当前位置:文档之家› 高效液相色谱法(HPLC)的概述

高效液相色谱法(HPLC)的概述

高效液相色谱法(HPLC)的概述
高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC

主要容包括:

1.高效液相色谱法(HPLC)的概述

2. 高效液相色谱基础知识介绍(1——13楼)

3. 高压液相色谱HPLC发展概况、特点与分类

4. 液相色谱的适用性

5.应用

高效液相色谱法(HPLC)的概述

以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。

由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

在中药制剂分析中,大多采用反相键合相色谱法。

系统组成:

(一)高压输液系统

由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。

1.贮液罐

由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。

2.流动相

流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。

流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。

3.高压输液泵

是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要:耐腐蚀、耐高压、无脉冲、输出流量围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。

(二)进样系统

常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。

(三)色谱柱

由柱管和填充剂组成。柱管多用不锈钢制成。柱填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅胶(C

8柱)、氨基或氰基键合硅胶等,在中药制剂的定量分析中,主要使用ODS柱。由于ODS属于非极性固定相,在分离分析时一般使用极性流动相,所以属反相色谱法。常用流动相有甲醇-水或乙腈-水等,洗脱时极性大的组分先出柱,极性小的组分后出柱。

(四)检测器

在高效液相色谱法中主要使用紫外检测器(UVD),可分为固定波长、可变波长和二极管阵列检测器三种类型,以可变波长紫外检测器应用最广泛。检测器由光源、流通池和记录器组成,其工作原理是进入检测器的组分对特定波长的紫外光能产生选择性吸收,其吸收度与浓度的关系符合光吸收定律。

高效液相色谱基础知识介绍(1——13楼)

一、基本概念和术语

1.色谱图和峰参数

⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).

⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。

⊕噪音(noise)――基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。

⊕漂移(drift)基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱的污染物或固定相不断被洗脱下来也会产生漂移。

⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。

⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。也称为对称因子(s ymmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.0 5。T<0.95为前延峰,T>1.05为拖尾峰。

⊕峰底――基线上峰的起点至终点的距离。

⊕峰高(Peak height,h)――峰的最高点至峰底的距离。

⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ。

⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。W h/2=2.355σ。⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。正常峰宽的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。⊕峰面积(peak area,A)――峰与峰底所包围的面积。A=×σ×h=2.507σh=1.064Wh/2h

[Last edit by madprodigy]

2.定性参数(保留值)

⊕死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。在反相HPLC中可用苯磺酸钠来测定死时间。

⊕死体积(dead volume,V0)――由进样器进样口到检测器流动池未被固定相所占据的空间。它包括4部分:进样器至色谱柱管路体积、柱固定相颗粒间隙(被流动相占据,Vm)、柱出口管路体积、检测器流动池体积。其中只有Vm参与色谱平衡过程,其他3部粉只起峰扩展作用。为防止峰扩展,这3部分体积应尽量减小。V0=F×t0(F为流速)

⊕保留时间(retention time,tR)--从进样开始到某个组分在柱后出现浓度极大值的时间。⊕保留体积(retention volume,VR)--从进样开始到某个组分在柱后出现浓度极大值时流出溶剂的体积。又称洗脱体积。VR=F*tR .

⊕调整保留时间(adjusted retention time,tR’)--扣除死时间后的保留时间。也称折合保留时间(reduced retention time)。在实验条件(温度、固定相等)一定时,tR’只决定于组分的性质,因此,tR’(或tR)可用于定性。TR’=tR-t0

⊕调整保留体积(adjusted retention volume,VR’)--扣除死体积后的保留体积。VR=VR-V0 或VR=F*tR’

3.柱效参数

⊕理论塔板数(theoretical plate number,N)用于定量表示色谱柱的分离效率(简称柱效)。N取决于固定相的种类、性质(粒度、粒径分布等)、填充状况、柱长、流动相的种类和流速及测定柱效所用物质的性质。如果峰形对称并符合正态分布,N可近似表示为:

N=(tR/σ)2=16(tR)2/W =5.54(tR/W1/2)2

W:峰宽;σ:曲线拐点处峰宽的一半,即峰高0.607处峰宽的一半。

N为常量时,W随tR成正比例变化。在一多组分色谱图上,如果各组份含量相当,则后洗脱的峰比前面的峰要逐渐加宽,峰高则逐渐降低。

用半峰宽计算理论塔板数比用峰宽计算更为方便和常用,因为半峰宽更容易准确测定,尤其是对稍有拖尾的峰。

N与柱长成正比,柱越长,N越大。用N表示柱效时应注明柱长,,如果未注明,则表示柱长为1米时的理论塔板数。(一般HPLC柱的N在1000以上。)

若用调整保留时间(tR’)计算理论塔板数,所得值称为有效理论塔板数(N有效或Neff)=16(tR’/W)2

⊕理论塔板高度(theortical plate height,H)每单位柱长的方差。H=。实际应用时往往用柱长L和理论塔板数计算:H=L/N

4.相平衡参数(distribution coefficient,K)--在一定温度下,化合物在两相间达到分配平衡时,在固定相与流动相中的浓度之比。K=[xs]/[xm]

Cs-溶质在固定相中的浓度

Cm-溶剂在流动相中的浓度

分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数(或称交换系数),凝胶色谱法为滲透参数。但一般情况可用分配系数来表示。

在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs 、Cm很小)时,K 只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减少,这时色谱峰为拖尾峰;而有时随着溶质浓度的增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能较少进样量,使组份在柱浓度降低,K恒定时,才能获得正常峰。

在同一色谱条件下,样品中K值大的组份在固定相中滞留时间长,后流出色谱柱;K值小的组份则滞留时间短,先流出色谱柱。混合物中各组份的分配系数相差越大,越容易分离,因此,混合物中各组份的分配系数不同是色谱分离的前提。

在HPLC中,固定相确定后,K主要受流动相的性质影响。实践中主要靠调整流动相的组成配比及PH值,以获得组分间的分配系数差异及适宜的保留时间,达到分离的目的。

⊕容量因子(capacity factor,K)--化合物在两相间达到平衡时,在固定相与流动相中的量之比。K=(tR-t0)/t0=tR’/t0(或溶质在固定相中的量/溶质在流动相中的量)。因此,容量因子也称质量分配系数。

{K=Cs/Cm=K’Vm/Vs k=(tR-t0)/t0=K*Vs/Vm Vs:色谱柱中固定相的体积; Vm:色谱柱中流动相的体积。}

分配系数、容量因子与保留时间之间有如下关系:k===K=,tR’=kt0。上式说明容量因子的物理意义:表示一个组份在固定相中停留的时间(tR’)是不保留组分保留时间(t0)的几倍。k=0时,化合物全部存在与流动相中,在固定相中不保留,tR’=0;k越大,说明固定相对此组分的容量越大,出柱慢,保留时间越长。

容量因子与分配系数的不同点是:K取决于组分、流动相、固定相的性质及温度,而与体积Vs、Vm无关;k除了与性质及温度有关外,还与Vs、Vm有关。由于tR’、t0较Vs、Vm易于测定,所以容量因子比分配系数应用更广泛。

⊕选择性因子(selectivity factor,α)--相邻两组份的分配系数或容量因子之比。α==(设k2>k1)。因k=tR’/t0,则α=k2/k1,所以α又称为相对保留时间(《美国药典》)。要使两组分得到分离,必须使α≠1。α与化合物在固定相和流动相中的分配性质、柱温有关,与柱尺寸、流速、填充情况无关。从本质上来说,α的大小表示两组份在两相间的平衡分配热力学性质的差异,即分子间相互作用力的差异。

5.分离参数

⊕分离度(resolution,R)--相邻两峰的保留时间之差与平均峰宽的比值。也叫分辨率,表示相邻两峰的分离程度。R=(tR2-tR1)/[(W1+W2)/2],当W1=W2时,R=。当R=1时,称为4σ分离,两峰基本分离,裸露锋面积为95.4%,测峰基重叠约2%。R=1.5时,称为6σ分离,裸露锋面积为99.7%。R≥1.5称为完全分离。《中国药典》规定R应大于1.5。

⊕基本分离方程――分离度与三个色谱基本参数有如下关系:

R=1/4(а-1)×N0.5×[k’/(1+k’)]

其中N称为柱效项,α为柱选择项,k’为柱容量项。柱效项与色谱过程动力学特性有关,后两项与色谱过程热力学因素有关。

从基本分离方常可看出,提高分离度有三种途径:①增加塔板数。方法之一是增加柱长,但这样会延长保留时间、增加柱压。更好的方法是降低塔板高度,提高柱效。②增加选择性。当α=1时,R=0,无论柱效有多高,组分也不可能分离。一般可以采取以下措施来改变选择性:a.改变流动相的组成及PH值;b.改变柱温;c.改变固定相。③改变容量因子。这常常是提高分离度的最容易方法,可以通过调节流动相的组成来实现。k2趋于0时,R也趋于0;k2增大,R也增大。但k2 不能太大,否则不但分离时间延长,而且峰形变宽,会影响分离度和检测灵敏度。一般k2 在1~10围,最好为2~5,窄径柱可更小些。

二、塔板理论

1.塔板理论的基本假设

塔板理论是Martin和Synger首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔的分配平衡过程。塔板理论的基本假设为:

1)色谱柱存在许多塔板,组分在塔板间隔(即塔板高度)完全服从分配定律,并很快达到分配平衡。

2)样品加在第0号塔板上,样品沿色谱柱轴方向的扩散可以忽略。

3)流动相在色谱柱间歇式流动,每次进入一个塔板体积。

4)在所有塔板上分配系数相等,与组分的量无关。

虽然以上假设与实际色谱过程不符,如色谱过程是一个动态过程,很难达到分配平衡;组分沿色谱柱轴方向的扩散是不可避免的。但是塔板理论导出了色谱流出曲线方程,成功地解释了流出曲线的形状、浓度极大点的位置,能够评价色谱柱柱效。

2.色谱流出曲线方程及定量参数(峰高h和峰面积A)

根据塔板理论,流出曲线可用下述正态分布方程来描述;

C=e 或 C=e

由色谱流出曲线方程可知;当t=tR时,浓度C有极大值,Cmax=.Cmax就是色谱峰的峰高。

因此上式说明;①当实验条件一定时(即σ一定),峰高h与组分的量C0(进样量)成正比,所以正常峰的峰高可用于定量分析。

②当进样量一定时,σ越小(柱效越高),峰高越高,因此提高柱效能提高HPLC分析的灵敏度。

由曲线方程对V(0~∞)求积分,即得出色谱峰面积A=×σ×Cmax =C0。可见A相当于组分进样量C0,因此是常用的定量参数。把Cmax=h和Wh/2=2.355σ代入上式,即得A=1. 064×Wh/2×h,此为正常峰的峰面积计算公式。

三、速率理论(又称随机模型理论)

1.液相色谱速率方程

1956年荷兰学者Van Deemter等人吸收了塔板理论的概念,并把影响塔板理论高度的动力学因素结合起来,提出了色谱过程的动力学理论――速率理论。它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。

后来Giddings和Snyder等人在Van Deemter方程(H=A+B/u+Cu,后称气相色谱速率方程)的基础上,根据液体与气体的性质差异,提出了液相色谱速率方程(即Giddings方程):

H=2λdp++\s\up5(2p+\s\up 5(2p+\s\up 5(2f

2.影响柱效的因素

1)涡流扩散(eddy diffusion).由于色谱柱填充剂的几何结构不同,分子在色谱柱中的流速不同而引起的峰展宽。涡流扩散项A=2λd p,dp为填料直径,λ为填充不规则因子,填充越不均匀λ越大。HPLC常用填料粒度一般为3~10 um,最好3~5um,粒度分布RSD≤5%。但粒度太小难于填充均匀(λ大),且会使柱压过高。大而均匀(球形或近球形)的颗粒容易填充规则均匀,λ越小。总的说来,应采用而均匀的载体,这种有助于提高柱效。毛细管无填料,A=0。

2)分子扩散(molecular diffusion).又称纵向扩散。由于进样后溶质分子在柱存在浓度梯度,导致轴向扩散而引起的峰展宽。分子扩散项B/u=2rDm/u.u为流动相线速度,分子在柱的滞留时间越长(u小),展宽越严重。在低流速时,它对峰形的影响较大。Dm为分子在流动相中的扩散系数,由于液相的Dm 很小,通常仅为气相的10-4~10-5,因此在HPLC中,只要流速不太低的话,这一项可以忽略不计。r一般在0.6~0.7左右,毛细管柱的r=1。3)传质阻抗(mass transfer resistance)。由于溶质分子在流动相和固定相中的扩散、分配、转移的过程并不是瞬间达到平衡,实际传质速度是有限的,这一时间上的滞后使色谱柱总是在非平衡状态下工作,从而产生峰展宽。液相色谱的传质阻抗项Cu又分为三项。

①流动相传质阻抗Hm=Cmd2pu/Dm,Cm为常数。这是由于在一个流路中硫路中心和边缘的流速不等所致。靠近填充颗粒的流动相流速较慢,而中心较快,处于中心的分子还未来得及与固定相达到分配平衡就随流动相迁移,因而产生峰展宽。

②静态流动相传质阻抗Hsmd2pu/Dm,Csm为常数。这是由于溶质分子进入处于固定相孔穴的静止流动相中,晚回到流路中而引起峰展宽。Hsm对峰展宽的影响在整个传质过程中起着主要作用。固定相的颗粒越小,微孔孔径越大,传质阻力就越小,传质速率越高。所以改进固定相结构,减小静态流动相传质阻力,是提高液相色谱柱效的关键。

Hsm和Hsm都与固定相的粒径平方d2p成正比,与扩散系数Dm成反比。因此应采用低力度固定相和低粘度流动相。高柱温可以增大Dm,但用有机溶剂作流动相时,易产生气泡,因

此一般采用室温。

③固定相传质阻抗Hs=Csd2fu/Ds(液液分配色谱),Cs为常数,df为固定液的液膜厚度,Ds为分子在固定液中的扩散系数。在分配色谱中Hs与df 的平方成正比,在吸附色谱中Hs 与吸附和解吸速度成反比。因此只有在厚涂层固定液、深孔离子交换树脂或解吸速度慢的吸附色谱中,Hs才有明显影响。采用单分子层的化学键合固定相时Hs可以忽略。

从速率方程式可以看出,要获得高效能的色谱分析,一般可采用以下措施:①进样时间要短。

②填料粒度要小。③改善传质过程。过高的吸附作用力可导致严重的峰展宽和拖尾,甚至不可逆吸附。④适当的流速。以H对u作图,则有一最佳线速度uopt,在此线速度时,H最小。一般在液相色谱中,uopt很小(大约0.03~0.1mm/s)在这样的线速度下分析样品需要很长时间,一般来说都选在1mm/s的条件下操作。⑤较小的检测器死体积。

[Last edit by madprodigy]

3.柱外效应、

速率理论研究的是柱峰展宽因素,实际在柱外还存在引起峰展宽的因素,即柱外效应(色谱峰在柱外死空间里的扩展效应)。色谱峰展宽的总方差等于各方差之和,

即:σ2=σ2柱+σ2柱外+σ2器它

柱外效应主要有低劣的进样技术、从进样点到检测池之间除柱子本身以外的所有死体积所引起。为了减少柱外效应,首先应尽可能减少柱外死体积,,如使用“零死体积接头”连接各部件,管道对接宜成流线型,检测器的腔体积应尽可能小。研究表明柱外死体积之和应

柱外效应的直观标志是容量因子k小的组分(如k<2)峰形拖尾和峰宽增加得更为明显;k 大的组分影响不显著。由于HPLC的特殊条件,当柱子本身效率越高(N越大),柱尺寸越小时,柱外效应越显得突出。而在经典LC中则影响相对较小。

HPLC系统

HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部位。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、与柱或保护住、柱温控制器等,现代HPLC仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC仪还备有自动馏分收集装置。

最早的液相色谱仪有粗糙的高压泵、低效的柱、固定波长的检测器、绘图仪,绘出的峰是通过手工测量计算峰面积。后来的高压泵精度很高并可编程进行梯度洗脱,柱填料从单一品种发展至几百种类型,检测器从单波长之可变波长检测器、可得三维色谱图的二极管阵列检测器、可确证物质结构的质谱检测器。数据处理不再用绘图仪,逐渐取而代之的是最简单的积分仪、计算机、工作站及网络处理系统。

目前常见的HPLC仪生产厂家国外有Waters 公司、Agilent 公司(原HP公司)、岛津公司等,国有依利特公司、分析仪器厂、分析仪器厂等。

LC的运转中心——心脏

一、输液泵

1.泵的构造和性能

输液泵是HPLC系统中最重要的部件之一。砂的性能好坏直接影响到整个质量和分析结果的可靠性。输液泵应具备如下性能:①流量稳定,其RSD应〈0.5%,这结定性定量的准确性纛关重要;②流量围宽,分析型应在0.1~10ML/MIN围连续调,制备型应能达到100ML/M IN;③输出压力高,一般应能达到150~300KG/CM2:④液缸容积小;⑤密封性能好,耐腐蚀。

泵的种类很多,按输液性质可分为恒压泵和恒流泵。恒流泵按结构又可分为螺旋注射泵、柱塞往复泵和隔往复泵。恒压泵受柱阴影响,流量不稳定;螺旋泵缸体太大,这两种泵己被淘汰目前应用最多的是柱塞往复泵。

柱塞往复泵的液缸容积小,可至0.1ML,因此易于清洗和更换流动相,特别适合于再循环和梯度洗脱;改变电机转速能方便地调节流量,流量不受柱阴影响;泵压可达400KG/CM2。AD W主要缺点是输出的脉冲性较大,现多彩采用双泵系统来克服。双泵按连接方式可分为并联式和串联式,一般说来并联泵的流量重现性较好(RSD为0.1%左右,串联泵为0.2~0.3%),但出现故障的机会较多(因多一单向阀),价格也较贵。

项目 Waters515型 HP1100型 LC-10Atvp型 Elite P200 Ⅱ型检定要求

流速围 0.001~10 0.001~10 0.001~9.999 0.01~4.99

调节精度 0.001 0.001 0.001 0.01

流量精密度 RSD0.1% 0.15%(〈0.3%〉 0.3% 0.5% 1.5%

流量准确度±2.0%±5.0%±2.0%

最高压力 4000Psi 40MPa 39.2MPa 40.0MPa

密封圈寿命

流动相的脉冲

2.泵的使用和维护注意事项

为了延长泵的使用寿命和维持其输液的稳定性,必须按照下列注意事项进行操作:

①防止任何固体微粒进入泵体,因为尘埃或其它任何杂质微粒都会磨损柱塞、密封环、缸体和单向阀,因此应预先除去流动相中的任何固体微粒。流动相最好在玻璃容器蒸镏,而常用的方法是滤过,可采用MILLIPOIPORE滤膜(0.2或0.45)等滤器。泵的入口都应连接砂滤

棒(或片)。输液泵的滤器应经常清洗或更换。

②流动相不应含有任何腐性物质,含有缓冲液的流动相不应保留在柱,尤其是在停泵过夜或更长时间的情况下。如果将含缓冲液的流动相留在泵,由于蒸发或泄漏,甚至兴是由于溶液的静置,就可能析出盐的微细晶体,这些晶体将和上述固体微粒一样损坏密封环和柱塞等。因此,必须泵入纯水将泵充分清洗后,再换成适合于色谱术保存和有利于泵维护的溶剂(对于反相键合硅胶固定相,可以是甲醇或甲醇水)。

③泵工作时要留心防止溶剂瓶的流动相被用完,否则空泵运转也会磨损柱塞、缸体或密封环,最终产生漏液。

④输液泵的工作压力决不要超过规定的最高压力,否则会使高压密封环变形,产生漏液。

⑤流动相应该先脱气,以免在泵产生气泡,影响流量的稳定性如果有大量气泡,泵就无常工作。

如果输液泵产生故障,须查明原因,采取相应措施排除故障

①没有流动相流出,又无压力指示。原因可能是泵有大量气体,这时可打开泄压阀,使泵在较大流量下运转,将气泡排尽,也可用一个50ML针筒在泵出口处帮助抽出气体。另一个可能原因是密封环磨损,需更换。

②压力和流量不稳。原因可能是气泡,须要排除;或者是单向阀有异物,可卸下单向阀,进入丙酮超声清洗。有时可能是砂滤棒有气泡,或被盐的微细晶粒或滋生的微生物部分堵塞,这是,可卸下砂滤棒浸入流动相超声除气泡,或将纱滤棒浸入稀酸迅速除去微生物,或将盐溶解,再立即清洗。

③压力过高的原因是管路被堵塞,需要清除和清洗。压力降低的原因则可能是管路有泄漏。检查堵塞或泄漏时应逐段进行。

3.梯度洗脱

HPLC有等强度(isocratic)和梯度(gradient)洗脱两种方式。等度洗脱是在同一分析周期流动相组成保持恒定,适合于组分数目较少,性质差别不大的样品。梯度洗脱是在一个周期程序控制流动相的组成,如溶剂的极性、离子强度和PH值等,用于分析组分数目多、性质差异罚大的复杂样品。采用梯度洗脱可以缩短分析时间,提高分离度,改善峰形,提高检

测灵敏度,但是常常引起基线漂移和降低重现性。

梯度洗脱有两种方式:低压梯度(外梯度)和高压梯度(梯度)。

两种溶剂组成的梯度洗脱可按任意程度混合,即有多种洗脱曲线:线性梯度、凹形梯度、凸形梯度和阶梯形梯度。线性梯度最常用,尤其适合于在反相柱上进行梯度洗脱。

在进行梯度洗脱时,由于多种溶剂混合,而且组成不断变化,因此带来一些特殊问题,必须充分重视:

①要注意溶剂的互溶性,不相混溶的溶剂不能用作梯度洗脱的流动相,有些溶剂在一定比例混溶,超出围就不互溶,使用时更要引起注意。当有机溶剂和缓冲液混合时,还可能析出盐的晶体,尤其使用磷酸盐时需特别小心。

②梯度洗脱所用的溶剂纯度要求更高,以保证良好的重现性。进行样品分析前必须进行空白梯度洗脱,以辨认溶剂杂质峰,因为弱沧剂中的杂质富集在色谱柱头后会被强溶剂洗脱下来。用于梯度洗脱的溶剂需彻底脱气,以防止混合时产生气泡。

③混合溶剂的粘度常随组成而变化,因而在梯度洗脱时常出现压力的变化。例如甲醇和水粘主度都较小,当二者以相近比例混合时粘度增大很多,此时的柱压大约是甲醇或水流动相时的两倍。因此要注意防止梯度洗脱过程中压力超过输液泵或色谱柱能承受的最大压力。④每次梯度洗脱之后必须对色谱柱进行再生处理,使其恢复到初始流动相泫经色谱柱,使固定相与初始流动相达到完全平衡。

二、进样器——样品的进食系统

早期使用隔膜和停流进们器,装在色谱柱入口处。现在大都使用六通进样阀或自动进样器。进样装置要求:密封性好,死体积小,重复性好,保证中心进样,进样时对色谱系统的压力、流量影响小。HPLCfj样方式可分为:隔膜进样、停流进样、阀进样、自动进样。

1.隔膜进样。用微量注射器将样品注入专门设计的与色谱柱相连的进样头,可把样品直接送到柱头填充床的中心,死体积几乎等于零,可以获得最佳的柱效,且价格便宜,操作方便。但不能在高压下使用(如10MPA以上);此外隔膜容易吸附样品产生记忆效应,使进样重复性只能达到1~2%;加之能碉各种溶剂的橡皮不易找到,常规分析使用受到限制。

2.停流进样。可避免在高压下进样。但在HPLC中由于隔膜的污染,停泵或重新启动时往往会出现“鬼峰”;另一缺点是保留时间不准。在以峰的始末信号控制馏分收集的制备色谱中,效果较好。

3.阀进样。一般HPLC分析常用六通进样阀(以美国RHEODYNE公司的7725和7725I型最常

见),其关键部件由圆形密封垫子(转子)和固定底座(定子)组成。由于阀接头和连接管死体积在存在,柱效率低于隔膜进样(约下降5~10%左右),但耐高压(35~40MPA),进样量准确,重复性好(0.5%),操作方便。

六通阀进样方式有部分装液法和完全装液法两种。①用部分装液法进样时,进样量应不大于定量环体积的50%(最多75%),并要求每次进样体积准确、相同。此法进样的准确度和重复性决定于注器取样的熟练程度,而且易产生由进样引起的峰展宽。②用完全装液法进样时,进样量应不小于定量环体积的5~10倍9最少3倍),这样才能完全置换定量环和流动相,消除管壁效应,确保进样的准确度及重复性。

六通阀使用和维护注意事项:①样品溶液进样前必须用0.45UM滤膜过滤,以减少微粒对进样阀的磨损。②转动阀芯时不能太慢,更不能停留在中间位置,否则流动相受阻,使泵压力剧增,甚至超过泵的最大压力;转到进样位时,过高的压力将使柱头损坏。③为防止缓冲盐和样吕残留在进样阀中,每次分析结束后应冲洗进样阀。通常可用水冲洗,或先用能溶解样品的溶剂冲洗,再用水冲洗。

4.自动进样。用于大量样品的常规分析。

三、色谱柱——食物的消化吸收系统

色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。对色谱柱的要柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料好多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10UM等,柱效理论值可达5~16万/米。对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难的分离物质对则可采用高达2万的柱子,因此一般10~30CM左右的柱长就能满足复杂混合物分析的需要。

柱效受柱外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,不要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向算起30倍料径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。

1.柱的构造

色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。柱管多用不锈钢制成,压力不高于70KG/CM2 时,也可采用厚壁玻璃或石英管,管壁要求有很高的光洁度。为提高柱效,减小管壁效京,不锈钢柱壁多经过抛光。也有人在不锈钢柱壁涂敷氟塑料以提高壁的光洁度,其效果与抛光相同还有使用熔融硅或玻璃衬里的,用于细管柱。色谱柱两端的柱接头装有筛板,是烧结不锈钢或钛合金,孔径0.2-20um(5-10 um),取决于填料粒度,目的是防止填料漏出.

色谱柱按用途分为分析型和制备型两类,尺寸规格也不同:①常规分析柱(常量柱),径2-5mm(常量4.6mm,国又4mm和5mm),柱长10~30CM;②窄径柱(NARROWBORE,又称细管径柱、半微柱SEMI-MICROCOLUMN),径1~2MM,柱长10~20CM;③毛细管柱(又称微柱MICROCOLUMN),径0.2~0.5MM;④半制备柱,径>5MM;⑤实验室制备柱,径20~40MM,柱长10~30CM;⑥生产制备柱径可达几十厘米。柱径一般是根据柱长、填料粒径和折合流速来确定,目的是为了避免管壁效应。

2.柱的发展方向

因强调分析速度而发展出短柱,柱长3~10CM,填料粒径2~3UM。为提高分析灵敏度,与质谱(MS)联接,而发展出窄径柱、毛细管柱和径小于0.2MM的微径柱(MICROBORE)。细管径柱的优点是:①节省流动相;②灵敏度增加;③样品量少;④能使用长柱达到高分离度;⑤

容易控制柱温;⑥易于实现LC-MS联用。

但由于柱体积越来越小,柱外效应的影响就更加显著,需要更小池体积的检测器(甚至采用柱上检测),更小死体积的柱接头和连接部件。配套使用的设备应具备如下性能:输液泵能精密输出1~100UL/MIHN的低流量,进样阀能准确、重复地进样微小体积的样品。且因上样量小,要求高灵敏度检测器,电化学检测帮质谱仪在这方面具有突出优点。

3.柱的填充和性能评价

色谱柱的性能除了与固定相性能有关外,还与填充技术有关。在正常条件下,填料粒度>20um 时,干法填充制备柱较为合适;颗粒<20um时,湿法填充较为理想。填充方法一般有四种:①高压匀浆法,多有用于分析柱和小规模制备柱的填充;②径向加压法,Waters 专利;③轴向加压法,主要用于装填大直径柱;④干法。柱填充的技术性强,大多数实验室使用己填充好的商品柱。

必须指出,高效液相色谱柱的获得,装填技术是重要环节,但根本问题还在于填料本身性能的优劣,以及配套的色谱仪系统的结构是否合理。

无论是自己装填的还是购买的色谱柱,使用前都应对其性能进行考察,使用期间或放置一段时间后也要生意重新检查.柱性能指标包括在一定实验条件下(样品,流动相,流速,温度)下的柱压,理论塔板高度和塔板数,对称因子,容量因子和选择性因子和选择性因子的重复性,或分离度。一般说来容量因子和选择性因子的重复性在或以骨。进行柱效比较时,不要注意柱外效应是不有变化。

一份合格的色谱柱评价报告应给出柱的基本参数,如柱长,径,填料的种类,粒度,色谱柱的柱效,不对称度和柱压降等。

在操作中注意的地方

1、流动相的抽作要求:

高效液相级色谱醇,二次蒸馏水,缓冲盐一定要过滤;流动相脱气至关重要(可采用抽滤,超声波脱气等方法)

2、吸滤头:

特殊情况下可拆下滤头抽取以判断其中是否堵塞;亦可用注射器吸取流动相通过吸滤头打出以判断其是否堵塞。若有堵塞情况可用异丙醇超声波清洗;清洗不成功则需要更换。

3、单向阀:

如遇到泵压不稳或流动相不能抽取,则可能是单向阀出现问题,卸下用异丙醇超声波清洗,清洗时须按其安装的方向放置在小烧杯中,切记不可与安装方向倒置超洗!

4、泵头:

泵头漏液或出现其它故障一般要申请维修(如漏液,或更换柱塞杆及其密封垫等)

5、过滤器:

当色谱峰出现异常情况时,有可能是此部件被污染,拆下用异丙醇超洗或更换过滤垫片。6、排液阀:

此处不能完全密封或漏液时一般是其中的垫片污染或磨损,可卸下后取出其垫片用异丙醇超声波清洗或更换垫圈。

7、手动进样器:

平时应注意用二次蒸馏水和甲醇在装载状态及进样分析状态清洗;如出现漏液现象,原因极可能为转子密封垫磨损或污染,一般须申请维修或更换配件。

8、流通池:

在色谱峰不正常时会可能是此部件补污染。可拆卸后取出其中的垫片用异丙醇超洗(可根据说明书进行操作或申请维修)。

9、工作站:

出现死机可重起计算机;不正常运行时,首先可更换电脑测试其硬件故障;或在本机上重新插拔接口、重新安装软件。

故障排除与诊断

泵压不稳

1、泵头有气泡——流动相脱气/大流量冲洗泵/用注射器抽取流动动相

2、单向阀故障——清洗

若上述操作仍不能解决,可用异丙醇冲洗流动(无色谱柱冲洗,由手动进样器直接进检测器),流量为3-4ml/min,冲洗50分钟左右,然后重新安装色谱柱,更换流动相平衡,如此再不能解决泵压波动故障,可申请更换配件。

色谱的保养:

漏液处理:

流路堵塞问题:

缓冲盐的使用:

流动相含有盐分时,做完实验后一定要进行流路冲洗;

首先用水冲洗,打开排液阀用PURG键转换出原有含盐的流动相,然后关闭排液阀打开泵冲洗全部流路45分钟以上,如此更换流动相为水和甲醇混合液冲洗全部流路30分钟(此步骤一般可省去,根据实验而论),最后更换纯甲醇冲洗全部流路45分钟以上。

泵头冲洗;

用备件中的针头和针管分别用蒸馏水和纯甲醇冲洗3-5ml。

如流动相不含盐,可对机器定期进行简单的冲洗维护,根据实验多少而定。

手动进样器冲洗;

同样用备件中的针管和专用冲洗针头对手动进样器的装载状态和进样状态分别进行冲洗3-4ml的蒸馏水,然后再冲洗3-4ml的纯甲醇。

确保每次做完实验,所有流路中充满纯甲醇!

色谱的保养:

C18柱绝对不能进蛋白样品、血样,生物样品。

要注意柱子的PH值围,不得注射强酸强碱的样品,特别是碱性样品。

长时间不用仪器,应该将柱子取上用堵头封好保存,注意不能用纯水保存柱子,而应该用有机相(如甲醇)保存,因为纯水易长霉。

流路堵塞问题

堵塞导致压力太大,按预柱→混合器中的过滤器→管路过滤器→单向阀检查,并清洗。清洗方法:①以民丙醇作溶剂冲洗②放在异丙醇中超声波清洗③用10%稀硝酸清洗。

高压液相色谱HPLC发展概况、特点与分类

一、液相色谱理论发展简况

色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performan ce Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressur e Liquid Chromatography,HPLC)。又因分析速度快而称为高速液相色谱法(High Speed L iquid Chromatography,HSLP)。也称现代液相色谱。

二、HPLC的特点和优点

HPLC有以下特点:

高压-压力可达150~300Kg/cm2。色谱柱每米降压为75 Kg/cm2以上。

高速-流速为0.1~10.0 ml/min。

高效-可达5000塔板每米。在一根柱中同时分离成份可达100种。

高灵敏度-紫外检测器灵敏度可达0.01ng。同时消耗样品少。

HPLC与经典液相色谱相比有以下优点:

速度快-通常分析一个样品在15~30 min,有些样品甚至在5 min即可完成。

分辨率高-可选择固定相和流动相以达到最佳分离效果。

灵敏度高-紫外检测器可达0.01ng,荧光和电化学检测器可达0.1pg。

柱子可反复使用-用一根色谱柱可分离不同的化合物。

样品量少,容易回收-样品经过色谱柱后不被破坏,可以收集单一组分或做制备。

按两相的物理状态可分为:气相色谱法(GC)和液相色谱法(LC)。气相色谱法适用于分离挥发性化合物。GC根据固定相不同又可分为气固色谱法(GSC)和气液色谱法(GLC),其中以GLC 应用最广。液相色谱法适用于分离低挥发性或非挥发性、热稳定性差的物质。LC同样可分为液固色谱法(LSC)和液液色谱法(LLC)。此外还有超临界流体色谱法(SFC),它以超临界流体(界于气体和液体之间的一种物相)为流动相(常用CO2),因其扩散系数大,能很快达到平衡,故分析时间短,特别适用于手性化合物的拆分。

按原理分为吸附色谱法(AC)、分配色谱法(DC)、离子交换色谱法(IEC)、排阻色谱法(EC,又称分子筛、凝胶过滤(GFC)、凝胶渗透色谱法(GPC)和亲和色谱法,此外还有电泳。按操作形式可分为纸色谱法(PC)、薄层色谱法(TLC)、柱色谱法。四、色谱分离原理

高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。

1.液固色谱法

使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝,粒度5~10μm。适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产

生拖尾。常用于分离同分异构体。

2.液液色谱法

使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。分离过程是一个分配平衡过程。

涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。由于涂布式固定相很难避免固定液流失,现在已很少采用。

现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。

液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。

采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。

反相色谱法

一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化合物。RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。随着柱填料的快速发展,反相色谱法的应用围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。但需要注意的是,C18和C8使用的pH值通常为2.5~7.5(2~8),太高的pH值会使硅胶溶解,太低的p H值会使键合的烷基脱落。有报告新商品柱可在pH 1.5~10围操作。

正相色谱法与反相色谱法比较表

正相色谱法反相色谱法

固定相极性高~中中~低

流动相极性低~中中~高

组分洗脱次序极性小先洗出极性大先洗出

从上表可看出,当极性为中等时正相色谱法与反相色谱法没有明显的界线(如氨基键合固定

相)。

3.离子交换色谱法

固定相是离子交换树脂,常用苯乙烯与二乙烯交联形成的聚合物骨架,在表面未端芳环上接上羧基、磺酸基(称阳离子交换树脂)或季氨基(阴离子交换树脂)。被分离组分在色谱柱上分离原理是树脂上可电离离子与流动相中具有相同电荷的离子及被测组分的离子进行可逆交换,根据各离子与离子交换基团具有不同的电荷吸引力而分离。

缓冲液常用作离子交换色谱的流动相。被分离组分在离子交换柱中的保留时间除跟组分离子与树脂上的离子交换基团作用强弱有关外,它还受流动相的pH值和离子强度影响。pH值可

改变化合物的解离程度,进而影响其与固定相的作用。流动相的盐浓度大,则离子强度高,

不利于样品的解离,导致样品较快流出。

离子交换色谱法主要用于分析有机酸、氨基酸、多肽及核酸。

4.离子对色谱法

又称偶离子色谱法,是液液色谱法的分支。它是根据被测组分离子与离子对试剂离子形成中性的离子对化合物后,在非极性固定相中溶解度增大,从而使其分离效果改善。主要用于分

析离子强度大的酸碱物质。

分析碱性物质常用的离子对试剂为烷基磺酸盐,如戊烷磺酸钠、辛烷磺酸钠等。另外高氯酸、三氟乙酸也可与多种碱性样品形成很强的离子对。

分析酸性物质常用四丁基季铵盐,如四丁基溴化铵、四丁基铵磷酸盐。

离子对色谱法常用ODS柱(即C18),流动相为甲醇-水或乙腈-水,水中加入3~10 mmol/L 的离子对试剂,在一定的pH值围进行分离。被测组分保时间与离子对性质、浓度、流动相

组成及其pH值、离子强度有关。

5.排阻色谱法

固定相是有一定孔径的多孔性填料,流动相是可以溶解样品的溶剂。小分子量的化合物可以进入孔中,滞留时间长;大分子量的化合物不能进入孔中,直接随流动相流出。它利用分子筛对分子量大小不同的各组分排阻能力的差异而完成分离。常用于分离高分子化合物,如组织提取物、多肽、蛋白质、核酸等。液相色谱的适用性

三、色谱法分类

按两相的物理状态可分为:气相色谱法(GC)和液相色谱法(LC)。气相色谱法适用于分离挥发性化合物。GC根据固定相不同又可分为气固色谱法(GSC)和气液色谱法(GLC),其中以GLC 应用最广。液相色谱法适用于分离低挥发性或非挥发性、热稳定性差的物质。LC同样可分为液固色谱法(LSC)和液液色谱法(LLC)。此外还有超临界流体色谱法(SFC),它以超临界流体(界于气体和液体之间的一种物相)为流动相(常用CO2),因其扩散系数大,能很快达到平衡,故分析时间短,特别适用于手性化合物的拆分。

按原理分为吸附色谱法(AC)、分配色谱法(DC)、离子交换色谱法(IEC)、排阻色谱法(EC,又称分子筛、凝胶过滤(GFC)、凝胶渗透色谱法(GPC)和亲和色谱法,此外还有电泳。按操作形式可分为纸色谱法(PC)、薄层色谱法(TLC)、柱色谱法。四、色谱分离原理

高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。

1.液固色谱法

使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝,粒度5~10μm。适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。常用于分离同分异构体。

2.液液色谱法

使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。分离过程是一个分配平衡过程。

涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。由于涂布式固定相很难避免固定液流失,现在已很少采用。现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。

液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。

正相色谱法

采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。反相色谱法

一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化

高效液相色谱法操作规程

目的:建立高效液相色谱法的标准操作规程,保证正确操作。 范围:本标准适用于高效液相色谱法的操作。 责任者:QC主任,设备使用人员。 规程: 依据:《中华人民共和国药典》2000年版二部。 1 ?定义及概述: 1.1高效液相色谱法是一种现代液体色谱法,其基本方法是将具一定极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱留或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高,分析速度快的特点。 1.2高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子对色谱离子交换填料,用于离子交换色谱,是有一定孔径的大孔填料,用于排阻色谱。 1.3高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理机组成。检测器最常用的为可变波长紫外检测器或紫外一可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2. 高效液相色谱仪的使用要求:

2.1按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程(JJG705-90)”的规定作定期检定,应符合规定。 2.2,仪器各部件应能正常工作,管路为无死体积连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3具体仪器在使用前应详细参阅各操作说明书。 3. 操作前的准备: 3.1流动相的制备:用高纯度的试剂配制流动相,必要时照紫外分光光度法进行溶剂检查,应符合要求;水应为新鲜制备的高纯水。对规定PH值的流动相,应使用精密PH计进行调节。配制好的流动相应通过0.45a m。适宜的滤膜滤过,用前脱气。应配制足量的流动相及时待用。 3.2供试溶液的配制:供试品用规定溶剂配制成供试溶液。定量测定时, 对照品溶液和样品供试溶液均应分别配制2份。供试溶液在注入色谱仪前,一般应经0.45a m适宜的滤膜滤过。必要时,在配制供试溶液前,样品需经提取净化,以免对色谱系统产生污染。 3.3检查上次使用记录和仪器状态:检查色谱柱是否适用于本次试验,色谱柱进出口位置是否与流动相的流向一致,原保存溶剂与现用流动相能否互溶,流动相的PH值与该色谱柱是否相适应,仪器是否完好,仪器的各开关位置是否处于关断的位置。 4操作: 4.1泵的操作; 用流动相冲洗滤器,再把滤器浸入流动相中,启动泵。打开泵的排放阀,用专用注射器从阀口抽出流动相约20ml,设置高流速(9ml/min)或用冲洗键PURGE进行充泵排气,观察出口处流动相呈连续液流后,将流速逐步回零或停止(STOP冲洗,关闭排放阀。 4.1.3将流速调节至分析用流速,对色谱柱进行平衡,同时观察压力指示 应稳定,用干燥滤纸片的边缘检查柱管各连接处应无渗漏。初始平衡时间一般约需30分钟,如为梯度洗脱,应在程序器上设置梯度状态,用初始化比例的流动相对色谱柱进行平衡。 4.2紫外可见光检测器和色谱数据处理机的操作。 4.2.1开启检测器电源开关,选择光源(氘灯或钨灯),选定检测波长,

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

2015年版药典高效液相色谱法、质谱法.doc

2015 年版药典高效液相色谱法、质谱法

2015 版药典 --- 高效液相色谱法、质谱法 0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处 理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为 3.9 ~ 4.6mm,填充剂粒径为 3~lOμm。超高效液相色谱仪是适应小粒径(约 2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物 等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰 基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残 留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当 提高色谱柱的温度,但一般不宜超过 60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相 pH 值一般应在 2~8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚 合物色谱柱可耐受更广泛 pH值的流动相,适合于 pH 值小于 2 或大于 8 的流动相。 (2)检测器最常用的检测器为紫外 - 可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、 蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外- 可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与 其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应,结构相似的物质在蒸发光散射 检测器的响应值几乎仅与被测物质的量有关。 紫外 - 可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定范围内呈 线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外 - 可见分光检测器所用流动相应符合紫外 - 可见分光光度法(通则 0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测 器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相反相色谱系统的流动相常用甲醇 - 水系统和乙腈 - 水系统,用紫外末端波长检测时,宜选用乙腈 - 水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动 相中有机溶剂一般不低于 5%,否则易导致柱效下降、色谱系统不稳定。

(推荐)高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

高效液相色谱原理

高效液相色谱法(HPLC) 一、方法原理 1、液相色谱法概述 高效液相色谱分析法

其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构 2、高效液相色谱法的特点(HPLC) 与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分

配系数、离子交换作用或分子尺寸大小的差异来进行分离。 由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。 特点是选择性高、分离效能高、分析速度快的特点。 高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。 高效液相色谱法与气相色谱法相比,各有所长,互相补充。 如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。 3、高效液相色谱法的固定相和流动相 (1)固定相 表面多孔型和全多孔型两大类。 (2)流动相(淋洗液) 流动相的选择对改善分离效果产生重要的辅助效应。 从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求: ①与固定相互不相溶,并能保持色谱柱的稳定性。 ②高纯度,以防所含微量杂质在柱中积累,引起柱 性能的改变。 ③与所用的检测器相匹配。 ④应对样品有足够的溶解能力,以提高测定的灵敏 度。 ⑤具有低的黏度(可减少溶质的传质阻力,提高柱 效)和适当低的沸点。

实用高效液相色谱法的建立破解版

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

实验报告-高效液相色谱法测定VE含量

实验四高效液相色谱法测定V E含量 1 实验目的 1.1了解高效液相色谱仪的基本操作; 1.2了解高效液相色谱仪测定V E的原理。 2 实验原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 V E(维生素E)又名生育酚或产妊酚,在食油、水果、蔬菜及粮食中均存在。有抗氧化作用,能增强皮肤毛细血管抵抗力,并维持正常通透性;有改善血液循环及调整生育功能、抗衰老作用等。V E通过高效液相色谱柱进行分离,PDA检测器检测,外标法定量。 3实验器材 3.1 实验样品 V E样品溶液 3.2 实验试剂 浓度为50μg/ml的V E标样 3.3 实验仪器 高效液相色谱仪附PDA检测器 4 色谱条件 色谱柱:C18柱;流动相速度:0.3ml/min; 进样量:5μl;柱温:30℃。

5 实验结果与讨论 5.1实验结果 本次实验采用的是单点法测定。实验结果见表1。 表1. 液相色谱仪测定苹果的VE含量 样品中VE的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积 =5μl×50μg/mL×17369/(5μl×42217)=20.57μg/mL 5.2实验讨论 本次实验中,测定标样溶液V E含量时,在指定的保留时间内并未出峰。讨论分析原因:样品溶液在上周实验后,一直置于离心管中,未避光低温保存,导致样品中V E氧化,液相测定时没有在相应的时间出峰。本次实验时间较短,且主要目的是了解高效液相色谱仪的基本操作,以及液相色谱仪测定V E的原理,故结合前组同学对V E含量的测定数据进行讨论与分析。 因时间有限,实验采用了单点法进行测量分析,且无平行重复,这样误差较大。我们以后实验时,V E标样可以选择5个浓度,每个浓度分别测定3-4次,取其峰面积的平均值后作标准曲线,这样误差更小。 6知识扩展 6.1高效液相色谱仪包括哪几个部分组成? 答:高效液相色谱仪主要由输液系统、进样系统、色谱分离系统、检测器这四个部分组成,其流程图见图1。 输液系统包括贮液槽和输液管道、高压泵和梯度洗脱装置。贮液槽,通常是由玻璃或不锈钢等材料制成的,用来存贮足够数量、符合分析要求流动相的容器。输液管道是管道内径很小的用于连接高效液相色谱仪各主要流路系统。高压泵是将流动相在高压下连续送入色谱柱,使样品在色谱柱内完成分离过程。高效液相色谱仪采用的是往复式恒流泵,是具有输出压力高、流量稳定、流量可调范围宽、泵内死体积小、具有梯度洗脱及耐酸碱腐蚀、溶剂更换迅速等性能。梯度洗脱装

高效液相色谱法概述

高效液相色谱法概述 摘要:本文概述了高效液相色谱的产生、发展,分类、应用、存在问题及发展前景。 关键词:高翔液相色谱、分类、应用 高效液相色谱(high performance liquid chromatography,HPLC) 是利用高压输液泵驱使流动相通过装填固定相的色谱柱,按照固液相之间的分配机制对混合物进行分离的方法。 一、高效液相色谱的产生及发展 在过去三十多年里, HPLC 已经成为一项在化学科学中最有优势的仪器分析方法之一, 1994年, HPLC 的市场销售量是14亿美元, 就是一个较好的证据。现在, HPLC 几乎能够分析所有的有机、高分子及生物试样。、 1941年, 马丁( Matin) 和辛格( Synge) 用一根装满硅胶微粒的色谱柱, 成功地完成了乙酰化氨基酸混合物的分离, 建立了液液分配色谱方法, 他们也因此获得了1952年诺贝尔化学奖。从此开启了色谱技术的发展,紧接其后的塔板理论、速率理论的建立,使得色谱技术和理论得到了迅速的发展。 HPLC 的第一个雏形是由斯坦因( Stein) 和莫尔( Moo re) 于1958年发展起来的氨基酸分析仪( AAA) , 这种仪器能够进行自动分离和蛋白质水解产物的分析, 由于这种研究的重要性, 别的研究者也被吸引来进行这一方面的重要课题的研究, 最终直接促成了HPLC 方法的建立。在此期间, 哈密顿( Hamiton) 在柱效率和选择性方面的成就而使得他的工作特别有价值。在六十年代早期的相关进展是莫尔( Moo re) 发展起来的凝胶渗透色谱( GPC) 。不久以后, 华特斯(Waters) 有限公司制造了商业GPC 仪, 这种仪器经过微小的改进之后可用于HPLC 分离。在1968~1971年间, 推出了第一台普遍适用的HPLC 商用系统。1971年以后, 对映体( 手性异构体) 和大生物分子如蛋白质的HPLC 分离逐步建立起

超高效液相色谱原理

超高效液相色谱原理:分配系数与组分、流动相和固定相的热力学性质有关,也与温度、 压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数,凝胶色谱法为渗透参数。但一般情况可用分配系数来表示。 在条件一定,样品浓度很低时时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。 超高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。 超高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。 高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。 超高效液相色谱主要类型: 1.液液分配色谱分离原理:分配色谱法的原理与液液萃取相同,都是分配定律。 2.液固吸附色谱分离原理:液固色谱是基于各组分吸附能力的差异进行混合物分离的,其固定相是固体吸附剂。 3.键合相色谱分离原理:正键合相色谱分离远离:使用的是极性键和固定性,溶质在此类固定相上的分离机理属于分配色谱。 畜禽中瘦肉精分析 瘦肉精是盐酸克伦特罗的俗称,将其添加到饲料中可使动物生长速率、饲料转化率和胴体的瘦肉率提高10%以上,并降低其脂肪含量。长期使用会使该药蓄积在动物的组织中,造成组织中残留药物的浓度很高,人食用这种组织后15min~6h就可出现中毒症状。气相色谱技术可用于动物毛发、尿液及组织中盐酸克伦特罗的定性定量分析。样品从预处理到得出结果需要2天时间,检测下限为0.5μg/kg。 色谱技术的不断发展,以及高科技的应用,气相色谱技术将越来越完善。因其特别适用于气体混合物或易挥发性的液体或固体检测,即便对于很复杂的混合物,其分离时间也很短。其高分辨率、分析迅速和检测灵敏等显著优点使之成为每个分析检测实验室已采用的常规检测方法。因大多数食品中对人体有毒有害物质的组分复杂且是易挥发的有机化合物,所以,气相色谱技术在食品安全检测中有着非常广泛的应用前景。 气相色谱法是以惰性气体(N2或He)为载体将样品带入气相色谱仪进行分析的色谱法,而利用气相色谱仪对气体或液体样品进行组分分析的技术被称之为气相色谱技术。它特别适用于气体混合物或易挥发性的液体或固体检测,即便对于很复

高效液相色谱法及其在药物分析中的应用

高效液相色谱法及其在药物分析中的应用 以液体为流动相的色谱法称为液相色谱法。用常压输送流动相的方法为经典液相色谱法,这种色谱法的柱效能低、分离周期长。高效液相色谱法(highperformanceliquidchromatography,简称HPLC)是在经典液相色谱的基础上发展起来的一种色谱方法。与经典的液相色谱法相比,高效液相色谱法具有下列主要优点:①应用了颗粒极细(一般为10µm以下)、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成;③广泛使用了高灵敏检测器,大大提高了灵敏度。目前,已经发展了多种不同的固定相,有多种不同的分离模式,使高效液相色谱法的应用范围不断扩大。下面介绍高效液相色谱法的有关知识,新的方法和技术以及在药物分析中的应用。 一、分类 高效液相色谱法按分离机理的不同可分为以下几类: (一)吸附色谱法(adsorptionchromatography) 以吸附剂为固定相的色谱方法称为吸附色谱法。使用最多的吸附色谱固定相是硅胶,流动相一般使用一种或多种有机溶剂的混合溶剂。在吸附色谱中,不同的组分因和固定相吸附力的不同而被分离。组分的极性越大、固定相的吸附力越强,则保留时间越长。流动相的极性越大,洗脱力越强,则组分的保留时间越短。 (二)液-液分配色谱法(liquid-liquidchromatography) 液-液分配色谱的固定相和流动相是互不相溶的两种溶剂,分离时,组分溶入两相,不同的组分因分配系数(K)的不同而被分离。目前广泛使用的化学键合固定相是将固定液的官能团键合在载体上而制成的,使用化学键合固定相的色谱方法(简称键合相色谱法)可以用分配色谱的原理加以解释。键合相色谱法在HPLC中占有极其重要的地位,是应用最广的色谱法。 按照固定相和流动相极性的不同,分配色谱法又可分为正相色谱法和反相色谱法两类。 1.正相色谱法(normalphasechromatography) 固定相极性大于流动相极性的分配色谱法称为正相分配色谱法,简称为正相色谱法。氰基键合硅胶、氨基键合硅胶等极性的化学键合固定相是正相色谱常用的固定相,正相色谱的流动相一般为极性较小的有机溶剂。在正相色谱中,极性小的组分由于K值较小先流出,极性较大的组分后流出。正相色谱法用于溶于有机溶剂的极性及中等极性的分子型物质的分离。 2.反相色谱法(reversedphasechromatography) 流动相极性大于固定相极性的分配色谱法称为反相分配色谱法,简称为反相色谱法。反相色谱法使用非极性固定相,最常用的非极性固定相是十八烷基硅烷键合硅胶,还有辛烷基硅烷键合硅胶等。流动相常用水与甲醇、乙腈或四氢呋喃的混合溶剂。在反相色谱中极大的组分因K值较小先流出色谱柱,极性较小的组分后流出。流动相中有机溶剂的比例增加,流动相极性减小,洗脱力增强。反相色谱法是目前应用最广的高效液相色谱法。 (三)离子交换色谱法(ionexchangechromatography) 离子对交换色谱法是以离子交换剂为固定相的色谱方法,组分因和离子交换剂亲和力的不同而被分离。柱填料含有极性可离子化的基团,如羧酸、磺酸或季铵离子,在合适的PH值下,这些基团将解离,吸引相反电荷的物质。由于离子型物质能与柱填料反应,所以可被分离。样品中不同的组分因离子交换平衡常数的不同而分离。离子交换色谱的流动相一般为一定PH值的缓冲溶液,有时也加入少量的有机溶剂,如乙醇、四氢呋喃、乙腈等,以增大组分在流动相中的溶解度。流动相的PH值影响离子交换剂的交换容量。对弱酸或弱碱性的被分离组分,流动相的PH值还会影响其电离状况,流动相的PH值必须使待分离组分处于离解

高效液相色谱法的计算方法

高效液相色谱法的计算方法 高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 1、对仪器的一般要求 所用的仪器为高效液相色谱仪。色谱柱的填料和流动相的组分应按各品种项下的规定。常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2、系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。 (1) 色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。 在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间t R(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/W h/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。 (2) 分离度(R)

液相色谱仪的简介及使用

液相色谱仪的简介及使用 柴旭锋食工1105 一概念 英文:Liquid Chromatography 利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,而后分析鉴定的仪器。 二简介 液相色谱仪根据固定相是液体或是固体,又分为液-液色谱(LLC)及液-固色谱(LSC)。现代液相色谱仪由高压输液泵、进样系统、温度控制系统、色谱柱、检测器、信号记录系统等部分组成。与经典液相柱色谱装置比较,具有高效、快速、灵敏等特点。 对高沸点、难气化合物的混合物通过色谱柱和淋洗剂并以实现分离。应用于生物化学、生物医学、环境化学、石油化工等部门 三工作原理 系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。 1进样系统 一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2输液系统 该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4X10Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样

UPLC(超高效液相色谱)技术

UPLC(超高效液相色谱)技术 蒋娴丽 3031901045 在1996年,Waters公司推出Alliance HPLC时的主要目标是提高液相色谱的“精度”。当时多数公司都认为HPLC技术已经发展到极致了、而同时用户对性能没有更高的需求,因此HPLC的目标应该是降低成本、走向更低的价格以获得更广泛的应用。针对这样的观念,Waters公司提出:HPLC的技术没有到达极限,用户对HPLC有更高的要求,HPLC精度的提高对更好、更可靠的结果有极大的益处,对法规的遵从也是一个极大的促进。 站在当今世界科技前沿的液相色谱用户现在又有了新的需求。首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成,例如代谢组学分析;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与MS及MS/MS 等检测技术联用时,对连接的质量提出了更高的要求。简而言之,我们需要“更快地得到更好的结果”。 今天我们发现,随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。因此UPLC(超高效液相色谱)概念的提出也就十分自然。简而言之,UPLC是用HPLC的极限作为自己的起点。 理论基础 早在1956年,J.J van Deemter就发表了他著名的理论:van Deemter曲线及其方程式。最早这个理论是用在气相色谱上的,但是后来出现的液相色谱上也能应用这个理论。Waters 公司引入UPLC的概念就是由研究这个著名的方程式开始。 首先探讨一下这个著名的方程式。如果只关心理论塔板高度(H)与流速(线速度;u)及填料颗粒度(dp)之间的关系,就可以把该方程式作如下的简化: H=a(dp)+b/u+c(dp)2u 其中,A项代表了颗粒度和柱床填装的优良程度;B项代表了轴向扩散;而C项则代表了传质。从不同颗粒度的曲线中我们可以看到图1所示的现象:

变性高效液相色谱原理

高效液相色谱原理 DHPLC变性高效液相色谱技术是近年来发展起来的一项新的分析技术,它是分离核苷酸片段及分析检测已知未知基因突变和SNP的最佳技术平台,其核心技术采用Transgenomic公司专利技术的DNA SepCartridge分离柱。DHPLC能够分析检测已知未知突变和SNP,技术关键是依靠这样专利技术的分离系统,在专利技术的DNA SepCartridge分离柱中的基质为聚苯乙烯-二乙烯基苯(PS-DVB)交联聚合物微球体,固定相为碳-18烷烃链,PS-DVB微球体与碳-18烷烃链之间形成碳碳共价键共同组成柱填料,填料是电中性、疏水性的,不易与核酸发生反应。三乙基铵醋酸盐(TEAA)是一种离子对试剂,离子对试剂既是疏水性的又带正电荷,既能与核酸主链上的磷酸基团的负电荷反应,同时TEAA的疏水基团又与固定相碳-18链的疏水基团发生反应。这种离子对试剂是连接核酸和柱基质之间的桥梁,因此,它作为“桥分子”使DNA片段吸附在固定相上面。通过改变流动相中乙氰及离子对试剂的浓度实现DNA片段的分离。

WAVE? DHPLC分离系统的三种操作模式: WAVE?系统是一套经济、高效及多用途的仪器。标准WAVE系统提供可选择的冷却设备、双板自动进样器、柱箱、紫外检测器和分离柱组成。这套系统可在同一分析标准下实现三种模式的运行。将标准WAVE系统加工和升级可以进一步提升系统的可用性。 执行模式温度应用分离基础 非变性 50℃测量双螺旋DNA的大小(小于2000bp)依赖大小 PCR质量检测及纯化依赖序列定量分析

部分变性 52-75℃变性检测依赖大小 (平均范围)单核酸多态性检测依赖序列完全变性 75-80℃测量双螺旋DNA大小(小于2000bp)依赖大小 (平均范围) DNA分析(DNA SepR柱)依赖序列 寡核苷酸质量(DNA SepR柱和OLIGO SepR柱)和纯度分析(片段收集器) 大量纯化需要OLIGOSepPrep TM HC柱 非变性条件:依赖分子量的分离

相关主题
文本预览
相关文档 最新文档