色,活菌可还原美兰染液,菌体无色。 3.筛选:

酵母菌的分离纯化

酵母菌的分离纯化-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

酵母菌的分离纯化、固定化和酒精发酵 第一部分酵母菌的分离纯化 一、实验目的 应用酵母菌的生理生化和生态学的特点,从自然环境中分离酵母菌,并掌握微生物分离纯化的基本方法。 二、实验原理 酵母菌常见于含糖份比较高的环境中,如果园土、菜园土及果皮等的表面。多数酵母菌喜欢偏酸条件,最适pH为酵母菌生长迅速,容易分离培养。在液体培养基中,酵母菌比霉菌生长快,利用酸性条件则可以抑制细菌的生长。因此常用酸性液体培养基获得酵母菌的加富培养,然后在固体培养基上划线分离纯化。 三、器材和用品 1、甘蔗、苹果皮、葡萄皮、果园土、菜园土等。 2、马铃薯葡萄糖琼脂培养基:马铃薯200g(煮开10min后过滤取汁),葡萄糖20g,琼脂20g,水1000ml,pH自然。分装三角瓶;试管斜面1支/组 3、乳酸马铃薯葡萄糖培养液:配方同上,不加琼脂加乳酸,按1000ml培养基加入5ml乳酸,pH为左右,再分装试管9ml2支/组。 4、无菌吸管3支/组、无菌培养皿、100ml无菌水1瓶/组、涂棒、美兰染液、显微镜、接种环等。 四、实验方法 1、接种:取果皮(不需冲洗)或土壤5克,加入到100ml无菌水中,充分搅拌后,用无菌吸管取1ml接入到9ml乳酸马铃薯葡萄糖培养液中,在28-30℃培养箱中培养24h,可见培养液变浑浊。 2、加富培养:用无菌吸管取上述培养液1m l,注入另1管乳酸马铃薯葡萄糖培养液中,在28-30℃培养箱中培养24h。 3、镜检:用无菌操作法用接种环取少量菌液置于载玻片上,中央滴一滴美兰染液,混合均匀后制成水浸片,在高倍镜下观察酵母菌的形态及出芽方式,并可根据菌体是否染色来区分酵母菌的死活细胞,因活细胞使美兰染液还原,故菌体不着色。 4、涂皿:用马铃薯葡萄糖琼脂培养基溶化后制成平板,用无菌吸管取加富培养液到平板中,用涂棒涂匀后培养24h。 5、分离纯化:用接种环挑取单个酵母菌菌落,在平板上四区划线,培养后分

生物化学实验五 酵母核糖核酸的分离及组分鉴定

实验五酵母核糖核酸的分离及组分鉴定 一、目的要求 学习和掌握稀碱法提取酵母RNA的原理和方法;了解核酸的组分,并掌握鉴定核酸组分的方法。 二、实验原理 酵母核酸中RNA含量较多。RNA可溶于碱性溶液,在碱提取液中加入酸性乙醇溶液可以使解聚的核糖核酸沉淀,由此即得到RNA的粗制品。 核糖核酸含有核糖、嘌呤碱、嘧啶碱和磷酸各组分。加硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在。 三、器材与试剂 1〉材料 酵母粉。 2〉器材 乳钵、150ml锥形瓶、水浴锅、量筒、吸管、洗耳球、漏斗、滴管、试管、试管架、烧杯、离心机、滤纸、试管夹。 3〉试剂 (1) 0.04mol/L氢氧化钠溶液。 (2)酸性乙醇溶液:将0.3ml浓盐酸加入30ml的乙醇中。 (3)95%乙醇。 (4)乙醚。 (5)

1.5mol/L硫酸溶液。 (6)浓氨水。 (7) 0.1mol/L硝酸银溶液。 (8)三氧化铁-浓盐酸溶液: 将2ml 10%三氧化铁溶液(用FeCl 3·6H 2O配制)加入到400ml浓盐酸中。 (9)苔黑酚乙醇溶液: 溶解6g苔黑酚于100ml 95%乙醇中。 (10)定磷试剂。 a.17%硫酸溶液: 将17ml浓硫酸(比重 1.84)缓缓加入到83ml水中。 b. 2.5%钼酸铵溶液:将2.5g钼酸铵溶于100ml水中。 c.10%抗坏血酸: 将10g抗坏血酸溶于100ml水中,储于棕色瓶保存。溶液呈淡黄色时可用,如呈深黄色或棕色则失效。 临用时将上述3种溶液与水按比例混合:17%硫酸溶液︰ 2.5%钼酸铵溶液︰10%抗坏血酸︰水=1︰1︰1︰2(体积分数)。

四、实验步骤 1〉RNA提取 将10g酵母悬浮于90ml 0.04mol/L氢氧化钠溶液中,并在乳钵中研磨均匀。将悬浮液转移至150ml 锥形瓶中。在沸水浴上加热30min后,冷却。(3000r/min)离心10分钟,将上清液缓缓倾入30ml酸性乙醇溶液中。注意要一边搅拌一边缓缓倾入。待核糖核酸沉淀完全后,(3000r/min)离心5分钟。弃去上清液。用95%乙醇洗涤沉淀两次,每次10ml。乙醚洗涤沉淀一次后,再用乙醚将沉淀转移至漏斗中过滤。沉淀即为粗RNA,可在空气中干燥。作鉴定或测定含量用。 2〉鉴定 取200mg提取的RNA,加入 1.5mol/L硫酸溶液10ml,在沸水浴中加热10min制成水解液并进行组分的鉴定。 (1)嘌呤碱: 取水解液1ml加入过量浓氨水,然后加入约1mL 0.1mol/L硝酸银溶液,观察有无嘌呤碱的银化合物沉淀。 (2)核糖: 取一支试管加入水解液1mL、三氯化铁浓盐酸溶液2ml和苔黑酚乙醇溶液 0.2ml。放沸水浴中10分钟。注意溶液是否变成绿色,说明核糖的存在。 (3)磷酸: 取一支试管,加入水解液1ml和定磷试剂1ml。在沸水浴中加热10min,观察若溶液变成蓝色,说明有磷酸存在。 五、结果处理

硝化细菌的分离纯化

材料与方法 样品 检测用试剂 1、Griess 试剂 溶液I称取磺胺酸0.5g,溶于150mL醋酸溶液(30%)中,保存于棕色瓶中。 溶液II称取α-萘胺0.5g,加入50mL蒸馏水中,煮沸后,缓缓加入30%醋酸溶液150mL,保存于棕色瓶中。 格里斯试剂检验亚硝化菌方法:用滴管吸取2滴细菌培养液置于白瓷板上, 依次滴加格里斯试剂Ⅰ、Ⅱ各2滴,出现红色反应说明培养液中含有亚硝酸,有 亚硝酸细菌存在。 2、二苯胺-硫酸试剂(检测菌液中是否存在硝酸盐证明硝化细菌是否存在) 称取二苯胺1g,溶于20mL蒸馏水中,然后徐徐加入浓硫酸lOOmL,保存于棕色瓶中。 由于亚硝基、硝基均能与二苯胺试剂起蓝色显色反应,所以在测定硝基前,必须去除培养液中的亚硝基。采用尿素+浓硫酸去除亚硝基是简单有效的方法,硝化菌检验具体操作步骤:取细菌培养液lml移入干净试管中,向试管中放半药勺的尿素混匀,然后再向试管中滴加10滴浓硫酸,此时可以看到试管中有大量气泡生成,反应很强烈,不断振动试管,使反应充分进行直至没有气泡产生。然后取试管中液体两滴,置于白瓷板上,用格里斯试剂检验是否变红,如果颜色没有变化,再滴加二苯胺试剂,如果变蓝,说明有硝基产生,有硝化菌存在。培养基 1、LB(检验硝化细菌的纯度不生长表纯) 酵母粉 5g 蛋白胨 10g NaCl 10g 蒸馏水 1000ml 灭菌前pH=7.3 2、KM(检验硝化细菌的纯度不生长表纯) 酵母浸提物 0.5g 蛋白胨 0.5g 牛肉膏 0.5g 蒸馏水 1000ml 灭菌前pH=7.3 3、PDA(检验硝化细菌的纯度不生长表纯) 马铃薯(除皮) 200g 蔗糖(或葡萄糖) 20g 水 1000mL 灭菌前pH自然 硝化细菌培养基

传统酸面团中细菌与酵母菌的分离与鉴定

传统酸面团中细菌与酵母菌的分离与鉴定 刘同杰1,李云1,吴诗榕1,金乐天1,2,张国华1,杨浣漪1,何国庆1 (1.浙江大学生物系统工程与食品科学学院,浙江省食品微生物技术重点实验室,浙江大学馥莉食品研究院,浙江杭州 310058)(2.朝鲜韩德秀平壤轻工业大学,朝鲜平壤) 摘要:为进一步描述我国传统面食发酵剂的理化性质和菌落组成,收集了北方地区6份发酵剂样品,测定了其酸度和菌落总数,并对分离、纯化、初筛后得到的75株细菌和60株酵母菌进行了测序鉴定。结果显示,样品pH值范围为3.73~5.46,总滴定酸度为8.3~19.8 mL;乳酸菌和酵母菌的计数结果分别为8.35±0.07~9.75±0.12 Log cfu/g,6.31±0.22~8.68±0.04 Log cfu/g。鉴定出包括短乳杆菌 (Lactobacillus brevis)、植物乳杆菌(Lactobacillus plantarum)和旧金山乳杆菌(Lactobacillus sanfranciscensis)在内的乳酸菌8种;酵母菌4种,其中优势菌为酿酒酵母(Saccharomyces cerevisiae);其他细菌6种,主要为解淀粉芽孢杆菌(B. amyloliquefaciens)、地衣芽孢杆菌(B. licheniformis)和醋杆菌。结果表明,我国传统面食发酵剂菌相复杂,以酵母菌和乳酸菌为主,还包括芽孢杆菌、醋酸杆菌在内的多种其他细菌,甚至可能含有致病菌。通过比较细菌和酵母在不同酸面团样品中的分布,发现不同来源样品的微生物种类组成存在差异。 关键词:酸面团;菌相分析;16S/26S rDNA测序;生物多样性;系统发育树 文章篇号:1673-9078(2014)9-114-120 DOI: 10.13982/j.mfst.1673-9078.2014.09.020 Isolation and Identification of Bacteria and Yeast from Chinese T raditional Sourdough LIU T ong-jie1, LI Yun1, WU Shi-rong1, JIN Le-tian1,2, ZHANG Guo-hua1, YANG Huan-yi1, HE Guo-qing1 (1.College of Biosystems Engineering and Food Science of Zhejiang University, Zhejiang provincial key laboratory of Food Microbiology, Fuli Institute of Food Science of Zhejiang University, Hangzhou 310058, China) (2.DPRK Han Dexiu Pyongyang University of light industry, Pyongyang, DPRK) Abstract: In this study, the physicochemical properties and microbial profile of traditionally fermented sourdough for Chinese steamed bread were examined. Six samples of sourdough were collected from northern China. Acidity and colony counts were measured. After isolation, purification, and preliminary screening, 75 strains of bacteria and 60 strains of yeasts were obtained and identified by DNA sequencing. The pH was between 3.73 and 5.46 and total titratable acid (TTA) values ranged from 8.3 to 19.8 mL. In all the samples, the number oflactic acid bacteria (LAB) and yeasts ranged from 8.35±0.07 to 9.75±0.12 Log cfu/g and 6.31±0.22 to 8.68±0.04 Log cfu/g, respectively. Eight LAB species, including Lactobacillus brevis, L. plantarum, and L. sanfranciscensis, and six other bacterial species, including Bacillusamyloliquefaciens, Bacilluslicheniformis, and three species of Acetobacter, were identified. Among the four identified yeasts, the dominant species was Saccharomyces cerevisiae. The results indicate that Chinese traditional starter cultures for flour-based food are complex bacterial floras dominated by LAB and yeast, in addition to several other microorganisms, including Bacillus spp., Acetobacter spp., and even pathogenic bacteria. Differences in microbial species compositions among LAB and yeasts in samples from different areas were identified by comparing species distributions in different sourdough samples. Key words: sourdough; elucidation of microbial flora structure; 16S/26S rDNA sequencing; biodiversity; phylogenetic tree 我国传统的面食发酵剂类似于西方发酵面包用的酸面团,在我国一般被称为“老面”、“酵子”、“面收稿日期:2014-04-17 基金项目:国家自然科学基金资助项目(31371826) 作者简介:刘同杰(1989-),男,在读博士,研究方向:传统发酵食品通讯作者:何国庆(1957-),男,博士,教授,研究方向:食品生物技术及发酵工程肥”等[1],具有悠久的使用历史。上世纪80年代,即发活性干酵母被引入我国,因其使用便捷,传统面食发酵剂逐渐被取代,但直到现在仍有很多地区尤其农村地区,仍然使用其制备馒头等主食,因使用传统面食发酵剂制备的馒头品质更优。究其原因,活性干酵母为单一菌种发酵,与传统发酵剂的混菌体系发酵相比,发酵的馒头风味平淡、香气不佳,总体的感官品 114

实验 酵母RNA的分离及组分鉴定

※实验六酵母RNA的分离及组分鉴定 【实验目的】 了解核酸的组分,并掌握鉴定核酸组分的方法。 【实验原理】 酵母核酸种RNA含量较多。RNA可溶于碱性溶液,在碱提取液中加入酸性乙醇溶液可以使解聚的核糖核酸沉淀。由此即得到RNA的粗制品。 核糖核酸含有核糖、嘌呤碱、嘧啶碱和磷酸各组分。加硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在。 鉴定依据:磷酸与定磷试剂反应产生蓝色物质。核糖与苔黑酚作用产生绿色物质。嘌呤碱与硝酸银能产生白色的嘌呤碱银化合物沉淀。 【实验器材】 150 ml锥形瓶、水浴、量筒、漏斗及抽虑瓶、吸管7、滴管8、试管及试管架9、烧杯、离心机、漏斗 【试剂和材料】 1、0.04 mol/L氢氧化钠溶液; 2、酸性乙醇溶液:将0.3毫升浓盐酸加入30毫升乙醇中; 3、95%乙醇; 4、乙醚; 5、1.5 mol/L硫酸溶液; 6、浓氨水; 7、0.1 mol/L硝酸银溶液; 8、三氯化铁浓盐酸溶液:将2 ml 10% 三氯化铁溶液(用FeCl3·6H2O配制)加入到400 ml浓盐酸中; 9、苔黑酚(地衣酚)乙醇溶液:溶解6 g苔黑酚于100 ml 95% 乙醇中(可在冰箱中保存一个月); 10、定磷试剂:(1)17% 硫酸溶液:将19 ml浓硫酸(比重1.84)缓缓加入到83 ml 水中(2)2.5% 钼酸铵溶液:将2.5 g钼酸铵溶于100 ml水中(3)10% 抗坏血酸溶液:10 g抗坏血酸溶于100 ml水中,贮棕色瓶保存(溶液呈淡黄色时可用,如呈深黄或棕色则失败,需纯化抗坏血酸)。临用时将上述3种溶液与水按如下比例混合。17% 硫酸溶液:2.5%

硝化细菌的分离与鉴定范文

硝化细菌的分离与鉴定 要筛选生长速度快、硝化作用强的硝化细菌用于水产养殖水处理。硝化细菌包括亚硝化 菌和硝化菌两个生理菌群,分别可将水中的氨态氮转化为亚硝酸盐和硝酸盐。实验结果 表明经5周培养,亚硝化菌可使培养液中的氨氮含量下降到60%,硝化菌可使培养液中的亚硝酸盐含量下降到60%。实验可通过测定培养液中亚硝酸盐的含量变化来测定细菌的氨转化作用或硝化作用。 关键词:硝化菌,亚硝化菌,硝化作用,筛选。 氨氮和亚硝酸盐都是在水产养殖过程中产生的有毒物质,且亚硝酸盐还是强烈的治癌物质,因此如何降解这两种物质,是科学工作者近年来的工作重点。 硝化细菌是一类具有硝化作用的化能自养菌,包括硝化菌和亚硝化菌两个生理菌群,其 主要特性是自养性,生长速率低,好氧性,依附性和产酸性等。可通过NH4+→NO2- → NO3-这一过程将NH4+转化为NO3-。能有效降低水体中氨氮及亚硝酸氮的含量,对水产养 殖业及环境保护具有重要意义。硝化细菌是生物硝化脱氨中起主要作用的微生物,直接 影响硝化效果和生物脱氨的效率。 研究表明,水体中硝化细菌的浓度对生物脱氨具有十分重要的意义,由于大多数硝化细 菌生长缓慢,硝化及脱氨效果欠佳,处理水产养殖污水的效果不是很好。因此筛选出生 长速率高硝化作用强度大的硝化细菌有很大的用途。 本文对硝化细菌的研究主要在富集培养和固定化细胞方面,能够有效提高硝化细菌的产 率和硝化细菌的利用率。通过富集培养的硝化细菌浓度是未经富集培养的12.5~20.0倍 ,利用细胞固定化技术可使氨氮去除率提高16.5个百分点。国外在硝化细菌的培养方面 的研究已有一些专利技术,其中一些已形成工业化生产,但产品价格较昂贵,并且必须 不断向反应器中补充流失的硝化细菌。硝化作用包括两个步骤:氨转化为亚硝酸盐和亚 硝酸盐转化为硝酸盐,这两个步骤分别由亚硝化菌和硝化菌完成,至今还未发现有能将 氨直接转化为硝酸盐的细菌。 氨和亚硝酸分别是亚硝化菌和硝化菌的唯一能源。对于硝化细菌来说生长环境中的温度 对其影响较大,pH值和盐度的影响相对较小。大多数硝化细菌的合适生长温度为10~38

放线菌简介

放线菌是一类呈菌丝状生长,主要以孢子繁殖,革兰染色为阳性的单细胞原核微生物,是细菌中的一种特殊类型。 放线菌与人类的生产和生活关系极为密切,目前广泛应用的抗生素约70%是各种放线菌所产生。一些种类的放线菌还能产生各种酶制剂(蛋白酶、淀粉酶、和纤维素酶等)、维生素(B12)和有机酸等。弗兰克菌属(Frankia)为非豆科木本植物根瘤中有固氮能力的内共生菌。此外,放线菌还可用于甾体转化、烃类发酵、石油脱蜡和污水处理等方面。少数放线菌也会对人类构成危害,引起人和动植物病害。因此,放线菌与人类关系密切,在医药工业上有重要意义。 放线菌在自然界分布广泛,主要以孢子或菌丝状态存在于土壤、空气和水中,尤其是含水量低、有机物丰富、呈中性或微碱性的土壤中数量最多。土壤特有的泥腥味,主要是放线菌的代谢产物所致。 放线菌在微生物中的分类地位 放线菌在形态上分化为菌丝和孢子,在培养特征上与真菌相似。然而,用近代分子生物学手段研究的结果表明,放线菌是属于一类具有分支状菌丝体的细菌,革兰染色为阳性。主要依据为:①同属原核微生物:细胞核无核膜、核仁和真正的染色体;细胞质中缺乏线粒体、内质网等细胞器;核糖体为70S;②细胞结构和化学组成相似:细胞具细胞壁,主要成分为肽聚糖,并含有DPA;放线菌菌丝直径与细菌直径基本相同;③最适生长PH范围与细菌基本相同,一般呈微碱性;④都对溶菌酶和抗生素敏感,对抗真菌药物不敏感;⑤繁殖方式为无性繁殖,遗传特性与细菌相似。 放线菌的形态与结构 放线菌的种类很多,多数放线菌具有发育良好的分支状菌丝体,少数为杆状或原始丝状的简单形态。这里以与人类关系最密切、分布最广、种类最多、形态最典型的链霉菌属为例。链霉菌主要由菌丝(mycelium)和孢子(spore)两部分结构组成。 (一)菌丝 链霉菌的细胞呈丝状分支,不同发育阶段的菌丝分化程度不同,根据菌丝的着生部位、形态和功能可分为基内菌丝、气生菌丝、和孢子丝。 1.基内菌丝(substrate mycelium)链霉菌的孢子落在适宜的固体基质表面,在适宜条件下吸收水分,孢子肿胀,萌发出芽,进一步向基质的四周表面和内部伸展,形成基内菌丝,又称初级菌丝或者营养菌丝。菌丝较细,直径0.5~0.8um,色淡,主要功能是吸收营养物质和排泄代谢产物。可产生黄、蓝、红、绿褐和紫等水溶色素和脂溶性色素,色素在放线菌的分类和鉴定上有重要的参考价值。 2.气生菌丝(aerial mycelium)基内菌丝发育到一定阶段,向空气中长出的菌丝称作气生菌丝,又称二级菌丝。直径较基内菌丝粗,直径为1.0~1.5um,颜色较深,长度相差悬殊,呈直形或弯曲形。气生菌丝同样可产生色素,多为脂溶性色素。 3.孢子丝(spore hypha)气生菌丝发育到一定阶段,在其顶端分化出可形成孢子的菌丝,称作孢子丝,又称繁殖菌丝。孢子成熟后,可从孢子丝中逸出飞散。 孢子丝的形状以及在气生菌丝的排列方式,随菌种不同而异,是链霉菌菌种鉴定的重要依据。孢子丝的形状有直形、波形与螺旋状,螺旋状的孢子丝较为常见,其螺旋的松紧、大小、螺数和螺旋方式因菌种而异。孢子丝的着生方式有对生、互生、丛生与轮生等多种。 (二)孢子 孢子丝发育到一定阶段即分化成孢子。孢子的形成为横割分裂,横割分裂有两种方式:1 细胞膜内陷,并由外向内逐渐收缩,最后形成完整的横割膜,将孢子丝分隔成许多无性孢子; 2 细胞壁和细胞膜同时内缩,并逐步缢缩,最后将孢子丝缢缩成一串无性孢子。 孢子呈圆形或椭圆形,连接呈链状。孢子的大小、形态多样,即使是同一孢子丝分化形成的

放线菌期末作业

放线菌学期末作业 1,为什么说放线菌是一类介于细菌和霉菌之间,又更接近于细菌的一类原核微生物? 答: 放线菌是一种具有丝状分支的单细胞,状态与霉菌相像。所以人们认为放线菌是介于细菌和真菌之间的过渡型。放线菌更接近于细菌,主要是因为: 1,有原始核结构,无核膜和核仁; 2,放线菌虽有发育良好的菌丝体,但大部分无隔,为单细胞; 3,放线菌菌丝比真菌细得多,其直径与细菌相似; 4,细胞壁主要成分为肽聚糖,并含有DAP; 5,游动放线菌的鞭毛与细菌鞭毛类似,无“9+2”结构; 6,放线菌同大部分细菌一样,对酸敏感,在微碱性条件下生长良好;6,放线菌属无性繁殖,同细菌一样,尚未发现其有性世代; 7,对溶菌酶和作用于细菌的抗生素敏感; 8,DNA重组方式与细菌相同; 9,核蛋白体为70S。 2,基内菌丝、气生菌丝和孢子丝在结构上有何区别?它们又有何联系? 答: 基内菌丝 链霉菌的孢子落在适宜的固体基质表面,在适宜条件下吸收水分,孢子肿胀,萌发出芽,进一步向基质的四周表面和内部伸展,形成基内菌丝,又称初级菌丝或者营养菌丝。 气生菌丝 是基内菌丝长出培养基外并伸向空间的菌丝,又称二级菌丝。 在显微镜下观察时,一般气生菌丝颜色较深,比基内菌丝粗,直径为 1.0~1.4微米,长度相差悬殊,形状直伸或弯曲,可产生色素。 孢子丝 是当气生菌丝发育到一定程度,其顶端分化出的可形成孢子的菌丝,叫孢子丝,又称繁殖菌丝。 孢子成熟后,可从孢子丝中逸出飞散。孢子丝的形状有直形、波曲、钩状、螺旋状,螺旋状的孢子丝较为常见,其螺旋的松紧、大小、螺数和螺旋方向因菌种而

异。孢子丝的着生方式有对生、互生、丛生与轮生(一级轮生和二级轮生)等多种。 基内菌丝→气生菌丝→孢子丝 3.放线菌的那些特征可作为其分类鉴定的重要依据? 答:色素,菌丝是否有隔,对氧需求,寄生或腐生,基因组成,细胞壁成分,16sRNA。 4.试介绍放线菌在工业、农业、医药、食品等方面的应用。 答: 工业 嗜盐放线菌能产生胞外多糖及其他多聚物,蛋白含量极高(在相同面积的蛋白质产量相当于种植玉米的125倍,养鱼的70倍,养牛的600倍),酶活性很特殊(在高盐浓度下仍保持高活性),也产生抗生素、胰岛素、维生素等,因此嗜盐放线菌是一类很有开发价值的资源。例如,嗜盐放线多孢菌可以将甘氨酸转化为甜菜碱,它又是一种重要的高效保护剂。国内外有不少微生物学工作者正在试图从高盐碱环境里找到一种具有较高脱卤酶活性的嗜盐菌菌株,以期能达到高效、彻底消除环境污染物的目的。 农业 放线菌大量存在于土壤中,它们中绝大多数是腐生菌,能将动植物的尸体腐烂、分解,然后转化成有利于植物生长的营养物质。还有弗兰克氏菌,生长在许多非豆科植物的根瘤里,能固定大气中的氮,成为植物能利用的氮肥。 医药 人们常用放线菌产生的链霉素、红霉素这一类抗生素药物治病,使许多病人转危为安。利用放线菌还可以生产维生素B12 、蛋白酶和葡萄糖异构酶等医药用品。食品 低温放线菌进行低温发酵时可生产许多风味食品,并且这种发酵方式可以节约能源和减少中温菌污染。目前发现的几千种抗生素中,有一半以上是由放线菌产生的。它的菌落颜色鲜艳,呈放射状,对人体无害,因此,人们常用它作食品染色剂,既美观,又安全。 5.请介绍放线菌细胞的构造特征。 答: 细胞壁:细胞壁是位于菌体的外层,内侧紧贴细胞膜的一层无色透明,坚韧而有弹性的结构。细胞壁约占细胞干重的10%—25%。主要由肽聚糖组成。 细胞膜:是围绕细胞质外面的双层膜结构。由磷脂(20-30%)和蛋白质(50-70%)组成.基本结构是磷脂双层:疏水的脂肪酸链排列在内,亲水的磷酸基排列在外。蛋白质镶嵌在双层磷脂中,并伸向膜内外两侧。边缘蛋白和整合蛋白(跨膜蛋白)

一株反硝化菌的分离与鉴定

一株高效好氧反硝化菌的分离及特性研究 杨俊忠,倪砚,许尚营,徐可瀚,刘义,曾丽霞,刘德立? 华中师范大学生命科学学院,湖北省遗传调控与整合生物学重点实验室,武汉 (430079) E-mail: deliliu2002@https://www.doczj.com/doc/f81575254.html, 摘要:利用富集培养的方法从南昌市郊某养鱼塘采样分离出22株反硝化细菌,其中8株反硝化率较高,从中选择一株效果最好的作为研究对象,命名为HS-N62。该菌在12h将培养基SC 中起始浓度为140mg/L的硝酸盐氮(NO3-N,10mmol/L)完全降解,并且没有NO2-的积累。对其生长特性进行了研究,最适生长温度的范围是30℃-37℃,最适生长的pH 值范围是6. 0~8. 0,最适C/N比为10:1,并能利用多种碳源生长。运用正交试验探讨了该菌株最适的反硝化条件。通过菌株形态观察、生理生化及16S rDNA 分子鉴定,菌株HS-N62与Pseudomonas sp.亲缘关系最为接近,同源性达99 %,初步鉴定该菌为Pseudomonas sp.。关键词:好氧反硝化;分离鉴定;特性研究 1. 引言 近几十年来,我国水产养殖业迅猛发展,但在水产养殖过程中的氨、硝酸盐、亚硝酸盐、磷酸盐等营养元素含量过高所造成的富营养化现象日益严重,结果造成大量鱼虾死亡,最终导致重大经济损失,因此,控制水体中的硝态氮和亚硝态氮成为规模化养殖成功的关键之一[1]。反硝化是将硝酸盐或亚硝酸盐还原成N O或N2的过程。传统观点认为:反硝化细菌大 2 都是兼性厌氧,细菌的反硝化作用是在无氧条件下发生。但近几年国内外的不少研究报道证明好氧反硝化菌的存在。细菌好氧反硝化的发现,突破了传统理论的认识,为生物脱氮技术提供了一种崭新的思路[2]。 具有反硝化能力的细菌就目前所知分布于50 多个属,许多菌属如假单胞菌属( Pseudomonas )、产碱菌属( Alcaligenes)和副球菌属( Paracoccus ) 都存在好氧反硝化现象[3]。本文从常年养鱼的池塘中采样筛选出多株好氧反硝化细菌,并研究了其生长条件及其反硝化效率,可为好氧反硝化脱氮的实际应用提供依据。 2. 材料与方法 2.1 培养基 富集培养基(SM,g/L):NaNO3 0.85,丁二酸钠2.84,KH2PO4 1.36,MgSO4·7H2O 0.19,2 ml 微量元素溶液,pH 7.0~7.4。 反硝化培养基(SC,g/L):NaNO3 0.85,丁二酸钠 4.72,酸水解酪素5.0,Na2HPO4 7.9,KH2PO4 1.5,MgSO4·7H2O 0.10,2 ml 微量元素溶液,pH 7.0~7.4。微量元素(g/L):CuSO4·5H2O 4.0,FeSO4·7H2O 0.70,FeCl3·6H2O 7.0,CoCl3·6H2O 0.20,NaMO4·2H2O 3.4 0,CaCl2·2H2O 2.0,pH 7.0 [3-4]。 BTB培养基(g/L):丁二酸钠4.72,NaNO3 0.85,KH2PO4 1.0,FeSO4·7H2O 0.2,MgSO4·7H2O 0.1,琼脂15,pH 7.0。 基金项目:教育部博士点基金项目(20060511002)和“211”重点学科建设项目;湖北省科技攻关计划项目(2007AA201C50,2007AA301C26)。

酵母菌的分离与纯化

酵母菌的分离与纯化 小组组员: 一、实验目的 1.学习分离纯化酵母菌的技术与方法 2.了解培养基的配置与灭菌技术 3.增强无菌操作技术的意识 二、基本原理 从混杂的微生物群体获得只含某一种某一株微生物的过程叫做微生物分离与纯化,酵母菌常见于含糖份比较高的环境中,如果园土、菜园土及果皮等的表面。多数酵母菌喜欢偏酸条件,最适pH为4.5-6.0.酵母菌生长迅速,容易分离培养。马丁氏培养基是一种用来分离真菌的选择性培养基。此培养基是由葡萄糖、蛋白胨、KH2PO4、MgSO4·7H2O、孟加拉红(玫瑰红,Rose Bengal)和链霉素等组成。其中葡萄糖主要作为碳源,蛋白胨主要作为氮源,KH2PO4和MgSO4·7H2O作为无机盐,为微生物提供钾、磷和镁离子。而孟加拉红和链霉素主要是细菌和放线菌的抑制剂,对真菌无抑制作用,因而真菌在这种培养基上可以得到优势生长,从而达到分离真菌的目的。 三、实验材料及用具 1.用品:苹果、葡萄糖、琼脂、水、1%孟加拉红水溶液、马铃薯 2.设备与器材:1ml的无菌吸管、无菌培养皿等. 四、实验步骤 1、马铃薯培养基的配置 培养基成分:马铃薯 40克、蔗糖(葡萄糖) 4克、琼脂 4克、水 200毫升、 pH 自然。配置方法: (1)配制20%马铃薯浸汁:取去皮马钓薯40g,切成小块,加水200ml.加热煮游30 min ,用纱布过滤,然后补足失水互所需体积。121Pa灭菌30min.即成20%马铃馨漫汁,贮存备用。 (2)配制时,按每100ml 马铃薯浸汁加入2g蔗糖,加热煮沸后加入4克琼脂,继续加热融化并补足失水。 (3)分装、加塞,包扎。 (4)高压蒸汽灭菌:121Pa灭菌30min

酵母菌的分离与纯化

酵母菌的分离与纯化 土壤是微生物生活的大本营,是寻早有重要应用潜力的微生物的主要菌源。不同图样中各类微生物的含量不同,一般土壤中细菌数量最多,其次为放线菌和霉菌。放线菌一般在较干燥、偏碱性、有机质较多的土壤中较多;霉菌在含有机质丰富、偏酸性、通气性较好的土壤中较多;酵母菌在一般土壤中的数量较少,而在酒曲、面肥、水果表皮、果园土壤中数量多些。(一)菌源 1土样用无菌的采样小铲在橘树果园中取土壤表层下1~10cm土壤10g,装入灭菌的牛皮纸袋内。封好袋口,记录取样地点、环境及日期。图样采集后应及时分离,饭不能立即分离的样品,应保存在低温、干燥的条件下,以减少其中菌相的变化。 2面肥 (1)面粉500克,白酒100克,水250,和好静置发酵就可以了。冬季10个小时。(2)在温水中兑一点酒,倒入适量面粉拌匀后放入绝缘保温盛器(陶瓷,砂锅)中,用布将整个盛器盖好置于温度较高处,6小时后即成面肥。 *以上方法做出的面肥只能保存几天,不宜放置太久。 3水果果皮 桔子和葡萄等的果皮上含有数量较多的酵母菌,既可单独作为菌源也可以和果园土壤作为混合菌源。 (二)酵母菌的分离 1制备菌悬液 称取菌源1g,加入盛有99ml无菌水或无菌生理盐水并装有玻璃珠的锥形瓶中。振荡20min,即成10-2的菌源悬液。再一次稀释成10-4、10-5、10-6三个稀释度。 2涂布法分离 取融化并冷却至45~50度左右的豆芽汁葡萄糖培养基,每皿分别倾注约12ml培养基到培养皿内。注意,温度过高易将菌烫死,皿盖上冷凝水太多也会影响分离效果;低于45度培养基易凝固,平板高低不平。呆平板冷却后,用无菌移液管分别吸取上述已经制好的菌源稀释液10-4、10-5、10-6三个稀释度菌悬液各0.1ml,依次滴加于相应编号的豆芽汁葡萄糖培养基平板上。每个稀释度做2~3个平行皿。左手拿培养皿,并用拇指将皿盖打开一缝,再火焰旁右手持无菌玻璃涂棒将菌液自平板中央均匀向四周涂布扩散。注意,切忌用力过猛,这样会将菌液直接推向平板边缘或将培养基划破。3培养 接种后,平版倒置于30度恒温箱中,培养2~3天,观察结果。 4纯化 用接种环挑取单个单个酵母菌菌落,在平板上四区划线,培养后分离得到单个菌落。 酵母扩培方案 一、培养基制备 (一)麦芽汁培养基的配制 1.培养基成分 新鲜麦芽汁一般为10-15波林。 2.配制方法 (1)用水将大麦或小麦洗净,用水浸泡6-12h,置于15℃阴凉处发芽,上盖纱布,每日早、中、晚淋水一次,待麦芽伸长至麦粒的两倍时,让其停止发芽,晒干或烘干,研磨成麦芽粉,贮存备用。 (2)取一份麦芽粉加四份水,在65℃水浴锅中保温3-4h,使其自行糖化,直

相关主题
文本预览
相关文档 最新文档