当前位置:文档之家› 多元统计典型相关分析实例

多元统计典型相关分析实例

多元统计典型相关分析实例
多元统计典型相关分析实例

1、对体力测试(共7项指标)及运动能力测试(共5项指标)两组指标进行典型相关分析

Run MATRIX procedure:

Correlations for Set-1

X1 X2 X3 X4 X5 X6 X7

X1 1.0000 .2701 .1643 -.0286 .2463 .0722 -.1664

X2 .2701 1.0000 .2694 .0406 -.0670 .3463 .2709

X3 .1643 .2694 1.0000 .3190 -.2427 .1931 -.0176

X4 -.0286 .0406 .3190 1.0000 -.0370 .0524 .2035

X5 .2463 -.0670 -.2427 -.0370 1.0000 .0517 .3231

X6 .0722 .3463 .1931 .0524 .0517 1.0000 .2813

X7 -.1664 .2709 -.0176 .2035 .3231 .2813 1.0000

Correlations for Set-2

X8 X9 X10 X11 X12

X8 1.0000 -.4429 -.2647 -.4629 .0777

X9 -.4429 1.0000 .4989 .6067 -.4744

X10 -.2647 .4989 1.0000 .3562 -.5285

X11 -.4629 .6067 .3562 1.0000 -.4369

X12 .0777 -.4744 -.5285 -.4369 1.0000

两组变量的相关矩阵说明,体力测试指标与运动能力测试指标是有相关性的。

Correlations Between Set-1 and Set-2

X8 X9 X10 X11 X12

X1 -.4005 .3609 .4116 .2797 -.4709

X2 -.3900 .5584 .3977 .4511 -.0488

X3 -.3026 .5590 .5538 .3215 -.4802

X4 -.2834 .2711 -.0414 .2470 -.1007

X5 -.4295 -.1843 -.0116 .1415 -.0132

X6 -.0800 .2596 .3310 .2359 -.2939

X7 -.2568 .1501 .0388 .0841 .1923

上面给出的是两组变量间各变量的两两相关矩阵,可见体力测试指标与运动能力测试指标间确实存在相关性,这里需要做的就是提取出综合指标代表这种相关性。

Canonical Correlations

1 .848

2 .707

3 .648

4 .351

5 .290

上面是提取出的5个典型相关系数的大小,可见第一典型相关系数为0.848,第二典型相关系数为0.707,第三典型相关系数为0.648,第四典型相关系数为0. 351,第五典型相关系数为0. 290。

Test that remaining correlations are zero:

Wilk's Chi-SQ DF Sig.

1 .065 83.194 35.000 .000

2 .23

3 44.440 24.000 .007

3 .466 23.302 15.000 .078

4 .803 6.682 8.000 .571

5 .91

6 2.673 3.000 .445

上表为检验各典型相关系数有无统计学意义,可见第一、第二典型相关系数有统计学意义,而其余典型相关系数则没有。

Standardized Canonical Coefficients for Set-1

1 2 3 4 5

X1 .475 .115 .391 -.452 -.462

X2 .190 -.565 -.774 .307 .489

X3 .634 .048 .288 .321 -.276

X4 .040 .080 -.400 -.906 .422

X5 .233 .773 -.681 .459 .233

X6 .117 .148 .425 .141 .649

X7 .038 -.394 .025 -.103 -1.029

Raw Canonical Coefficients for Set-1

1 2 3 4 5

X1 .141 .034 .116 -.134 -.137

X2 .026 -.076 -.104 .041 .066

X3 .040 .003 .018 .020 -.018

X4 .008 .015 -.075 -.169 .079

X5 .016 .054 -.047 .032 .016

X6 .020 .025 .071 .024 .109

X7 .005 -.048 .003 -.013 -.126

上面为各典型变量与变量组1中各变量间标化与未标化的系数列表,由此我们可以写出典型变量的转换公式(标化的)为:

L1=0.475X1+0.19X2+0.634X3+0.04X4+0.233X5+0.117X6+0.038X7余下同理。

Standardized Canonical Coefficients for Set-2

1 2 3 4 5

X8 -.505 -.659 .577 .186 .631

X9 .209 -1.115 .207 -.775 -.292

X10 .365 -.262 .188 1.153 -.154

X11 -.068 -.034 -.579 .340 1.181

X12 -.372 -.896 -.649 .569 -.124

Raw Canonical Coefficients for Set-2

1 2 3 4 5

X8 -1.441 -1.879 1.647 .531 1.798

X9 .005 -.026 .005 -.018 -.007

X10 .133 -.095 .069 .419 -.056

X11 -.018 -.009 -.153 .090 .312

X12 -.012 -.029 -.021 .018 -.004

Canonical Loadings for Set-1

1 2 3 4 5

X1 .689 .235 .099 -.150 -.112

X2 .526 -.625 -.408 .225 .237

X3 .741 -.212 .263 -.042 .001

X4 .242 -.032 -.298 -.809 .182

X5 .200 .705 -.558 .257 -.161

X6 .364 -.096 .191 .224 .476

X7 .115 -.259 -.437 .053 -.471

Cross Loadings for Set-1

1 2 3 4 5

X1 .584 .166 .064 -.053 -.032

X2 .446 -.442 -.265 .079 .069

X3 .629 -.150 .170 -.015 .000

X4 .205 -.023 -.193 -.284 .053

X5 .170 .498 -.362 .090 -.047

X6 .309 -.068 .124 .079 .138

X7 .098 -.183 -.283 .019 -.136

上表为第一变量组中各变量分别与自身、相对的典型变量的相关系数,可见它们主要和第一对典型变量的关系比较密切。

Canonical Loadings for Set-2

1 2 3 4 5

X8 -.692 -.149 .654 .111 .244

X9 .750 -.550 .001 -.346 .127

X10 .776 -.183 .275 .538 .020

X11 .585 -.108 -.371 -.054 .711

X12 -.674 -.265 -.548 .193 -.371

Cross Loadings for Set-2

1 2 3 4 5

X8 -.587 -.106 .424 .039 .071

X9 .636 -.389 .001 -.121 .037

X10 .658 -.129 .178 .189 .006

X11 .496 -.076 -.240 -.019 .206

X12 -.571 -.187 -.355 .068 -.108

上表为第二变量组中各变量分别与自身、相对的典型变量的相关系数,结论与前相同。

下面即将输出的是冗余度(Redundancy)分析结果,它列出各典型相关系数所能解释原变量变异的比例,可以用来辅助判断需要保留多少个典型相关系数。

Redundancy Analysis:

Proportion of Variance of Set-1 Explained by Its Own Can. Var.

Prop Var

CV1-1 .221

CV1-2 .152

CV1-3 .125

CV1-4 .121

CV1-5 .082

首先输出的是第一组变量的变化可被自身的典型变量所解释的比例,可见第一典型变量解释了总变化的22.1%,第二典型变量能解释15.2%,第三典型变量只能解释12.5%,第四典型变量只能解释12.1%,第五典型变量只能解释8.2%。

Proportion of Variance of Set-1 Explained by Opposite Can.Var.

Prop Var

CV2-1 .159

CV2-2 .076

CV2-3 .052

CV2-4 .015

CV2-5 .007

上表为第一组变量的变化能被它们相对的典型变量所解释的比例,可见第五典型变量的解释度非常小。

Proportion of Variance of Set-2 Explained by Its Own Can. Var.

Prop Var

CV2-1 .488

CV2-2 .088

CV2-3 .188

CV2-4 .092

CV2-5 .144

Proportion of Variance of Set-2 Explained by Opposite Can. Var.

Prop Var

CV1-1 .351

CV1-2 .044

CV1-3 .079

CV1-4 .011

CV1-5 .012

------ END MATRIX -----

2、

Run MATRIX procedure:

Correlations for Set-1

X1 X2 X3 X4

X1 1.0000 .3588 .7417 .5694

X2 .3588 1.0000 .4301 .3673

X3 .7417 .4301 1.0000 .4828

X4 .5694 .3673 .4828 1.0000

Correlations for Set-2

X5 X6 X7 X8 X9 X10 X11 X12

X5 1.0000 .7147 .8489 .8827 .6935 .8956 .9004 .8727

X6 .7147 1.0000 .7273 .8328 .7864 .8144 .6825 .7846

X7 .8489 .7273 1.0000 .8980 .6447 .9150 .7766 .9073

X8 .8827 .8328 .8980 1.0000 .6838 .9553 .8446 .9080

X9 .6935 .7864 .6447 .6838 1.0000 .7071 .7530 .7475

X10 .8956 .8144 .9150 .9553 .7071 1.0000 .8739 .9307

X11 .9004 .6825 .7766 .8446 .7530 .8739 1.0000 .7981

X12 .8727 .7846 .9073 .9080 .7475 .9307 .7981 1.0000

以上,两组变量的相关矩阵说明,农村居民收入与农村居民生活费支出是有相关性的。

Correlations Between Set-1 and Set-2

X5 X6 X7 X8 X9 X10 X11 X12

X1 .8368 .8523 .8645 .9453 .6702 .9195 .7682 .8736

X2 .6060 .3903 .4852 .4397 .5548 .4567 .5096 .5262

X3 .8135 .5256 .6417 .8239 .5093 .8138 .8242 .7513

X4 .6166 .7269 .5385 .6062 .5615 .6602 .6027 .6543

上面给出的是两组变量间各变量的两两相关矩阵,可见体力测试指标与运动能力测试指标间确实存在相关性,这里需要做的就是提取出综合指标代表这种相关性。

Canonical Correlations

1 .981

2 .906

3 .631

4 .571

上面是提取出的5个典型相关系数的大小,可见第一典型相关系数为0. 981,第二典型相关系数为0. 906,第三典型相关系数为0. 631,第四典型相关系数为0. 571。

Test that remaining correlations are zero:

Wilk's Chi-SQ DF Sig.

1 .003 132.620 32.000 .000

2 .072 59.110 21.000 .000

3 .405 20.310 12.000 .061

4 .674 8.871 5.000 .114

上表为检验各典型相关系数有无统计学意义,可见第一、第二典型相关系数有统计学意义,而其余典型相关系数则没有。

Standardized Canonical Coefficients for Set-1

1 2 3 4

X1 -.536 -1.056 -.468 .965

X2 -.059 -.293 -.809 -.732

X3 -.399 1.480 .154 -.142

X4 -.158 -.284 1.023 -.635

Raw Canonical Coefficients for Set-1

1 2 3 4

X1 -.001 -.002 -.001 .002

X2 .000 -.001 -.002 -.002

X3 -.009 .033 .003 -.003

X4 -.004 -.007 .026 -.016

上面为各典型变量与变量组1中各变量间标化与未标化的系数列表,由此我们可以写出典型变量的转换公式(标化的)为:

L1=-0.536X1-0.059X2-0.399X3-0.158X4余下同理。

Standardized Canonical Coefficients for Set-2

1 2 3 4

X5 -.233 -.151 -1.215 -1.177

X6 -.020 -1.459 1.647 -.413

X7 .414 -1.577 -1.050 .472

X8 -.576 1.319 -1.618 2.259

X9 .070 -.071 -1.516 -.028

X10 -.388 .683 .797 .562

X11 -.034 .521 1.527 -.667

X12 -.218 .346 1.283 -1.210

Raw Canonical Coefficients for Set-2

1 2 3 4

X5 -.001 -.001 -.005 -.005

X6 .000 -.030 .034 -.009

X7 .003 -.012 -.008 .003

X8 -.011 .024 -.030 .042

X9 .003 -.003 -.068 -.001

X10 -.012 .022 .026 .018

X11 -.001 .009 .025 -.011

X12 -.009 .015 .055 -.052

Canonical Loadings for Set-1

1 2 3 4

X1 -.943 -.225 -.062 .235

X2 -.481 -.139 -.535 -.680

X3 -.898 .434 -.048 -.048

X4 -.678 -.279 .533 -.423

Cross Loadings for Set-1

1 2 3 4

X1 -.925 -.204 -.039 .134

X2 -.472 -.126 -.338 -.388

X3 -.881 .393 -.030 -.027

X4 -.665 -.253 .337 -.241

上表为第一变量组中各变量分别与自身、相对的典型变量的相关系数,可见它们主要和第一对典型变量的关系比较密切。

Canonical Loadings for Set-2

1 2 3 4

X5 -.924 -.036 -.200 -.251

X6 -.821 -.489 .173 .001

X7 -.850 -.285 -.234 .080

X8 -.976 -.088 -.082 .155

X9 -.698 -.304 -.174 -.330

X10 -.968 -.097 .000 .032

X11 -.883 .097 -.046 -.231

X12 -.921 -.166 -.079 -.113

Cross Loadings for Set-2

1 2 3 4

X5 -.907 -.032 -.126 -.143

X6 -.805 -.443 .109 .000

X7 -.833 -.258 -.148 .046

X8 -.957 -.080 -.052 .088

X9 -.684 -.276 -.110 -.188

X10 -.949 -.088 .000 .018

X11 -.866 .088 -.029 -.132

X12 -.903 -.151 -.050 -.064

上表为第二变量组中各变量分别与自身、相对的典型变量的相关系数,结论与前相同。

下面即将输出的是冗余度(Redundancy)分析结果,它列出各典型相关系数所能解释原变量变异的比例,可以用来辅助判断需要保留多少个典型相关系数。

Redundancy Analysis:

Proportion of Variance of Set-1 Explained by Its Own Can. Var.

Prop Var

CV1-1 .597

CV1-2 .084

CV1-3 .144

CV1-4 .175

首先输出的是第一组变量的变化可被自身的典型变量所解释的比例,可见第一典型变量解释了总变化的59.7%,第二典型变量能解释8.4%,第三典型变量只能解释14.4%,第四典型变量只能解释17.5%。

Proportion of Variance of Set-1 Explained by Opposite Can.Var.

Prop Var

CV2-1 .574

CV2-2 .069

CV2-3 .057

CV2-4 .057

上表为第一组变量的变化能被它们相对的典型变量所解释的比例,可见第一典型变量的解释度较大,其余相差不大。

Proportion of Variance of Set-2 Explained by Its Own Can. Var.

Prop Var

CV2-1 .782

CV2-2 .059

CV2-3 .021

CV2-4 .034

Proportion of Variance of Set-2 Explained by Opposite Can. Var.

Prop Var

CV1-1 .752

CV1-2 .048

CV1-3 .008

CV1-4 .011

------ END MATRIX -----

习题10.3、

Run MATRIX procedure:

Correlations for Set-1

x1 x2

x1 1.0000 .7346

x2 .7346 1.0000

Correlations for Set-2

y1 y2

y1 1.0000 .8393

y2 .8393 1.0000

从这里开始进行分析,首先给出的是两组变量内部各自的相关矩阵,可见头宽和头长是有相关性的。

Correlations Between Set-1 and Set-2

y1 y2

x1 .7108 .7040

x2 .6932 .7086

上面给出的是两组变量间各变量的两两相关矩阵,可见兄弟的头型指标间确实存在相关性,这里需要做的就是提取出综合指标代表这种相关性。

Canonical Correlations

1 .789

2 .054

上面是提取出的两个典型相关系数的大小,可见第一典型相关系数为0.789,第二典型相关系数为0.054。

Test that remaining correlations are zero:

Wilk's Chi-SQ DF Sig.

1 .377 20.964 4.000 .000

2 .997 .062 1.000 .803

上表为检验各典型相关系数有无统计学意义,可见第一典型相关系数有统计学意义,而第二典型相关系数则没有。

Standardized Canonical Coefficients for Set-1

1 2

x1 -.552 -1.366

x2 -.522 1.378

Raw Canonical Coefficients for Set-1

1 2

x1 -.057 -.140

x2 -.071 .187

上面为各典型变量与变量组1中各变量间标化与未标化的系数列表,由此我们可以写出典型变量的转换公式(标化的)为:

L1=0.552*xl+0.522*x2 L2=1.366*xl-1.378*x2

Standardized Canonical Coefficients for Set-2

1 2

y1 -.504 -1.769

y2 -.538 1.759

Raw Canonical Coefficients for Set-2

1 2

y1 -.050 -.176

y2 -.080 .262

Canonical Loadings for Set-1

1 2

x1 -.935 -.354

x2 -.927 .375

Cross Loadings for Set-1

1 2

x1 -.737 -.019

x2 -.731 .020

上表为第一变量组中各变量分别与自身、相对的典型变量的相关系数,可见它们主要和第一对典型变量的关系比较密切。

Canonical Loadings for Set-2

1 2

y1 -.956 -.293

y2 -.962 .274

Cross Loadings for Set-2

1 2

y1 -.754 -.016

y2 -.758 .015

上表为第二变量组中各变量分别与自身、相对的典型变量的相关系数,结论与前相同。

下面即将输出的是冗余度(Redundancy)分析结果,它列出各典型相关系数所能解释原变量变异的比例,可以用来辅助判断需要保留多少个典型相关系数。

Redundancy Analysis:

Proportion of Variance of Set-1 Explained by Its Own Can. Var.

Prop Var

CV1-1 .867

CV1-2 .133

首先输出的是第一组变量的变异可被自身的典型变量所解释的比例,可见第一典型变量解释了总变异的86.7%,而第二典型变量只能解释13.3%。

Proportion of Variance of Set-1 Explained by Opposite Can.Var.

Prop Var

CV2-1 .539

CV2-2 .000

上表为第一组变量的变异能被它们相对的典型变量所解释的比例,可见第二典型变量的解释度非常小。

Proportion of Variance of Set-2 Explained by Its Own Can. Var.

Prop Var

CV2-1 .920

CV2-2 .080

Proportion of Variance of Set-2 Explained by Opposite Can. Var.

Prop Var

CV1-1 .572

CV1-2 .000

------ END MATRIX -----

多元统计分析模拟考题及答案.docx

一、判断题 ( 对 ) 1 X ( X 1 , X 2 ,L , X p ) 的协差阵一定是对称的半正定阵 ( 对 ( ) 2 标准化随机向量的协差阵与原变量的相关系数阵相同。 对) 3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据 分析方法。 ( 错)5 X (X 1 , X 2 , , X p ) ~ N p ( , ) , X , S 分别是样本均值和样本离 差阵,则 X , S 分别是 , 的无偏估计。 n ( 对) 6 X ( X 1 , X 2 , , X p ) ~ N p ( , ) , X 作为样本均值 的估计,是 无偏的、有效的、一致的。 ( 错) 7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对) 8 因子载荷阵 A ( ij ) ij 表示第 i 个变量在第 j 个公因子上 a 中的 a 的相对重要性。 ( 对 )9 判别分析中, 若两个总体的协差阵相等, 则 Fisher 判别与距离判别等价。 (对) 10 距离判别法要求两总体分布的协差阵相等, Fisher 判别法对总体的分布无特 定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵. 2、 设 是总体 的协方差阵, 的特征根 ( 1, , ) 与相应的单 X ( X 1,L , X m ) i i L m 位 正 交 化 特 征 向 量 i ( a i1, a i 2 ,L ,a im ) , 则 第 一 主 成 分 的 表 达 式 是 y 1 a 11 X 1 a 12 X 2 L a 1m X m ,方差为 1 。 3 设 是总体 X ( X 1, X 2 , X 3, X 4 ) 的协方差阵, 的特征根和标准正交特征向量分别 为: 1 2.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814) 2 1.024 U 2' (0.9544, 0.0984,0.2695,0.0824) 3 0.049 U 3' (0.2516,0.7733, 0.5589, 0.1624) 4 0.007 U 4' ( 0.0612,0.2519,0.5513, 0.7930) ,则其第二个主成分的表达式是

多元统计分析实例汇总

多元统计分析实例 院系:商学院 学号: 姓名:

多元统计分析实例 本文收集了2012年31个省市自治区的农林牧渔和相关农业数据,通过对对收集的数据进行比较分析对31个省市自治区进行分类.选取了6个指标农业产值,林业产值.牧业总产值,渔业总产值,农村居民家庭拥有生产性固定资产原值,农村居民家庭经营耕地面积. 数据如下表: 一.聚类法

设定4个群聚,采用了系统聚类法.下表为spss分析之后的结果.

Rescaled Distance Cluster Combine C A S E 0 5 10 15 20 25 Label Num +---------+---------+---------+---------+---------+ 内蒙 5 -+ 吉林 7 -+ 云南 25 -+-+ 江西 14 -+ +-+ 陕西 27 -+-+ | 新疆 31 -+ +-+ 安徽 12 -+-+ | | 广西 20 -+ +-+ +-------+ 辽宁 6 ---+ | | 浙江 11 -+-----+ | 福建 13 -+ | 重庆 22 -+ +---------------------------------+ 贵州 24 -+ | | 山西 4 -+---+ | | 甘肃 28 -+ | | | 北京 1 -+ | | | 青海 29 -+ +---------+ | 天津 2 -+ | | 上海 9 -+ | | 宁夏 30 -+---+ | 西藏 26 -+ | 海南 21 -+ | 河北 3 ---+-----+ | 四川 23 ---+ | | 黑龙江 8 -+-+ +-------------+ | 湖南 18 -+ +---+ | | | 湖北 17 -+-+ +-+ +-------------------------+ 广东 19 -+ | | 江苏 10 -------+ | 山东 15 -----------+-----------+ 河南 16 -----------+

多元统计分析期末复习

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: )',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变),(~∑μP N X μ∑μ p X X X ,,,21Λ),(~∑μP N X ) ,('A A d A N s ∑+μ)()1(,, n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1 X μ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析方法

多元统计分析方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

多元统计分析概述 目录 一、引言 (3) 二、多元统计分析方法的研究对象和主要内容 (3) 1.多元统计分析方法的研究对象 (3) 2.多元统计分析方法的主要内容 (3) 三、各种多元统计分析方法 (3) 1.回归分析 (3) 2.判别分析 (6) 3.聚类分析 (8) 4.主成分分析 (10) 5.因子分析 (10) 6. 对应分析方法 (11) 7. 典型相关分析 (11) 四、多元统计分析方法的一般步骤 (12) 五、多元统计分析方法在各个自然领域中的应用 (12) 六、总结 (13) 参考文献 (14) 谢辞 (15)

一、引言 统计分布是用来刻画随机变量特征及规律的重要手段,是进行统计分布的基础和提高。多元统计分析方法则是建立在多元统计分布基础上的一类处理多元统计数据方法的总称,是统计学中的具有丰富理论成果和众多应用方法的重要分支。在本文中,我们将对多元统计分析方法做一个大体的描述,并通过一部分实例来进一步了解多元统计分析方法的具体实现过程。 二、多元统计分析方法的研究对象和主要内容 (一)多元统计分析方法的研究对象 由于大量实际问题都涉及到多个变量,这些变量又是随机变量,所以要讨论多个随机变量的统计规律性。多元统计分析就是讨论多个随机变量理论和统计方法的总称。其内容包括一元统计学中某些方法的直接推广,也包括多个随即便量特有的一些问题,多元统计分析是一类范围很广的理论和方法。 现实生活中,受多个随机变量共同作用和影响的现象大量存在。统计分析中,有两种方法可同时对多个随机变量的观测数据进行有效的分析和研究。一种方法是把多个随机变量分开分析,一次处理一个随机变量,分别进行研究。但是,这样处理忽略了变量之间可能存在的相关性,因此,一般丢失的信息太多,分析的结果不能客观全面的反映整个问题,而且往往也不容易取得好的研究结论。另一种方法是同时对多个随机变量进行研究分析,此即多元统计方法。通过对多个随即便量观测数据的分析,来研究随机变量总的特征、规律以及随机变量之间的相互

(完整word版)实用多元统计分析相关习题

练习题 一、填空题 1.人们通过各种实践,发现变量之间的相互关系可以分成(相关)和(不相关)两种类型。多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。 2.总离差平方和可以分解为(回归离差平方和)和(剩余离差平方和)两个部分,其中(回归离差平方和)在总离差平方和中所占比重越大,则线性回归效果越显著。3.回归方程显著性检验时通常采用的统计量是(S R/p)/[S E/(n-p-1)]。 4.偏相关系数是指多元回归分析中,(当其他变量固定时,给定的两个变量之间的)的相关系数。 5.Spss中回归方程的建模方法有(一元线性回归、多元线性回归、岭回归、多对多线性回归)等。 6.主成分分析是通过适当的变量替换,使新变量成为原变量的(线性组合),并寻求(降维)的一种方法。 7.主成分分析的基本思想是(设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来替代原来的指标)。 8.主成分表达式的系数向量是(相关系数矩阵)的特征向量。 9.样本主成分的总方差等于(1)。 10.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为(方差贡献度)。主成分的协方差矩阵为(对称)矩阵。主成分表达式的系数向量是(相关矩阵特征值)的特征向量。 11.SPSS中主成分分析采用(analyze—data reduction—facyor)命令过程。 12.因子分析是把每个原始变量分解为两部分因素,一部分是(公共因子),另一部分为(特殊因子)。 13.变量共同度是指因子载荷矩阵中(第i行元素的平方和)。 14.公共因子方差与特殊因子方差之和为(1)。 15.聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的(亲疏程度)进行科学的分类。 16.Q型聚类法是按(样品)进行聚类,R型聚类法是按(变量)进行聚类。 17.Q型聚类统计量是(距离),而R型聚类统计量通常采用(相关系数)。 18.六种Q型聚类方法分别为(最长距离法)、(最短距离法)、(中间距离法)、(类平均法)、(重心法)、(离差平方和法)。 19.快速聚类在SPSS中由(k-均值聚类(analyze—classify—k means cluster))过程实现。 20.判别分析是要解决在研究对象已(已分成若干类)的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。 21.用判别分析方法处理问题时,通常以(判别函数)作为衡量新样本点与各已知组别接近程度的指标。 22.进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有(Fisher准则)、(贝叶斯准则)。 23.类内样本点接近,类间样本点疏远的性质,可以通过(类与类之间的距离)与(类内样本的距离)的大小差异表现出来,而两者的比值能把不同的类区别开来。这个比值越大,说明类与类间的差异越(类与类之间的距离越大),分类效果越(好)。24.Fisher判别法就是要找一个由p个变量组成的(线性判别函数),使得各自组内点的

统计学--统计学-——典型案例、问题和思想

经济管理类“十二五”规划教材统计学 -基于典型案例、问题和思想 主讲林海明

第一章绪论 【引言】我们从如下9个重要事例,说明统计学有什么用。 事例1:二次世界大战中,最激烈的空战是英国抗击德国的空战,英军为了提高战斗力,急需找到英军战机空战中的危险区域加固钢板,统计学家瓦尔德用统计学

方法找到了危险区域,英军用钢板加固了这些危险区域,使英军取得了空战的胜利。 事例2:上世纪20-30年代,为了找到中国革命的主力军和道路,政治家毛泽东悟出了统计学的频数方法,用此找到了中国革命的主力军是农民,中国革命的道路是农村包围城市。由此不屈不饶的奋斗,由弱变强,建立了独立自主的中华人民共和国,他还发现了“没有调查,就没有发

言权”的科学论断。 事例3:1998年,美国博耶研究型大学本科生教育委员会发表了题为《重建本科生教育:美国研究型大学发展蓝图》的报告,该报告指出:为了培养科学、技术、学术、政治和富于创造性的领袖,研究型大学必须“植根于一种深刻的、永久性的核心:探索、调查和发现”。这说明了统计学中调查的重要性。

事例4:在居民收入贫富差距的测度方面,美国统计学家洛仑兹(1907)、意大利经济学家基尼(1922)找到了统计学的洛仑兹曲线、基尼系数,由此给出了居民收入贫富差距的划分结果,为政府改进居民收入贫富不均的问题提供了政策依据。 事例5:二战后产品质量差的日本,以田口玄一为代表的质量管理学者用统计学方法找到了3σ质量管理原则,用其大幅提

高了企业的产品质量,其产品畅销海内外,日本因此成为当时的第二经济强国。该学科现已发展到了6σ质量管理原则。 事例6:在第二次世界大战的苏联卫国战争中,专家们用英国统计学家费歇尔(1 925)的最大似然法、无偏性,帮助苏军破解了德军坦克产量的军事秘密,由此苏军组织了充足的军事力量并联合盟军,打败了德军的疯狂进攻并占领了柏林。

多元统计分析期末复习

多元统计分析期末复习 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. )' ,...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

(3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确),(~∑μP N X μ ∑ μ p X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ) ()1(,,n X X X )',,,(21p X X X )' )(() ()(1X X X X i i n i --∑=n 1X μ∑μX ) 1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析案例分析.docx

精品资料 一、对我国30个省市自治区农村居民生活水平作聚类分析 1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。现从2010年的调查资料中

2、将数据进行标准化变换:

3、用K-均值聚类法对样本进行分类如下:

分四类的情况下,最终分类结果如下: 第一类:北京、上海、浙江。 第二类:天津、、辽宁、、福建、甘肃、江苏、广东。 第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。 第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。 二、判别分析 针对以上分类结果进行判别分析。其中将新疆作作为待判样本。判别结果如下:

**. 错误分类的案例 从上可知,只有一个地区判别组和原组不同,回代率为96%。 下面对新疆进行判别: 已知判别函数系数和组质心处函数如下: 判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7 Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7 Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:Y1=-1.08671 Y2=-0.62213 Y3=-0.84188 计算Y值与不同类别均值之间的距离分别为:D1=138.5182756 D2=12.11433124 D3=7.027544292 D4=2.869979346 经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。 三,因子分析: 分析数据在上表的基础上去掉两个耕地面积和农村固定资产投资两个指标。经spss软件分析结果如下:

实用多元统计分析相关习题学习资料

实用多元统计分析相 尖习题 练习题 一、填空题 1?人们通过各种实践,发现变量之间的相互矢系可以分成(相尖)和(不相尖)两种 类型。多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相尖系数。 2?总离差平方和可以分解为(回归离差平方和)和(剩余离差平方和)两个部分,其中(回归离差平方和)在总离差平方和中所占比重越大,则线性回归效果越显著。 3 ?回归方程显著性检验时通常采用的统计量是(S R/P)/[S E/ (n-p-1) ]O 4?偏相尖系数是指多元回归分析中,(当其他变量固定时,给定的两个变量之间的) 的相尖系数。 5. Spss中回归方程的建模方法有(一元线性回归、多元线性回归、岭回归、多对多线性回归)等。

6 ?主成分分析是通过适当的变量替换,使新变量成为原变量的(线性组合),并寻求 (降维)的一种方法。 7 ?主成分分析的基本思想是(设法将原来众多具有一定相尖性(比如P个指标),重 新组合成一组新的互相无矢的综合指标来替代原来的指标)。 8 ?主成分表达式的系数向量是(相尖系数矩阵)的特征向量。 9 ?样本主成分的总方差等于(1)。 10 ?在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为(方差贡献度)。主成分的协方差矩阵为(对称)矩阵。主成分表达式的系数向量是(相尖矩阵特征值)的特征向量。 11. SPSS 中主成分分析采用(analyze—data reduction — facyor)命令过程。 12?因子分析是把每个原始变量分解为两部分因素,一部分是(公共因子),另一部

分为(特殊因子)。 13 ?变量共同度是指因子载荷矩阵中(第i行元素的平方和)。 14 ?公共因子方差与特殊因子方差之和为(1) o 15 ?聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的(亲疏 程度)进行科学的分类。 16. Q型聚类法是按(样品)进行聚类,R型聚类法是按(变量)进行聚类。 17. Q型聚类统计量是(距离),而R型聚类统计量通常采用(相尖系数)。 18. 六种Q型聚类方法分别为(最长距离法)、(最短距离法)、(中间距离法)、(类平均法)、(重心法)、(离差平方和法)。 19?快速聚类在SPSS中由(k■均值聚类(analyze— classify— k means cluste))过程实 现。 20. 判别分析是要解决在研究对象已(已分成若干类)的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。 21. 用判别分析方法处理问题时,通常以(判别函数)作为衡量新样本点与各已知组别接近程度的指标。 22. 进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有 (Fisher准则)、(贝叶斯准则)。 23. 类内样本点接近,类间样本点疏

多元统计分析习题分为三部分思考题验证题和论文题

《多元统计分析》习题分为三部分:思考题、验证题和论文题 思考题 第一章绪论 1﹑什么是多元统计分析? 2﹑多元统计分析能解决哪些类型的实际问题? 第二章聚类分析 1﹑简述系统聚类法的基本思路。 2﹑写出样品间相关系数公式。 3﹑常用的距离及相似系数有哪些?它们各有什么特点? 4﹑利用谱系图分类应注意哪些问题? 5﹑在SAS和SPSS中如何实现系统聚类分析? 第三章判别分析 1﹑简述距离判别法的基本思路,图示其几何意义。 2﹑判别分析与聚类分析有何异同? 3﹑简述贝叶斯判别的基本思路。 4﹑简述费歇判别的基本思路。 5﹑简述逐步判别法的基本思想。 6﹑在SAS和SPSS软件中如何实现判别分析? 第四章主成分分析 1﹑主成分分析的几何意义是什么? 2﹑主成分分析的主要作用有那些? 3﹑什么是贡献率和累计贡献率,其意义何在? 4﹑为什么说贡献率和累计贡献率能反映主成分中所包含的原始变量的信息? 5﹑为什么要用标准化数据去估计V的特征向量与特征值? 6﹑证明:对于标准化数据有S=R。 7﹑主成分分析在SAS和SPSS中如何实现? 第五章因子分析 1﹑因子得分模型与主成分分析模型有何不同?

2﹑因子载荷阵的统计意义是什么? 3﹑方差旋转的目的是什么? 4﹑因子分析有何作用? 5﹑因子模型与回归模型有何不同? 6﹑在SAS和SPSS中如何实现因子分析? 第六章对应分析 1﹑简述对应分析的基本思想。 2﹑简述对应分析的基本原理。 3﹑简述因子分析中Q型与R 型的对应关系。 4﹑对应分析如何在SAS和SPSS中实现? 第七章典型相关分析 1﹑典型相关分析适合分析何种类型的数据? 2﹑简述典型相关分析的基本思想。 3﹑典型变量有哪些性质? 4﹑典型相关系数和典型变量有何意义? 5﹑典型相关分析有何作用? 6 ﹑在SAS和SPSS中如何实现典型相关分析? 验证题 第二章聚类分析 1、为了更深入了解我国人口的文化程度,现利用1990年全国人口普查数据对全国30个省、直辖市、自治区进行聚类分析。分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人都占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映较高、中等、较低文化程度人口的状况。计算样品之间的相似系数,使用最长距离法、重心法和Ward法,将上机结果按样品号画出聚类图,并根据聚类图将30个样品分为四类。 2、根据信息基础设施的发展状况,对世界20个国家和地区进行分类。只要采用6个指标:(1)Call—每千人拥有电话线数,(2)movecall—每千户居民蜂窝移动电话数,(3)fee—高峰时期每三分钟国际电话的成本,(4)Computer—每千人拥有的计算机数,(5)mips—每千人中计算机功率(每秒百万指令),(6)net—每千人互联网络户主数。计算样本之间的距离采用欧式距离,用最长距离法、重心法、离差平方和法进行计算。

应用多元统计分析试题及答案

一、填空题: 1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法. 2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著. 3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为 Q型聚类和 R型聚类。 4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。 5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。 6、若 () (,), P x N αμα∑ :=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。 二、简答 1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。 2、简述相应分析的基本思想。 相应分析,是指对两个定性变量的多种水平进行分析。设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。要寻求列联表列因素A和行因素B

的基本分析特征和最优列联表示。相应分析即是通过列联表的转换,使得因素A 和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。 3、简述费希尔判别法的基本思想。 从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数: 确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。 5、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设 和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 协差阵的检验 检验0 ΣΣ

多元统计分析重点归纳.归纳.docx

多元统计分析重点宿舍版 第一讲:多元统计方法及应用;多元统计方法分类(按变量、模型、因变量等) 多元统计分析应用 选择题:①数据或结构性简化运用的方法有:多元回归分析,聚类分析,主成分分析,因子分析 ②分类和组合运用的方法有:判别分析,聚类分析,主成分分析 ③变量之间的相关关系运用的方法有:多元回归,主成分分析,因子分析, ④预测与决策运用的方法有:多元回归,判别分析,聚类分析 ⑤横贯数据:{因果模型(因变量数):多元回归,判别分析相依模型(变量测度):因子分析,聚类分析 多元统计分析方法 选择题:①多元统计方法的分类:1)按测量数据的来源分为:横贯数据(同一时间不同案例的观测数据),纵观数据(同样案例在不同时间的多次观测数据) 2)按变量的测度等级(数据类型)分为:类别(非测量型)变量,数值型(测量型)变量 3)按分析模型的属性分为:因果模型,相依模型 4)按模型中因变量的数量分为:单因变量模型,多因变量模型,多层因果模型 第二讲:计算均值、协差阵、相关阵;相互独立性 第三讲:主成分定义、应用及基本思想,主成分性质,主成分分析步骤 主成分定义:何谓主成分分析 就是将原来的多个指标(变量)线性组合成几个新的相互无关的综合指标(主成分),并使新的综合指标尽可能多地反映原来的指标信息。 主成分分析的应用 :(1)数据的压缩、结构的简化;(2)样品的综合评价,排序 主成分分析概述——思想:①(1)把给定的一组变量X1,X2,…XP ,通过线性变换,转换为一组不相关的变量Y1,Y2,…YP 。(2)在这种变换中,保持变量的总方差(X1,X2,…Xp 的方差之和)不变,同时,使Y1具有最大方差,称为第一主成分;Y2具有次大方差,称为第二主成分。依次类推,原来有P 个变量,就可以转换出P 个主

多元统计分析简答题..

1、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设H0和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 协差阵的检验 检验0=ΣΣ 0p H =ΣI : /2/21exp 2np n e tr n λ????=-?? ?????S S 00p H =≠ΣΣI : /2/2**1exp 2np n e tr n λ????=-?? ????? S S 检验12k ===ΣΣΣ012k H ===ΣΣΣ: 统计量/2/2/2/211i i k k n n pn np k i i i i n n λ===∏∏S S 2. 针对一个总体均值向量的检验而言,在协差阵已知和未知的两种情形下,如何分别构造的统计量? 3. 作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系? 答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。 多元线性回归分析的线性关系指的是随机变量间的关系,因变量y 与回归系数βi 间存在线性关系。 多元线性回归的条件是: (1)各自变量间不存在多重共线性; (2)各自变量与残差独立; (3)各残差间相互独立并服从正态分布; (4)Y 与每一自变量X 有线性关系。 4.回归分析的基本思想与步骤 基本思想:

应用多元统计分析习题解答_因子分析

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++ ++ ++ 1,2, ,i p = 因子载荷阵为1112 121 22212 12 (,, ,)m m m p p pm a a a a a a A A A a a a ????? ?==?????? ? ?A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a 若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了

(整理)基于SPSS的多元统计分析三种算法的实例研究.

基于SPSS的多元统计分析三种算法的实例研究 摘要 本文主要应用多元统计中的多元回归分析模型、因子分析模型、判别分析模型解决三个有关经济方面的问题,从而能更深的理解多元统计分析这门课程,并熟悉SPSS软件的一些基本操作。 关键词:多元回归分析,因子分析,判别分析,SPSS

第一章 多元线性回归分析 1.1 研究背景 消费是宏观经济必不可少的环节,完善的消费模型可以为宏观调控提供重要的依据。根据不同的理论可以建立不同的消费函数模型,而国内的许多学者研究的主要是消费支出与收入的单变量之间的函数关系,由于忽略了对消费支出有显著影响的变量,其所建立的方程必与实际有较大的偏离。本文综合考察影响消费的主要因素,如收入水平、价格、恩格尔系数、居住面积等,采用进入逐步、向前、向后、删除、岭回归方法,对消费支出的多元线性回归模型进行研究,找出能较准确描述客观实际结果的最优模型。 1.2 问题提出与描述、数据收集 按照经济学理论,决定居民消费支出变动的因素主要有收入水平、居民消费意愿、消费环境等。为了符合我国经济发展的不平衡性的现状,本文主要研究农村居民的消费支出模型。文中取因变量Y 为农村居民年人均生活消费支出(单位:元),自变量为农村居民人均纯收入X 1(单位:元)、商品零售价格定基指数X 2(1978年的为100)、消费价格定基指数X 3(1978年的为100)、家庭恩格尔系数X 4(%)、人均住宅建筑面积X 5(单位:m 2)。本文取1900年至2009年的数据(数据来源:中华人民共和国国家统计局网公布的1996至2010年中国统计年鉴)列于附录的表一中。 1.3 模型建立 1.3.1 理论背景 多元线性回归模型如下: εββββ+++++=p p X X X Y ...... 22110 Y 表示因变量,X i (i=1,…,p )表示自变量,ε表示随机误差项。 对于n 组观测值,其方程组形式为 εβ+=X Y 即

多元统计分析模拟试题

多元统计分析模拟试题(两套:每套含填空、判断各二十道) A卷 1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步 判别法。 2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。 3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。 4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极 大似然法 5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析 6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计 7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为 P e= 1?R2 8)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。 9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化 为几个综合指标的多元统计方法。 10)在进行主成分分析时,我们认为所取的m(m

多元统计分析案例分析.doc

、对我国30个省市自治区农村居民生活水平作聚类分析 1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。因此选取以下指标:农 村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯

92.87 79.35 3590 3457.9 4643 4124.6 18.7 数据来源:《中国统计年鉴2010》 2、将数据进行标准化变换: 3、用K-均值聚类法对样本进行分类如下:

分四类的情况下,最终分类结果如下: 第一类:北京、上海、浙江。 第二类:天津、、辽宁、、福建、甘肃、江苏、广东。 第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。

从分类结果上看,根据2 0 10年的调查数据,第一类地区的农民生活水平较高, 第二类属于中等水平,第三类、第四类属于较低水平。 二、判别分析 **.错误分类的案例 从上可知,只有一个地区判别组和原组不同,回代率为96%。下面对新疆进行判别: 已知判别函数系数和组质心处函数如下:

判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7 Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7 Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:丫1=-1.08671 Y2=-0.62213 Y3=-0.84188 计算丫值与不同类别均值之间的距离分别为:D1=138.5182756 D2=12.11433124 D3=7.027544292 D4=2.869979346 经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。 三,因子分析: 分析数据在上表的基础上去掉两个耕地面积和农村固定资产投资两个指标。经spss软件分析结果如下: (1)各指标的相关系数阵:

多元统计分析心得

多元统计分析读书心得 聚类分析 聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。聚类分析方法认为,在所研究的统计总体中,各样品或指标(变量)之间存在着程度不同的相似性(亲琉关系),因此可以根据一批样品的多个观测指标,具休找到一些能够度量其相似程度的统计量,并依据这些统计量完成事物的分类。具体的方法,是按样品或指标的相似性或亲疏关系,逐级地归并即聚类,每次的归并聚成一个新的类.直到把全部的样品或指标聚成一类,形成一个由小类逐步到大类的分类系统为止二若将聚类过程的结果绘成一张分类图谱并进行分析、则就可以完成整个聚类分析过程。 它的主要应用有:聚类分析在商业上被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。在生物上聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识。在地理上,聚类能够帮助在地球中被观察的数据库商趋于的相似性。聚类分析在因特网上被用来在网上进行文档归类来修复信息等等。 下面来简要介绍一下曲国庆和姜玉春写的聚类分析及其在土地利用分类上的应用,它利用系统聚类分析的基本原理,并根据实际的土地申报登记和土地利用的调查资料,选择反映住宅建设和占地情况的人均占地面积、平均年建房率、建设用地利用率、反映耕地分布和占有情况的人均耕地面积、当地经济状况等为聚类指标,探讨聚类分析的模式相似性测度,计算方法和步骤。这其中涉及了很多问题,如样本数据的采集、统计、标准化和样本相似度测度的选择及确定,文章最后给出了土地利用聚类分析的计算方法和步骤。 读何晓群编著的多元统计分析和张文璋编著的实用统计分析方法与SPSS应用得出的一些体会如下:在聚类分析这一章,张文璋编的多元更具有系统性和层次性,比如他将聚类分析方法用一个表格的形式表现出来,让不同方法之间的区别与联系一目了然,同时,他将理论分析和SPSS软件操作结合在一起,都进行了仔细的讲述。 回归分析 在数量分析中,我们经常会看到变量与变量之间存在着一定的联系,而不只是前面所讨论的单个变量的某些孤立的特性,如均值、方差的特性等。我们要了解的是变量之间是如何发生相互影响的,这就是所谓的相关分析和回归分析。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,运用十分广泛,回归分析按照涉及的自变量的多少,可

相关主题
文本预览
相关文档 最新文档