当前位置:文档之家› 模糊控制设计及仿真实例智能控制作业

模糊控制设计及仿真实例智能控制作业

模糊控制设计及仿真实例智能控制作业
模糊控制设计及仿真实例智能控制作业

1.一个三阶系统

2

012

32

123

b b b

a a a

s s

s s s

++

+++

,其中a,b的值由自己设定,该系统具有非

线性环节,如下图所示:

依据上述条件设计一个模糊控制器:

①用MATLAB仿真,得出仿真结果,

②并通过改变a、b值对仿真结果的影响;

③改变隶属度函数,从仿真结果图分析隶属度函数,模糊化对系统的影响;解:①

(1)取b0=0,b1=0,b2=1.5,a1=4,a2=2,a3=0,在SIMULINK里建模如下图所示

(2)用GUI建立FIS

E和EC分别为系统输出误差和误差的变化量,U为控制输出,编辑其隶属度函数如下

编辑模糊推理规则如下

智能控制技术作业

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。

{模糊控制器采用数字计算机。它具有三个重要功能: 1)把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2)对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。} 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法 设计步骤如下: 1、确定模糊控制器的输入、输出变量 2、确定各输入、输出变量的变化范围、量化等级和量化因子 3、在各输入和输出语言变量的量化域内定义模糊子集。 4、模糊控制规则的确定 5、求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.112345 C = ++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ=??

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

19春北理工《智能控制基础》在线作业答案

(单选题)1: 一般认为,人工神经网络适用于() A: 线性系统 B: 多变量系统 C: 多输入多输出系统 D: 非线性系统 正确答案: (单选题)2: 递阶控制系统的结构是根据下列原理设计的() A: 精度随智能降低而提高 B: 精度随智能提高而提高 C: 精度随智能降低而降低 D: 精度与智能无关 正确答案: (单选题)3: 智能控制成为国际上独立新学科的时间为20世纪() A: 60年代 B: 70年代 C: 80年代 D: 90年代 正确答案: (单选题)4: 基于模式识别的控制系统属于() A: 学习控制系统 B: 专家控制系统 C: 进化控制系统 D: 模糊控制系统 正确答案: (单选题)5: 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做() A: 最优控制 B: 反馈控制 C: 随机控制 D: 学习控制 正确答案: (单选题)6: 最早提出人工神经网络思想的学者是() A: McCulloch-Pitts B: Hebb C: Widrow-Hoff D: Rosenblatt 正确答案: (单选题)7: 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是() A: 控制算法 B: 控制结构 C: 控制器智能化 D: 控制系统仿真 正确答案: (单选题)8: 智能控制的“四元交集结构”的四元,指的是() A: 计算机科学、自动控制、人工智能、神经网络 B: 人工智能、自动控制、信息论、系统论 C: 人工智能、自动控制、信息论、机器学习 D: 自动控制、人工智能、信息论、运筹学 正确答案: (单选题)9: 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600 度恒定。 针对该控制系统有以下控制经验: (1)若炉温低于600 度,则升压;低的越多升压越高。 (2)若炉温高于600 度,则降压;高的越多降压越低。 (3)若炉温等于600 度,则保持电压不变。设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7 级,取5 个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600 C,实际温度为T,则温度误差为 E=600-T。 将温度误差E 作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E 的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1 所示。

表1温度变化E划分表 控制电压也分为个模糊集:、、、、,分 别为负小、负大、零、正小、正大。将电压u的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB Edit or: Un+ it 1 e J. 歼cw OptigT

叮叮小文库

叮叮小文库 2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态 误差为 零,超调量不大于 1%,输出上升时间w 0.3s 。假定被 控对象的传递函数分别为: Gg e 0亦 (s 1)2 G2(S ) 4.228 (s 0.5)( s 2 1.64 s 8.456) 解: 在matlab 窗口命令中键入 fuzzy ,得到如下键面: 设e 的论域范围为[-1 1] , de 的论域范围为[-0.1 0.1] , u 的论 域范围为[ 0 2]。 将e 分为8个模糊集,分别为 NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真 摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。 关键词:模糊控制 参数整定 MATLAB 仿真 二阶动态系统模型: ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 一.确定模糊控制器结构 模糊自整定PID 为2输入3输出的模糊控制器。在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。

如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fi。 二.定义输入、输出模糊集及隶属函数

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55 .01)1()(+=-s e s G s ) 456.864.1)(5.0(228 .4)(22+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;

基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真 摘要:本文对模糊控制器进行了主要介绍。提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。 关键词:模糊控制,隶属度函数,仿真,MA TLAB 1 引言 模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。 模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。 2 模糊控制器简介 模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。 随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。同时还很容易被实现的,简单而灵活的控制方式。于是模糊控制理论极其技术应运而生。 3 模糊控制的特点 模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。所以,模糊控制有以下特点: 1)模糊控制的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

模糊控制仿真

智能控制实验报告模糊控制器的仿真

一.实验目的 1.了解模糊控制的原理 2.学习Matlab模糊逻辑工具箱的使用 3.使用工具箱进行模糊控制器的仿真 二.实验设备 1.计算机 2.Matlab软件 3.window 7操作系统 三.实验原理 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差E”,在ec的论域上定义语言变量“误差变化EC”;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 四.实验步骤 1、在MATLAB主窗口中单击工具栏中的Simulink快捷图标,弹出“Simulink Library Browser”窗口,单击Create a new model快捷图标,弹出模拟编辑窗口,用Matlab中的Simulink 工具箱,组成一个模糊控制系统,如图所示: 2、在MATLAB命令窗口输入fuzzy,并按回车键,弹出如下的FIS Editer界面,即模糊推理系统编辑器。

智能控制题目及解答

智能控制题目及解答 第一章绪论作业 作业内容 1.什么就是智能、智能系统、智能控制? 2.智能控制系统有哪几种类型,各自的特点就是什么? 3.比较智能控制与传统控制的特点。 4.把智能控制瞧作就是AI(人工智能)、OR(运筹学)、AC(自动控制)与 IT(信息论)的交集,其根据与内涵就是什么? 5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理与 控制性能。 1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作与思维。 智能系统:就是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。 智能控制:智能控制就是控制理论、计算机科学、心理学、生物学与运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理与自适应的能力。就是将传统的控制理论与神经网络、模糊逻辑、人工智能与遗传算法等实现手段融合而成的一种新的控制方法。 2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应与自组织的功能。 (2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。 (3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解与规划、环境建模、传感器信息分析与低层的反馈控制任务。 3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制与大系统的控制问题;而智能控制主要解决高度非线性、不确定性与复杂系统控制问题。 在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常就是学习积累非精确知识;传统控制通常就是用数学模型来描述系统,而智能控制系统则就是通过经验、规则用符号来描述系统。 在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的与行为就是否达到。 但就是,智能控制与传统的或常规的控制有密切的关系,互相取长补短,而并非互相排斥。基于智能控制与传统控制在应用领域方面、理论方法上与性能指标等方面的差异,往往将常规控制包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 4 答:人工只能(AI)就是一个用来模拟人思维的知识处理系统,具有学习、记忆、信息处理、形式语言、启发推理等功能;自动控制(AC)描述系统的动力学特性,就是一种动态反馈;运筹学(OR)就是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策与多目标优化方法等;信息论(IT)信息论就是运用概率论与树立统计的方法研究信息、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 早期产生的的二元结构被发现就是很大程度上局限于符号主义的人工智能,无助于智能控制的

智能控制大作业

《智能控制》大作业 1、简答题: 1.1.根据目前智能控制系统的研究和发展,智能控制系统主要有哪些方面的工作可做进一步的探索和开展? 答:1)开展智能控制理论与应用研究。 2)充分运用神经生理学、心理学、认识科学和人工智能等学科的基本理论, 深入研究人类解决问题时表现出来的经验、技巧、策略,建立切实可行的智能控制的体系结构。 3)把所有的知识工程、模糊系统、信息论,进化论、神经网络理论和技术与传统的控制理论相结合,充分利用现有的控制理论,研究适合于当前的计算机资源条件的智能控制策略和系统。 4)研究人——机交互式的智能控制系统和学习系统,以不断提高智能控制系统的智能水平。 5)研究适合智能系统的并行处理机、信号处理器、智能传感器和智能开发工具软件,以解决智能控制系统在实际应用中的问题,使智能控制得到更广泛的应用。 1.2.画出模糊控制系统的基本结构图,并简述模糊控制器各组成部分所表示的意思? 模糊控制单元由规则库、模糊化接口、模糊推理和清晰化接口4个功能模块组成,模糊控制单元首先将输入信息,模糊化,然后经模糊推理规则,给出模糊输出,再将模糊指令化,控制操作变量。 1、规则库(rule base):由若干条控制规则组成,这些控制规则根据人类

控制专家的经验总结得出,按照IF …is …AND …is …THEN …is…的形式表达。 2、模糊推理:以模糊集合论为基础描述工具,对以一般集合论为基础描述工具的数理逻辑进行扩展,从而建立了模糊推理理论。根据模糊输入和规则库中蕴涵的输入输出关系,通过第二章描述的模糊推理方法得到模糊控制器的输出模糊值。模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。该推理过程是基于模糊逻辑中的蕴含关系及推理规则来进行的。 3、模糊化接口(Fuzzification):这部分的作用是将输入的精确量转化成模糊化量。其中输入量包括外界的参考输入,系统的输出或状态等。 清晰化(解模糊接口) 4、清晰化接口:清晰化的作用是将模糊推理得到的控制量(模糊量)变换为实际用于控制的清晰量。它包含以下两部分内容: (1)将模糊控制量经清晰化变换变成表示在论域范围的清晰量。 (2)将表示在论域范围的清晰量经尺度变换变成实际的控制量。 1.3.画出感知器的基本结构模型,并简述其算法过程。

双闭环模糊控制系统的设计与仿真

《运动控制系统》课程设计学院:物联网工程学院 班级: 姓名: 学号: 日期: 成绩:

文章编号: 双闭环模糊控制系统的设计与仿真 (江南大学物联网工程学院,江苏省无锡邮编214122) 摘要:直流电机具有良好的起动、制动性能,因此其在电力拖动自动控制系统中应用广泛。众所周知,直流电机的闭环系统静特性要比开环系统的机械特写硬的多,而转速、电流双闭环控制直流调速系统是性能好、应用最广泛的直流调速系统,但该系统依赖精确的数学模型,在增加解决环节的同时,系统模型趋于复杂,还可能会影响系统的可靠性。因此我们在总结了以前经验的同时,提出了双闭环模糊控制系统的的设计与仿真。 关键词:直流电机;双闭环系统;模糊控制 中图分类号:文献标识码:A Double Closed Loop Fuzzy Control System Design and Simulation Author name (Jiangnan University, Wuxi 214122, China) Abstract:DC motor has good starting, braking performance, therefore in the electric drive automatic control system is widely applied in the field of. As everyone knows, the closed-loop DC motor system static characteristics than the open loop system of mechanical feature of more than hardware, and speed, electric current double closed loop DC motor control system is of good performance, the most widely used DC speed regulating system, but the system depend on the accurate mathematical model, increase solve link at the same time, the system model tends to be complex, also may influence the reliability of the system. Therefore we are summing up the previous experience at the same time, put forward a double closed loop fuzzy control system design and simulation. Key words:DC Motor; Double Closed Loop System; Fuzzy Control 1 引言 2 双闭环直流调速系统的设计 直流电动机具有启动转矩大、调速范围宽等优势,在轧钢机、电力机车等方面仍广泛采用。直流调速系统在理论上和实践上都比较成热,从控制技术的角度来看,它又是交流调速系统的基础;电力电子技术、计算机控制技术、智能控制理论的发展,,更为直流调速系统继续发展和应用提供了契机。进入21世纪后国外一些公司仍在不断推出高性能直 流调速系统。因此,对直流调速系统的研究仍具有重要意义。 直流调速系统中最典型的控制方式就是速度、电流双闭环调速。由于受参数时变和不确定性等因素的影响,传统的控制方法常受到很大的局限。另外,PID 控制方法往往在系统快速性与稳定性之间不能两者兼顾。模糊控制不依赖于被控对象的精确数学模型,既能克服非线性因素的影响,又具有较强的鲁棒性。因此,给直流电动机双闭环调速系统引入模糊控制器,可以改善系统性能。 2.1 双闭环可逆直流调速系统的原理结构 为了实现转速和电流两种负反馈分别起作用, 可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行串级联接。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变 换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外面,称作外环。这样就形成了转速、电流双闭环调速系统。如图1所示。 图1直流双闭环调速系统结构 双闭环直流调速系统目前应用广泛、技术成熟,常采用PID控制方式,它具有结构简单、可靠等优点,取得了较好的控制效果。但是,在实际生产现场,由于条件限制,使得PID控制器参数的整定往往难以达到最优状态,另外,PID 控制方法必须在系统快速性与稳定性程度之间做出折衷,往往不能两者兼顾,而模糊控制能利用其非线性特性,突破PID方法的局限,使调速系统既有快速的动态响应,又有较高的稳定程度。除此之外,模糊控制又进一步提高了调速系统的鲁棒性。 调速系统的模糊控制模型在异步电动机闭环调

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY 题目: 院(系): 专业: 学生姓名: 学号:

模糊控制在倒立摆中的仿真应用 1、倒立摆系统 简介 倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。 图1-1 倒立摆模型 (a)一级倒立摆模型(b)二级倒立摆模型 倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。 倒立摆系统控制原理

单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。 图1-2 单级倒立摆硬件结构图 通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。计算机获得实时数据,确定控制策略,发送到运动控制卡,运动控制卡执行计算机确定的控制策略,产生相应的控制量,由伺服电机转动来带动小车在水平轨道往复的运动,使摆杆保持倒立。 倒立摆系统状态方程 θ f 图1-3 单级倒立摆模型图 θ为杆与垂线的夹角,f为作用力,杆的质量m=,杆和小车的总重量m=,半杆长l=,重力加速度g=s2,采样周期T=.倒立摆的数学模型为:

相关主题
文本预览
相关文档 最新文档