当前位置:文档之家› 布鲁克质谱说明书

布鲁克质谱说明书

布鲁克质谱说明书
布鲁克质谱说明书

300-MS and 320-MS

Quadrupole Mass Spectrometer

Hardware Operation Manual

Legal and Regulatory Notices

Copyright ? 2010 Bruker

All other trademarks are the sole property of their respective owners.

All Rights Reserved

Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Warranty

The information contained in this document is subject to change without notice. Bruker makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Bruker is not liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Bruker assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Bruker.

Use of Trademarks

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Safety Information

Operating Instructions

Use this manual to establish conditions for safe and efficient instrument operation. Special considerations and precautions are also included as NOTES , CAUTIONS , and WARNINGS . You must operate the instrument as specified by this manual and any additional information Bruker provides. Address questions about the safe and proper use of the instrument to your local Bruker office.

The safety information presented is for the MS, refer to the manuals of the GC or autosampler to ensure their safe and efficient operation.

NOTE

Use this information to obtain optimal performance from your instrument. CAUTION Alerts you to situations that may cause moderate injury or instrument damage, and provides methods to avoid these situations. WARNING Alerts you to potentially hazardous situations that could result in serious injury, and provides methods to avoid these situations Warning Description

WARNING: SHOCK HAZARD Hazardous voltages are present inside instrument. Disconnect from main power before removing screw-attached panels.

WARNING: CHEMICAL HAZARD

Hazardous chemicals may be present. Avoid contact, especially when replenishing reservoirs. Use proper eye and skin protection. WARINING: BURN HAZARD

Very hot or cryogenically cold surfaces may be exposed. Use proper skin protection. WARNING: EYE HAZARD

Eye damage could occur from flying particles, chemicals, or UV radiation. Use proper eye and face protection. WARNING: FIRE HAZARD

The potential for fire may be present. Follow manual instructions for safe operation. WARNING: EXPLOSION HAZARD

The potential for explosion may exist because of type of gas or liquid used. WARNING: RADIATION SOURCE

Ionizing radiation source is present. Follow manual

instructions for safe operation. WARNING: MOVING PARTS Keep hands and fingers away.

General Safety Precautions

Follow these safety practices to ensure safe instrument operation.

?Perform periodic leak checks on all supply lines and pneumatic plumbing.

?Do not let gas lines become kinked or punctured. Place lines away from foot traffic and extreme heat or cold.

?Store organic solvents in fireproof, vented, and clearly labeled cabinets so they are easily identified as toxic and/or flammable materials.

?Do not accumulate waste solvents. Dispose of such materials through a regulated disposal program and not through municipal sewage lines.

The following is a Federal Communications Commission advisory: This instrument has been tested and found to comply with the limits of a Class A computing device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the instrument is operated in a commercial environment. This instrument generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this instrument in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

NOTICE:This instrument has been tested per applicable requirements of EMC Directive as

required to carry the European Union CE Mark. As such, this instrument may be

susceptible to radiation/interference levels or frequencies not within the tested

limits.

WARNING This instrument is designed for MS analysis of appropriately prepared samples. It must be operated using appropriate gases and/or solvents and within specified ranges for pressure, flows, and temperatures as described in this manual. The protection provided by the instrument may be impaired if the instrument is not used as specified by Bruker.

WARNING It is the responsibility of the Customer to inform Bruker if the instrument has been used for the analysis of hazardous biological, radioactive, or toxic samples, prior to any instrument service being performed or when an instrument is being returned to Bruker.

Electrical Hazards ?Disconnect the instrument from all power sources before removing protective panels to avoid exposure to dangerous voltages.

?When it is necessary to use a non-original power cord plug, the replacement cord must adhere to the color coding and polarity described in the manual and all local building safety codes. ?Replacement fuses must have the size and rating stipulated on the fuse panel or in the manual.

?Replace faulty or frayed power cords immediately with the same type and rating. ?Voltage sources and line voltage must match the value for which the instrument is wired. Compressed Gas Cylinders ?Store and handle compressed gases in strict adherence to safety codes.

?Secure cylinders to an immovable structure or wall.

?Store and move cylinders in an upright, vertical position. Before transport, remove regulators and install the cylinder cap.

?Store cylinders in a well-ventilated area away from heat, direct sunshine, freezing temperatures, and ignition sources.

?Mark cylinders clearly, so they are easily identified ?Use only approved regulators and connections. ?Use only connector tubing that is chromatographically clean ( Bruker part number 391832600) and has a pressure rating greater than the highest outlet pressure from the regulator.

General MS Safety Practices

Shock Hazard

Many internal parts carry dangerous voltages. Even if the power switch is off potentially dangerous voltages can exist. The covers shield the operator. Unless specifically instructed, do not remove a cover.

Electrostatic Discharge

Do not touch printed circuit boards unless instructed. Wear a grounded wrist strap to prevent electrostatic discharge to the board, which may damage the board.

Burn Hazard

Heated parts of the mass spectrometers remain hot or cold for a long time after the instrument power is turned off. To prevent painful burns, ensure that all heated or cooled areas have returned to room temperature or wear adequate hand protection before you touch potentially hot surfaces.

Fire Hazard

Combustible materials put under, over, or around the foreline pump are fire hazards. Keep the foreline oil pan clean, but do not leave absorbent materials such as paper towels or rags in it.

Spare Parts

Bruker provides operational spare parts for any instrument and major accessory for a period of seven (7) years after shipment of the final production run of that instrument. Spare parts will be available after this seven (7) year period but on an as available basis. Operational spare parts are defined as those individual electrical or mechanical parts that are susceptible to failure during their normal operation. Examples include relays, lamps, temperature probes, detector elements, motors, etc. Sheet metal parts, structural members or assemblies and castings, printed circuit boards, and functional modules are normally capable of being rebuilt to like-new condition throughout their useful life and therefore will be supplied only on an as available basis after the final production run of the instrument.

Service

Bruker provides service support to customers after warranty expiration. Repair service can be provided by service contracts or on a time and material basis. Technical support and training can be provided by qualified personnel on both a contractual or as-needed basis.

To contact Sales or Service, and to order Parts and Supplies, contact your local Bruker office.

Contents

Overview (3)

Manual Description (3)

300 Series Quadrupole Instruments (3)

300 Series Quadrupole Systems (4)

Controls and Connections (6)

300-MS or 320-MS (6)

Back Panel Electrical and Gas Connections (7)

Principles of Operation (8)

Ion Sources (8)

Mass Analyzer (9)

MS and MS/MS (10)

General Procedures (13)

Venting the MS (13)

Pumping Down the MS (14)

Removing/Replacing the Glass Top (15)

Routine Operation (16)

Routine Procedures (16)

Installing a GC Capillary Column (20)

MS/MS Procedures (21)

Maintenance (23)

Troubleshooting (32)

Leak Troubleshooting (37)

GC/MS Spare Parts (42)

Foreline Pump Maintenance (43)

Checking Foreline Pump Oil Level and Condition (43)

Foreline Pump Oil and Cartridge (43)

Flushing the Pump Oil (45)

Appendix Synchronization Signals for External Modules (48)

Hardware Setup (49)

Software Setup (52)

This page intentionally blank.

Overview

Manual Description

This manual contains the following sections:

?Description of the instrument

?Principles of Operation

?GC/MS Operation

300 Series Quadrupole Instruments

300-MS

The 300-MS, a GC/MS single or triple quadrupole, offers excellent performance

for an economical price.

The 300-MS offers the user excellent performance and features:

?Mass Range maximum of 800 amu.

?Electron Ionization (EI) and Chemical Ionization (CI) are standard.

?Direct Insertion Probe and Direct Exposure Probes (DIP/DEP) are

optional.

? A Single Quadrupole can be upgraded to a Triple Quadrupole system.

320-MS

The 320-MS is available as a single or a triple quadrupole instrument. The variety

of ionization sources makes this a very versatile instrument for quadrupole

applications.

The 320-MS offers the user excellent performance and features:

?Mass range maximum of 2000 amu.

?Electron Ionization (EI) and Chemical Ionization (CI) are standard.

?Optional Direct Insertion Probe and Direct Exposure Probes (DIP/DEP).

? A single quadrupole instrument can be upgraded to a triple quadrupole

instrument.

300 Series Quadrupole Systems

Vacuum System

The MS Workstation software controls the vacuum system composed of foreline

and turbo molecular pumps. One DS-42 vacuum pump is the foreline pump in all

countries except for Japan in which one DS102 pump is used.

The Status View in the Instrument Control window displays the speed of the

turbo pumps, expressed as percentage of the total.

In case of a power outage, the mechanical and turbo molecular pump turn off.

The system maintains vacuum for 20 minutes before the system begins to vent. If

power comes back within this time, the unit registers vacuum and automatically

turns both pumps back on.

Do not initiate pump-down if any chipped edges or scratches are present on

the glass top. Chipped edges or scratches can facilitate cracking of the glass

resulting in a serious implosion and consequently a serious personal injury.

Replace the glass top prior to using the instrument.

Data System

MS Workstation controls the MS and chromatography systems, GC systems,

auto samplers and most accessories.

MS Workstation works within Windows? 2000, XP, and 7 operating systems

(pre-installed on the PC), and can be configured to run under networks.

MS Workstation controls the MS system including setup, tuning, data acquisition,

data handling, and report generation. For further information, refer to the

following:

300-MS and 320-MS MS Workstation Software Operation Manual, part number

BCA94200600.

MS Workstation Software Reference Manual, part number BCA94200400.

Electronics

HIGH VOLTAGES. There are no user serviceable parts under screw-attached covers. Contact your local Bruker service representative for instrument repair and service.

The electronic functions are distributed among nine main printed circuit boards. See the block diagram and descriptions that follow.

` Foreline pumps EFC

RF Board Manifold Assy : Quads , C ollision Cell , Source , D etector Source Feedthru Board

Detector Board Inlet Control Board

Power Board Ion Gauge Electrometer

Transfer Line Heater

DEP Opt

DIP Opt

Power Board: Controls spectrometer operations and acquires data. It contains the valve drivers and vent control circuit, Manifold and Source heater circuit, Source Pressure circuit, Collision Cell Pressure circuit, Rear Panel Auxiliary Pressure circuit, and User I/O Interface circuit.

RF Generator Board: Generates and controls the Quad RF and DC electronics, Lens and Guide electronics, Source and Manifold temperature sensor circuits, Ion Gauge and Filament electronics, and Capillary electronics.

Detector Board: Detects the signal from the Multiplier. An A/D converter converts the analog signal to a digital signal.

Ion Gauge Electrometer Board: Contains the ion gauge electronics and links the RF board to the Ion Gauge on the manifold.

Electronic Flow Controller: Controls the flow of CI gas (methane, isobutane, ammonia, and helium) and CID gas.

API HV Board: Generates the Needle and Shield voltages.

Inlet Control Board: Controls the EFC electronics, the transfer line heater control, and the foreline pump control. The capillary voltage goes through this board through a protection relay before exiting to the API Source.

Ion Source Feedthru: The interface board between the RF board (lenses and source temp sensor) and the Power Board (source heaters).

Controls and Connections

300-MS or 320-MS

300-MS or 320-MS Front Panel

DIP/DEP Probe Connects to the 7-pin round plug from the DIP/DEP probe.

Probe Inlet Connects the 10-pin round plug with the DIP/DEP Probe and controls inlet interlock

switch.

EI/CI Source Connects the 14 -pin round plug from the GC source and controls the GC Plug and

Play Source.

Calibration Gas Refill with PFTBA (FC-43) part number 392035300.

300-MS or 320-MS Status Display

On the left side of the instrument is a display panel with three lights that display

the instrument status.

Back Panel Electrical and Gas Connections

CID

He

CI

N2

Pump switch Manual power switch for foreline pumps.

Data system Serial connection to workstation.

User I/O, digital,

analog input, valves,

Sync Start cable

relays

Foreline pump 300-MS or 320-MS: 1 DS-42

Power In Main Line power input.

Helium Connects to helium source for solvent flush

CI gas Connects to CI gas source, usually methane, isobutane, or ammonia.

CID gas Connects to Collision gas source, usually argon.

Bulkhead fittings for the gasses are on the right side of the back panel. The

fittings require a 1/8-inch Swagelok? nut and ferrule.

Principles of Operation

The 300-MS and 320-MS GC/MS systems can analyze solid, liquid, and gas

samples. Solid samples can be inserted directly into the MS using either the

Direct Insertion Probe or the Direct Exposure Probe (purchase of an optional kit

required) in EI or CI mode with the 320-MS or a 300-MS.

Ion Sources

In the ion source, the components are exposed to conditions that generate ions.

These conditions may be gentle or harsh enough to fragment molecules.

?Electron Ionization (EI)

?Chemical Ionization (CI)

Electron Ionization (EI)

?Creates positive ions.

?Analyzes any gas-phase compounds.

?Causes significant and reproducible fragmentation.

?Creates spectra that can be search against standard libraries, such as

National Institute of Standards and Technology, NIST.

Electron ionization is the traditional GC/MS ionization technique and is suitable

for all gas-phase compounds. It yields reproducible molecular fragmentation

patterns independent of the make and model of the MS. This allows the creation

of standard libraries containing searchable spectra.

The EI source consists of an ion volume, a filament assembly, electron

collimating magnets, and ion focusing lenses, all supported by a heated ion

block. The ion volume is an open cylinder with two side holes. Vaporized sample

and carrier gas from the GC enters the ion volume through the transfer line in

one of the holes. An electron beam, generated at the heated filament, enters the

ion volume through the other hole. The accelerated electrons collide with the

sample molecules inside the ion volume and generate molecular ions. The

resulting ions fragment into differently charged or neutral fragments. The ions

enter the mass analyzer.

Chemical Ionization (CI)

?Creates either positive or negative ions.

?Ionizes in a selective manner, different compound classes.

?Generates fewer molecular fragments than EI, making CI a softer

technique that EI.

CI is recommended when no molecular ion is observed in EI and to confirm the

mass-to-charge ratio of the molecular ion. CI mass spectra depend on CI reagent

gas type, pressure, and ion volume temperature. Methane, ammonia, and

isobutane are the CI reagent gases supported by the 300 Series GC/MS

Quadrupole Instruments.

The CI reagent gas enters the ion volume with the vaporized sample and carrier

gas from the GC. An electron beam, generated at the heated filament, enters the

ion volume through the other opening. The accelerated electrons preferentially

ionize the reagent gas molecules. Reagent ions undergo collisions with other

reagent molecules and with sample molecules to create ions. These reagent ions

are of very low molecular weight and rarely enter the mass analyzer. Mass Analyzer

The ions leave the ion source and enter the mass analyzer. The first section,

Quadrupole 1 (Q1) separates them according to their mass-to-charge ratio. The

mass filter consists of a set of four parallel rods. Constant (dc) and radio

frequency (RF) electric fields are applied and cause the ions to move according

to their mass-to-charge ratios. The field strength is varied so that only the

selected ions go through the quadrupole.

Single Quadrupole Instruments

In a single quadrupole system, ions of the selected charge go through the curved

Quadrupole 2 (Q2) and to the detector. Because neutral molecules are not led

through the curve, they do not reach the detector. This reduces the background

noise and increases the signal to noise ratio. The instrument is called a single

quadrupole because only Q1 can be used as a mass filter; Q2 is an ion guide.

The ions enter the on-axis dynode detector. Positive and negative ions can be

detected with similar efficiency due to the on-axis geometry of the detector.

Extended Dynamic Range is an option that automatically adjusts the detector for

the best signal to noise ratio and provides an “absolute” measure of ion counts.

Triple Quadrupole Instruments

In a triple quadrupole system, the mass analyzer consists of three quadrupole

rod assemblies (Q1, Q2, and Q3).

Collision induced dissociation, (CID) or MSMS applications are done in the

curved Q2 of triple quadrupole systems. The ions are accelerated into Q2, which

is filled with a collision gas, usually argon. The fast moving ions collide with the

argon molecules and dissociate. The product ions, from these interactions, go to

Q3 and neutral molecules do not reach the detector. This reduces the

background noise and increase the signal to noise ratio.

Q3 can either guide the ions to the detector or act as a mass filter for the

fragment ions produced by CID.

Triple quadrupole systems can be used for MS modes of operation (full scan or

SIM) or for MS/MS modes of operation (SRM or MRM, product scan, precursor

scan, neutral loss/gain scan).

?During MS operation of a triple quadrupole system, the RF and DC

voltages are controlled so that Q1 acts as mass filter and Q2 and Q3 are

ion guides that transmit all masses to the detector.

? During MS/MS operations Q1 is a mass filter of the ions entering the

system, Q2 is the collision cell, and Q3 is a mass filter for the product ion of the collisions.

The ions enter the on-axis detector. Positive and negative ions are detected with similar efficiency due to the on-axis geometry of the detector. Extended Dynamic Range is an option that automatically adjusts the detector for the best signal to noise ratio and provides an “absolute” measure of ion counts.

MS and MS/MS

MS scans can be done with single quadrupole or triple quadrupole instruments:

?

Full Scans: Scan a selected mass range and record all ions. ?

Selection Ion Monitoring (SIM): Scan for the selected ion(s) only. MS/MS scans are done with triple quadrupole instruments:

?

Product Ion Scan: A precursor ion is selected, fragmented and all fragments in the selected mass range are detected. ?

Selected Reaction Monitoring (SRM): A precursor ion is selected and one product ion is recorded. ?

Multiple Reaction Monitoring: Several SRMS can be done sequentially. ?

Precursor Scan: A mass range is scanned for a specific ion. ? Neutral Loss Scan: As a mass range is scanned in Q1, the scan of Q3 is

synchronized so there is a constant mass reduction by the m/z value of the neutral fragment, such as -18 for the loss of water. Q1 Q2 Q3

Detector

MS Scans

Full Scan

Scan from the Q1 First Mass to the Q1 Last Mass. These scans are rich in spectral information, excellent for screening assays, ideal for identifying unknowns and for library searches.

Selected Ion Monitoring

Scan selected ions only. Depending on the number of ions monitored and matrix interference, SIM sensitivity may be 5 to 50 times better than a full scan. SIM always give the maximum signal to noise ratio.

MS/MS Scans

Product Ion Scan

In Q1 select a precursor ion of interest and fragment it in Q2. In Q3, scan for product ions in a selected mass range. This provides structural information about the precursor ion.

Neutral Scan Loss

In Q1 scan a mass range, in Q2 fragment the ions, and synchronize the Q3 scan for a constant mass loss. This represents the m/z of the neutral fragment and helps to identify compounds that contain the same functional groups.

Selected Reaction Monitoring

In Q1 scan for a precursor ion, in Q2 fragment the ions, and in Q3 scan for one specific product ion.

Multiple Reaction Monitoring

In Q1 scan several precursor ions, in Q2 fragment the ions, and in Q3 scan for a specific product ion from each.

Precursor Scan

In Q1 scan a mass range, in Q2 fragment the ions, and in Q3 check for a product ion of a particular mass. Identify common functional groups or moieties for several analytes.

General Procedures

Venting the MS

Cool the instrument down before venting. If you vent before the instrument is

cool, the source will oxidize and must be cleaned before the system is pumped

down.

1. In the Quad window, click Set Instrument Parameters.

2. Click the Analyzer tab and in the Pumps section, click Vent.

3. In the window that opens, click Cool Down.

4. Wait for the turbo pump blades to stop spinning and for the readbacks to

show no vacuum.

Pumping Down the MS

1. In the Quad window, click Set Instrument Parameters.

2. Click the Analyzer tab and in the Pumps section, click Pump down.

3. In the Quad window, click the Turbo pump, and monitor the speed of the

Turbo pump.

Removing/Replacing the Glass Top

Removing the Glass Top

1. Cool down and vent the instrument following “Venting the MS.”

2. Wait until the vacuum dissipates and the turbo pump blades stop spinning.

3. Place the suction tool on the glass top towards the front of the glass and

pump the piston until the red line is no longer visible.

4. Use the tool to lift the glass. If necessary, reposition the tool in the center of

the glass and try again.

5. Do not let dust or debris fall into the manifold.

6. Minimize dust accumulation by covering as much of the manifold as possible

with the glass top.

Replacing the Glass Top

1. If dust is on the O-ring, use a lint-free tissue to remove it.

2. Use the suction tool to lift the glass top and carefully place it on the manifold.

3. Pump the system down following “Pumping Down the MS.”

Do not initiate pump-down if the glass top has any chipped edges or scratches.

Chipped edges or scratches can make it easy for the glass to crack. This would

result in a serious implosion and consequently serious personal injury.

Replace the glass top before using the instrument.

氦质谱检漏仪应用

Alcatel 氦质谱检漏仪使用和维护 基础 By 姚晓荣, Aug., 2009

Alcatel 氦质谱检漏仪2代产品介绍 Self Contained Units Always the right solution for any leak detection application. Presentation Title —2All rights reserved?2004, Alcatel

Alcatel 氦质谱检漏仪2代产品介绍与第一代产品比较后的改进和特点 ? 1.可检精度:5*10E-12mBar.l/s ? 2.人机友好界面 ? 3.质谱室双灯丝结构 ? 4.氦本底清零功能 ? 5.可选配干泵/油泵做为前 级泵 Touch sceen panel Color graphic interface Recording mode Presentation Title —3All rights reserved?2004, Alcatel

Alcatel 氦质谱检漏仪3代产品介绍 ?ASM310 新功能:? 1.中文界面 ? 2.触摸屏幕 ? 3.重量轻:21Kg ? 4. 具备蓝牙通讯模块 Presentation Title —4All rights reserved?2004, Alcatel

Presentation Title —5 All rights reserved ?2004, Alcatel H2000+型,平板式H2000-C PLUS 型便携式H2000+型标准台式 ILS500 高级系统,基于H2000+型 Alcatel 氢/氮气检漏仪介绍

氦质谱检漏仪使用说明剖析

氦质谱检漏仪使用说明书 资产编号:型号:ZQJ-542 一、设备组成及工作原理 1、设备组成框图 2、设备工作原理 检漏仪内部组成:氦质谱检漏仪主要由分子泵、质谱室、组合阀体,机械泵以及控制电路板等组成。 检漏仪的工作原理:氦质谱检漏仪是根据质谱仪学原理,用氦气作为搜索气体制成的气密性检测仪器。 ZQJ-542检漏仪采用180度磁偏转质谱室,钨制灯丝发射出来的电子经过加速进入离化室,在离化室内与残余气体分子和经被检件漏孔进入离化室的氦气互相碰撞使其电离成正离子,这些离子在加速电场作用下进入磁场,由于洛伦兹力作用产生偏转,由于不同质量数(m/e)的离子其偏转半径不同,这样就将不同的离子分离开了。由于磁场参

数是固定的,只有调节加速压力就可以改变氦离子的偏转半径,使氦离子正好通过隔离板上的窄缝打到放大器入口,这样就使氦离子(m/e=4)与其他离子分开了。氦离子流正比于容器中氦分压。因此,对氦离子的测量可以用来确定被检件的漏率。 二、设备工作外部条件 氦质谱检漏仪电源电压220V 频率50HZ 额定功率2000W。仪器应安装在符合仪器使用的环境要求的场所,特别是仪器的电源插座,应符合要求,要有良好的地线,左右要留有30CM的通风间距。 放置好检漏仪,以避免仪器有倾斜或倾倒的危险。 检漏仪的底部有安装孔,可以将其固定在桌子或支架上。 在仪器运行前要确保真空泵中的机械泵油是否足够,机械泵油必须用专用的针对机械泵型号的油。 三、设备工作外部条件接通操作 氦质谱检漏仪 图1 检漏仪的机械泵有足够的机械泵油;保证机体内分子泵、机械泵、真高空组件各连接顺畅;电源线线路没有破损,有良好的接地。 检漏仪要放平稳,不能倾斜,检漏仪底面要有一层防静电布。

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介 氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。 氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。 (1)工作原理与结构 氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。 ①单级磁偏转型氦质谱检漏仪 现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。 在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。。 在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。 可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。 ②双级串联磁偏转型氦质谱检漏仪 由于两次分析,减少了非氦离子到达收集器的机率。并且,如在两个分析器的中间,即图中的中间缝隙S2与邻近的挡板间设置加速电场,使离子在进入第二个分析器前再次被加速。那些与氦离子动量相同的非氦离子,虽然可以通过第一个分析器,但是,经第二次加速进入第二个分析器后,由于其动量与氦离子的不同而被分离出来。由于二次分离,仪器本底及本底噪声显著地减小,提高了仪器灵敏度。 ③逆流氦质谱检漏仪 逆流氦质谱检漏仪是根据油扩散泵或分子泵的压缩比与气体种类有关的原理制成的。例如,多级油扩散泵对氦气的压缩比为102;对空气中其它成分的压缩比为lO4~106。检漏时,通过被检件上漏孔进入主抽泵前级部位的氦气,仍有部分返流到质谱室中去,并由仪器的输出指示示出漏气讯号。这就是逆流氦顷质谱检漏仪的工作原理。 (2)性能试验方法 灵敏度、反应时间、清除时间、工作真空度、极限真空度及仪器入口处抽速是评价氦质谱检漏仪的主要性能指标。 ①灵敏度及其校准 氦质谱检漏仪灵敏度,通常指仪器的最小可检漏率。记为q L.min,即在仪器处于最佳工作条件下,以一个大气压的纯氦气为示漏气体,进行动态检漏时所能检测出的最小漏孔漏率。所谓“最佳工作条件”是指仪器参数调整到最佳值,被检件出气少且没有大漏孔等条件。所谓“动态检漏”是指检漏仪器本身的抽气系统仍在正常抽气。仪器的反应时间不大于3s。所谓“最小可检”是指检

氦质谱检漏仪操作规程

氦质谱检漏仪操作规程 氦质谱检漏仪菜单介绍 1启动:将检漏仪用专用堵头堵住,接通电源,按下电源到“—”的位置,仪器加电。设备显示启动会出现厂商的logo图案。数秒后会进入监测画面包括启动已用时间(显示从加电到当前所用的时间);检漏口压力(检漏口的压力);排气口压力(分子泵排气口压力);报警阀值(显示报警设定值)。启动完成后会显示检漏模式(指示当前捡漏的工作状态);检漏口压力;排气口压力;报警音量(显示报警时喇叭的音量)报警阀值;漏率(显示当前质谱室的本地漏率);待检产品编号(点击后面数字可以对检漏产品进行编号。禁止输入空格)。如果有异常则会自动进入报警窗口(显示报警代码和具体信息)。注意:如果仪器是第一次使用或者停用很久时间,质谱室内残存气体比较多可能导致启动时间较长,启动时最好不要让检漏口与大气直通,建议使用专用堵头堵住。 2参数设定:在待机下选择点击“扳手螺丝刀”图标进入密码验证,点击密码区域,进入密码验证。密码分为低级密码和高级密码。不同密码等级进入的画面会有所不同,低级密码是客户进入参数设置区域,高级密码是厂家进入参数设置区域(不建议客户进入修改)。输入正确低级密码进入系统设置分别为报警阀值;捡漏模式;检漏精度;滤波方式;校准设置;音量;显示范围;单位;通讯;校零模式;SYS继电器;语言设置。输入正确高级密码进入系统设置分别为机器因数;高压设定;分子泵设定;背景抑制;报警记录。 3报警阀值设定:进入报警阀值图标会出现,会出现报警阀值(设定此值后如实际漏率值大于此值的报警值则报警);报警延时(设定秒数可以延时报警。)报警继电器(禁止输出;发生报警不允许输出继电器动作。允许输出;发生报警允许输出继电器动作。);当前使能通道(选中通道如报警阀值2后,则系统设置中“数据查看”中漏率值一列为此通道报警阀值2所设的值,“数据查看”测试结果)根据实际漏率值大于此通道报警阀值2值则为NG,小于此道通值则为ok。 4音量设定:按下音量选项进入画面有音量;模式(选择普通或渐强)、停止时报警(禁止或允许)等功能。 5仪器校准:仪器在停机或待机状态下进入系统设置选项,按下“校准设置”,进入选择标漏类型(外置标漏不带开关、外置标漏带开关、内置标漏、外置标漏时,建议使用外置标漏不带开关进行标定,内置标漏是使用检漏仪内部子标漏进行标定);标漏漏率(根据校准标漏上标称的数值,输入标漏值即可,注意标漏单位。);漏孔测试:开、关,设置为“开”时,内置标漏定标结束后按开始键,仪器自动检测内置标漏值,验证定标数值。真空定标按“真空标漏”进行真空标漏自动校准。吸枪定标时按“吸枪校准设定”进入参数设置,第一行数字为吸枪定标的标漏值,吸枪定标时,将此值设定为标准漏孔值。“吸枪堵压力”检测吸枪堵得标准值。“吸枪漏压力”检测吸枪漏的压力值。按“吸枪标漏”进行标定,点击会进入定标中,先将吸枪对准漏孔,待信号值稳定后按“采集信号”按钮,然后将吸枪远离漏孔,待本底值稳定,即“信号”显示数值稳定,按“采集本底”按钮,吸枪标定结束。 6滤波方式设定;仪器在停机或待机状态下进入系统设置的选项,按下“滤波方式”,进入选择滤波方式,有动态滤波(动态滤波精度高,但响应速度略慢);静态滤波(静态滤波波动稍大,但速度快。) 7捡漏模式:仪器在停机或待机状态进入系统设置的选项,按下“捡漏模式”,进入画面。捡漏模式(真空模式、吸枪模式。真空模式中有喷氦模式、背压模式,真空模式为负压检漏,吸枪模式为工件正压检漏)。停止模式(停止放气、停止不放气,停止时检漏口是否放气)。灯丝模式(auto、灯丝1、灯丝2,改变参数后仪器须关机重启生效)。检测周期(设置为“0”时,仪器检测时间不受限制,手动控制停止;设置为其它数字时,时间到仪器自动停止。)精简压力(检漏仪开V4阀时检漏口压力)。延时记录(仪器处于主界面延时多长时间且仅记录一次数据,检测周期非零时必修不小于延时记录时间)。 8校零模式:仪器在停机或待机状态下进入系统设置选项,按下“校零模式”,进入。校零模式(自动:检漏阀打开后等待时间到后,系统自动进入校零模式,自动本底扣除。手动:需按面板上的“调零”才可以进入本底扣除方式。时间:在自动模式下,等待此时间后进入本底扣除方式。)校零量级(进入本底扣除模式后,零点显示值为扣除本底前值的指数减去此设定值。)零点模式(量级控制:进入调零模式后,零点显示值为扣除本底前值得指数减去校零量级;设定值:进入调零后,零点显示值为设定值)。 9机器因数:仪器在停机或待机状态下进入系统设置的选项,有“真空模式”和“吸枪模式”通过点击数字改变参数。真空模式和吸枪模式机器因数仪器默认为“1”。 10单位设定:仪器在停机或待机状态下进入系统设置的选项,按下“单位设定”有“漏率”单位和“真空单位” 11通讯设定:仪器在停机或待机状态下进入系统设置的选项,按下“通讯设定”,选择串口1或串口2.波率特性等。 12:输出设定:仪器在停机或待机状态下进入系统设置的选项,真空度继电器(根据采集检漏口真空度与设定输出开关量);真空度继电器2;真空度继电器输出使能:是否让真空度的状态量在I/0输入输出接口输出。 13:时间设定:调节日期 14:密码设定:密码设定,输入新设置的低级密码。 15:检漏精度:仪器在停机或待机状态下进入系统设置的选项,按下“检漏精度”分为自动、高、中、低,选择不同的精度仪器开启不同的检漏阀,无特别需求建议设置“自动” 16显示范围:仪器在停机或待机状态下进入系统设置的选项,按下“显示范围”,真空模式、吸枪模式后面的数值为模式下的下限值。检漏精度(数值是显示漏率小数点后面几位数。 17SYS继电器:仪器在停机或待机状态下进入系统设置的选项,按下“SYS继电器”继电器输出使能(禁止、允许仪器漏率报警和状态输出控制);模拟量输出方式(线性、指数,仪器漏率输出方式) 18除此之外还有语言设置、外部控制等内容。 氦质谱检漏仪操作步骤 1检漏(喷吹法):仪器在停机或待机状态下,按下“开始”键,等待仪器给工件抽真空,进入抽空中,如果V1阀打开了,可以对工件喷氦检大漏;V3阀打开,可以对工件检中漏,V4阀打开,可以对工件检微漏。,进入检漏主界面,此时可以对被测工件进行喷氦检漏,漏率的数值在漏率指示器显示。点击屏幕右上角触摸键“图形”进入漏率曲线画面。 2标漏校准:将标漏口,仪器在待机状态下进入系统设置的选项,按下“校准设置”,进入如下,根据校准标漏上显示的数值,输入标漏值即可,注意标漏的单位Pa·m3/S。输入完成后按“返回”键设定别的参数,也可按下“真空标漏”进行标漏校准进入真空模式标定。(注:吸枪校准按“吸枪校准设定”进入参数设定后,按“吸枪标漏”进行吸枪校准。)等待机器自动采集信号、采集本底然后定标完成回到待机画面。漏孔测试设置为“开”时,返回待机状态后第一次按“开始”键,是对内置标漏进行检测验证。 3系统状态:点击屏幕的左下角“齿轮”图案触摸键,进入系统状态界面,查看检漏仪当前参数设置、各项指标状态。 4数据管理:进入参数设置后,按“数据查看”图标进入画面如下:数据下载:在检漏口的外部接口USB 接下U盘,确认后即可对检漏仪数据进行下载。数据删除按下删除键进行删除 5调零:仪器处于检漏状态,可按下“调零”键可扣除当前本底信号,使仪器指示的读书为绝对漏率 6停止:在待机或检漏状态下。按下“停止”键即可使仪器进入停止状态,长按设定键可打开放气阀对检漏口放入空气,以便更换检测的工件。 7:停机断电:检漏完成后确定仪器显示停机或待机状态下,将检漏口有专用堵头堵上即可,按下机箱后的电源按钮关闭电源,拔出电源插头。

氦质谱检漏仪校准规程

氦质谱检漏仪校准规程 1 目的 氦质谱检漏仪按国家有关标准制造,考虑到工厂的实际条件及可行性,以及仪器的各项检测性能完好,符合产品检测要求,特制定本规范。 2 范围 本规程适用于本公司使用中和修理后的氦质谱检漏仪的校准。 3 引用标准 生产商提供的技术文件。 4. 校准条件 校准氦质谱检漏仪的标准漏孔,应是由有关专业机构校准过的并有校准证明的渗氦型标准漏孔,漏率范围在10-9 Pa·m3/s数量级。 5. 校准程序 5.1 外观 仪器整机应完整,表面应清洁,不应有影响正常工作的破损现象,仪器内机械泵油位在正常工作范围内,肉眼观察油质无明显变化。 5.2 通电后性能 面板开关,按钮性能接触良好,内部无短路。机械泵和涡流分子泵运转正常,无异常响声。仪器通电启动后,各项真空指示正常,能在规定时间内达到仪器正常工作所需的真空度。 5.3 最小可检灵敏度 开机后仪器各项指示,性能正常,仪器内质谱室真空度达到能开启质谱灯丝的水平,打开仪器内校准漏孔,仪器的最小可检灵敏度应优于1×10-10Pa·m3/s。 5.4 响应时间

打开校准漏孔后,到仪器指示值到达仪器指示最大值的63%所需时间,即为 响应时间,响应时间应≤3s。 5.5 清除时间 关闭校准漏孔后,到仪器指示值达到仪器最大指示值的37%所需时间,即为 清除时间,清除时间应≤3s。 6 校准结果处理 如校准合格,则贴上准用标签;如保养不合格,修复后进行校准;则贴上停用标签。合格贴合格证,不合格提出申请报废意见。 7 校准周期 校准周期为一年。 网址:https://www.doczj.com/doc/fa8378265.html, https://www.doczj.com/doc/fa8378265.html,

氦质谱检漏仪操作规程

8校零模式:仪器在停机或待机状态下进入系统设置选项,按下“校零模式”,进入。校零模式(自动:检漏阀打开后等待时间到后,系统自动进入校零模式,自动本底扣除。手动:需按面板上的“调零”才可以进入本底扣除方式。时间:在自动模式下,等待此时间后进入本底扣除方式。)校零量级(进入本底扣除模式后,零点显示值为扣除本底前值的指数减去此设定值。)零点模式(量级控制:进入调零模式后,零点显示值为扣除本底前值得指数减去校零量级;设定值:进入调零后,零点显示值为设定值)。 9机器因数:仪器在停机或待机状态下进入系统设置的选项,有“真空模式”和“吸枪模式”通过点击数字改变参数。真空模式和吸枪模式机器因数仪器默认为“1”。 10单位设定:仪器在停机或待机状态下进入系统设置的选项,按下“单位设定”有“漏率”单位和“真空单位” 11通讯设定:仪器在停机或待机状态下进入系统设置的选项,按下“通讯设定”,选择串口1或串口2.波率特性等。 12:输出设定:仪器在停机或待机状态下进入系统设置的选项,真空度继电器(根据采集检漏口真空度与设定输出开关量);真空度继电器2;真空度继电器输出使能:是否让真空度的状态量在I/0输入输出接口输出。 13:时间设定:调节日期 14:密码设定:密码设定,输入新设置的低级密码。 15:检漏精度:仪器在停机或待机状态下进入系统设置的选项,按下“检漏精度”分为自动、高、中、低,选择不同的精度仪器开启不同的检漏阀,无特别需求建议设置“自动” 16显示范围:仪器在停机或待机状态下进入系统设置的选项,按下“显示范围”,真空模式、吸枪模式后面的数值为模式下的下限值。检漏精度(数值是显示漏率小数点后面几位数。 17SYS继电器:仪器在停机或待机状态下进入系统设置的选项,按下“SYS继电器”继电器输出使能(禁止、允许仪器漏率报警和状态输出控制);模拟量输出方式(线性、指数,仪器漏率输出方式) 18除此之外还有语言设置、外部控制等内容。

常见的四种氦质谱检漏法的检测原理、优缺点及检测标准

常见的四种氦质谱检漏法的检测原理、优缺点及检测标准 氦质谱检漏法是利用氦质谱检漏仪的氦分压力测量原理,实现被检件的氦泄漏量测量。当被检件密封面上存在漏孔时,示漏气体氦气及其它成分的气体均会从漏孔泄出,泄漏出来的气体进入氦质谱检漏仪后,由于氦质谱检漏仪的选择性识别能力,仅给出气体中的氦气分压力信号值。在获得氦气信号值的基础上,通过标准漏孔比对的方法就可以获得漏孔对氦泄漏量。 根据检漏过程中的示漏气体存贮位置与被检件的关系不同,可以将氦质谱检漏法分为真空法、正压法、真空压力法和背压法,下面分别总结了这四种氦质谱检漏法的检测原理、优缺点及检测的标准。 真空法氦质谱检漏 采用真空法检漏时,需要利用辅助真空泵或检漏仪对被检产品内部密封室抽真空,采用氦罩或喷吹的方法在被检产品外表面施氦气,当被检产品表面有漏孔时,氦气就会通过漏孔进入被检产品内部,再进入氦质谱检漏仪,从而实现被检产品泄漏量测量。按照施漏气体方法的不同,又可以将真空法分为真空喷吹法和真空氦罩法。其中真空喷吹法采用喷枪的方式向被检产品外表面喷吹氦气,可以实现漏孔的精确定位; 真空氦罩法采用有一定密闭功能的氦罩将被检产品全部罩起来,在罩内充满一定浓度的氦气,可以实现被检产品总漏率的测量。 真空法的优点是检测灵敏度高,可以精确定位,能实现大容器或复杂结构产品的检漏。 真空法的缺点是只能实现一个大气压差的漏率检测,不能准确反映带压被检产品的真实泄漏状态。 真空法的检测标准主要有QJ3123-2000《氦质谱真空检漏方法》、GB /T 15823-2009《氦泄漏检验》,主要应用于真空密封性能要求,但不带压工作的产品,如空间活动部件、液氢槽车、环境模拟设备等。 正压法氦质谱检漏 采用正压法检漏时,需对被检产品内部密封室充入高于一个大气压力的氦气,当被检产品表面有漏孔时,氦气就会通孔漏孔进入被检外表面的周围大气环境中,再采用吸枪的方式检测被检产品周围大气环境中的氦气浓度增量,从而实现被检产品泄漏测量。按照收集氦气方式的不同,又可以将正压法分为正压吸枪法和正压累积法。其中正压吸枪法采用检漏仪吸枪对被检产品外表面进行扫描探查,可以实现漏孔的精确定位; 正压累积法采用有一定密闭功能的氦罩将被检产品全部罩起来,采用检漏仪吸枪测量一定时间段前后的氦罩内氦气浓度变化量,实现被检产品总漏率的精确测量。 正压法的优点是不需要辅助的真空系统,可以精确定位,实现任何工作压力下的检测。 正压法的缺点是检测灵敏度较低,检测结果不确定度大,受测量环境条件影响大。

氦检仪操作规程

氦检仪操作规程 1. 目的: 正确指导SFJ-211氦检仪的使用。 2. 适用范围: 本操作规程适用于SFJ-21氦检仪使用操作 3. 责任: 3.1 本操作规程由质保部制定修改。 3.2使用人员严格按照操作规程作业。 4. 设备: SFJ-211氦质谱检漏仪 5. 设备专用辅助工具: 氦气、氧气袋、喷枪、波纹管2根,快卸法兰2只 6. 开机前的准备 6.1 确认需要检测的设备内部无水无尘及其他漂浮物,干燥清洁6.2 确认需要检测的设备放置平稳,氦检仪放置水平,脚轮制动可靠6.3 确认需要检测的设备内部压力在1000Pa以下;如需做精密检漏 被检设备内部压力≤10Pa 6.4 把氧气袋装满氦气。 6.5 把需要检测的设备(管道)用波纹管连接到氦检仪上。 6.6 连接氦检仪的电源 7.开机操作步骤 7.1 将检漏仪的电源插头插入250V10A的电源插座(接地良好)。

7.2 将后置电源控制面板上的电源开关置于 l 位置。 7.3 主屏幕上出现启动中画面。若启动前检漏仪已关闭很长一段 时间 (数小时),则可能需要最多三分半钟的时间稳定下来,主屏幕上出现待机中画面,同时提供可靠的量化泄漏率读数。 8. 检漏操作 8.1采用氦气作为跟踪气体来探测漏眼的方法多种多样。本规程适用 真空喷吹法检测 9. 关机操作步骤 9.1 首先要切断氦检仪和被检工件之间相通的阀门,然后按下操作面 板上的停止按钮,主屏幕上出现待机中画面,然后置电源控制面板上的电源开关置于 O 位置 10.氦检仪使用注意事项 10.1 检测口规管电压≯2000mv 10.2 电源电压不能超过220V额定电压的±10%。 10.3 电源插座要接保护性地线 10.4 0% 至 80% 相对湿度,无凝缩 10.5 10°C 至 + 40 °C环境温度 11. 日常维护要求 11.1 对污浊或变色的真空泵油进行更换,建议真空泵油牌号为LV20 11.2 校准 外部校准泄漏:确认标漏样件完好,将标漏样件和氦检仪正确连接,系统执行自动校准程序。

压力容器氦质谱检漏法介绍

被检件漏孔 检漏方法介绍 压力容器氦质谱检漏法介绍 一、概述 检漏的目的是确定被检件漏孔的位置和漏率,这些目的是通过采用一些标准的检漏方法实现的。采用什么方法要视被检件的结构、检漏的经济效益及检漏系统的性质来决定。根据不同的检漏目的,基本上有吸入法、喷吹法、背压法、真空箱法等几种常用检漏方法: 1、吸入法——确定漏孔位置 又称吸枪检漏,如图1-5,将专用吸 枪联接在仪器检漏口上,被检件则充入规 定压力的氦气(纯氦气或一定比例含氦的混合气)。检漏时,让吸枪沿可疑漏孔处慢慢移动,若被检件有漏孔,氦气自漏孔漏出,被吸枪吸入送至仪器的质谱管而被检测。 吸入法检漏灵敏度相对喷吹法要低,但是其检漏口真空主要是由吸枪流量决定的,所以不受被检件容积的限制,适合检测大的容器。 2、喷吹法——确定漏孔位置 该方法是将被检件接在检漏仪的检漏口,用仪器的真空系统对其抽真空并达到真空衔接与质谱管沟通,然后用喷枪向可疑漏孔喷吹氦气。当有漏孔存在时,氦气就通过漏孔进入质谱管被检测。下图是喷吹法原理示意图。 喷吹法检漏的灵敏度高,质谱管不 吸枪检漏仪 装有氦气的 压力容器 装有氦气的压力容器 喷枪 被检件 漏孔 检 漏 仪

易受污染,但是检大容器时可能有真空抽不下来的情况,可能要加辅助真空设备。 3、 背压法——测总漏率 电子元器件进行气密性检测时常 用背压法。检漏前用专用加压容器向被 检件压入氦气(由压力和时间控制压入 的量),然后取出被检件,吹去表面吸 附氦后放入专用检漏罐中,再将检漏罐 联接到检漏仪的检漏口上,对检漏罐抽 真空,实施检漏。若器件有漏,则通过 该漏孔压人的氦气又释放出来进入检 漏罐,最终到达质谱管。用这种方法测 得的漏率也是总漏率。图1-7为背压 法检漏示意图。 4、 真空箱法 真空箱法是一 种比较复杂的方法。检漏时先将工件如上图放入真空箱中,关闭V1、V2,打开V3使用真空箱预抽系统对真空箱抽真空,如果可以在规定时间内抽到规定的真空度,说明被检工件没有大漏,反之有大漏则需要将工件拿下来检大漏。如果真空可以抽下来则关闭V3,然后打开V2使用工件预抽系统对工件被检件 真空 箱预 抽系统 检漏仪 氦气 检漏仪

氦质谱检漏仪测试使用规范

氦质谱检漏仪 1.本规范是氦气质谱检漏仪的使用和保养的技术指导规范 2.概述 质谱仪是在作FE测试用于检测空气中氦气分子的仪器,低温实验室的氦气质谱仪包含以下零件:主体检漏机、吸枪、卡箍、卡箍盖、真空校准漏孔、电源线。其技术参数如下: 型号:SFJ-211B 最小可检漏范围: 漏率显示范围: 吸枪长度: 探头直径: 制造标准: 渗氦型真空校准漏孔: 校准标准: 3.使用方法 a.实验之前半小时,确认机体接口、卡箍、卡箍盖连在一起并卡紧。插上电 源,打开质谱仪后面的开,让质谱仪抽真空15分钟,准备就绪后,按显示板上的停止键,松开卡箍,将校准口装到主机接口上,拧紧卡箍,按显示板上的校准键,等机子校准结束后,上面的数值与校准口上的数值一样(如有问题在校准一次,还不行则送修),则按下停止键,拆开卡箍,装上吸枪,拧紧卡箍。 b.按下检漏键,将吸枪置于空气左右上下嗅探,测试一下环境中的HE气分 子量,如果He分子量太高,则开启排风扇将实验室中的气体排出。 c.将吸枪探头置于离探源2-5mm的距离内嗅探,绕着探源走一圈,注意观 察质谱仪上的数值,记下其瞬间最高数值。也可以根据客户要求进行测试。4.注意事项 a.在使用过程中,不允许开风扇或者有引起空气流动的动作。 b.在测试进行一个小时后,应在标漏一次。 c.设备必须在停止状态下才能松开卡箍。 d.真空校准漏孔在使用时不要磕碰、用力甩动。 e.吸枪使用时不要有污垢堵住探头口,延长线不要弯折、打结。 f.每次嗅探中途停止时,应按下停止键。 g.非测试人员不得操作设备。 5.设备保养 每次使用完设备后应将机器擦拭干净、吸枪接头松开、盖上卡箍盖,用卡箍拧紧。吸枪绕好,放在设备上方,拔掉电源线,盖上透明塑料袋。将渗氦型真空校准漏孔收到专门的盒子内。

质谱检漏仪的基本原理

质谱检漏仪的基本原理 文章来源:互联网发表时间:2008-08-06 16:58:37阅读次数:677【Eglish】 热门搜索:标样热失重分析仪雾室耗材配件标准溶液荧光玻璃控样 氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵 ... 氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。 氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。 (1)工作原理与结构 氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。 ①单级磁偏转型氦质谱检漏仪 现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪,其结构如图2所示。 在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。质谱室的工作原理如图3所示。 在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可按式(5)计算。 可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R是固定的,调节加速电压U使氦离子束[图中(me-1)2]恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。(me-1)2=4,即He 的质荷比,除He 之外,C卅很少,可忽略。 ②双级串联磁偏转型氦质谱检漏仪 图4示出了双级900缩转串联式磁偏转型氦质谱检漏仪的质谱室。由于两次分析,减少了非氦离子到达收集器的机率。并且,如在两个分析器的中间,即图中的中间缝隙S2与邻近的挡板间设置加速电场,使离子在进入第二个分析器前再次被加速。那些与氦离子动量相同的非氦离子,虽然可以通过第一个分析器,但是,经第二次加速进入第二个分析器后,由于其动量与氦离子的不同而被分离出来。由于二次分离,仪器本底及本底噪声显著地减小,提高了仪器灵敏度。 ③逆流氦质谱检漏仪 逆流氦质谱检漏仪的结构特点如图5所示。该类仪器是根据油扩散泵或分子泵的压缩比与气体种类有关的原理制成的。例如,多级油扩散泵对氦气的压缩比为102;对空气中其它成分的压缩比为lO4~106。检漏时,通过被检件上漏孔进入主抽泵前级部位的氦气,仍有部分返流到质谱室中去,并由仪器的输出指示示出漏气讯号。这就是逆流氦顷质谱检漏仪的

氦质谱检漏仪使用说明 (1)(DOC)

氦质谱检漏仪使用说明 一、检漏仪及其真空系统的组成 VARIAN959-50检漏仪检漏漏率范围从1X10-3(毫升/秒)到2X10-10(毫升/秒)(相当于30年漏1毫升),它主要由质谱管、高真空泵、热偶规管、一系列按钮控制的阀、测试接口、真空和漏率指示,以及电路板等部分组成,其真空系统结构为(分子泵型),如图1: 图1 检漏仪真空系统结构图(分子泵型) 检漏仪开启后,V1、V2、V6阀打开,测试口与质谱管保持真空

连接。如果按下“VENT”键,放气阀V3打开,V1关闭,测试口处于大气状态,同时V2打开,使分子泵、质谱管和机械泵连通。分子泵运行时,质谱管真空度要达到2X10-4TORR以上,才能给离子源灯丝加热。 二、检漏仪工作原理

图2 检漏仪工作原理图 如果被检系统有微小漏孔,在小孔周围喷氦气时,总有部分氦原子会通过漏孔进入检漏仪接口,通过其真空系统扩散到质谱管。质谱管是检漏仪核心组成部分,参见上图2,在电场和磁场作用下,灯丝发射电子使气体电离,电离后带正电的离子通过聚焦和孔集中后,进入分析磁场(磁场强度为2340高斯),由于受洛仑磁力作用,离子会发生偏转,其它外界条件相同的情况下,偏转半径由带电粒子电量与质量之比即荷质比决定,荷质比小的离子偏转半径小,荷质比大的粒子偏转半径大,只有氦离子才能通过抑制小孔到达收集极,信号经放大后,检漏仪报警。 三、控制和指示器功能说明: 序号控制、指示器功能 1 Vent Start Hold 和Test 按钮检漏仪开关时,控制各个阀的动作顺序 2 Pressure(压力指示) 显示测试口压力,单位millitorr 3 Leak rate(漏率指示) 显示漏率,单位std cc/sec(标准 立方厘米每秒),超过或低于测 量量程,分别由上下端两个发 光二极管(LED)“over”和 “under”显示。随“range”和 “Hi-Lo Sensitivity”档位选择不 同,×10-指数窗口将显示4、5、 6、7、8或9作指数

氦质谱检漏仪知识

氦质谱检漏仪(Helium Mass SpectrometerLeakDetector)为气体工业名词术语,用氦气或者氢气作示漏气体,以气体分析仪检测氦气而进行检漏的质谱仪。氦气的本底噪声低,分子量及粘滞系数小,因而易通过漏孔并易扩散;另外,氦系惰性气体,不腐蚀设备,故常用氦作示漏气体。将这种气体喷到接有气体分析仪(调整到仅对氦气反应的工作状态)的被检容器上,若容器有漏孔,则分析仪即有所反应,从而可知漏孔所在及漏气量大小。 (灯丝发射出来的电子在电离室内来回的振荡,与电离室内气体和经被检件漏孔进入电离室的氦气相互碰撞使其电离成正离子,这些离子在加速电场作用下进入磁场,由于洛伦兹力作用产生偏转,形成圆弧形轨道) 根据检漏过程中的示漏气体存贮位置与被检件的关系不同,可以将氦质谱检漏法分为真空法、正压法、真空压力法和背压法,以下总结了这四种氦质谱检漏法的检测原理、优缺点及检测的标准。 真空法氦质谱检漏 采用真空法检漏时,需要利用辅助真空泵或检漏仪对被检产品内部密封室抽真空,采用氦罩或喷吹的方法在被检产品外表面施氦气,当被检产品表面有漏孔时,氦气就会通过漏孔进入被检产品内部,再进入氦质谱检漏仪,从而实现被检产品泄漏量测量。按照施漏气体方法的不同,又可以将真空法分为真空喷吹法和真空氦罩法。其中真空喷吹法采用喷枪的方式向被检产品外表面喷吹氦气,可以实现漏孔的精确定位;真空氦罩法采用有一定密闭功能的氦罩将被检产品全部罩起来,在罩内充满一定浓度的氦气,可以实现被检产品总漏率的测量。 真空法的优点是检测灵敏度高,可以精确定位,能实现大容器或复杂结构产品的检漏。 真空法的缺点是只能实现一个大气压差的漏率检测,不能准确反映带压被检产品的真实泄漏状态。 真空法的检测主要应用于真空密封性能要求,但不带压工作的产品,如空间活动部件、液氢槽车、环境模拟设备等。 正压法氦质谱检漏 采用正压法检漏时,需对被检产品内部密封室充入高于一个大气压力的氦气,当被检产品表面有漏孔时,氦气就会通孔漏孔进入被检外表面的周围大气环境中,再采用吸枪的方式检测被检产品周围大气环境中的氦气浓度增量,从而实现被检产品泄漏测量。按照收集氦气方式的不同,又可以将正压法分为正压吸枪法和正压累积法。其中正压吸枪法采用检漏仪吸枪对被检产品外表面进行扫描探查,可以实现漏孔的精确定位;正压累积法采用有一定密闭功能的氦罩将被检产品全部罩起来,采用检漏仪吸枪测量一定时间段前后的氦罩内氦气浓度变化量,实现被检产品总漏率的精确测量。 正压法的优点是不需要辅助的真空系统,可以精确定位,实现任何工作压力下的检测。 正压法的缺点是检测灵敏度较低,检测结果不确定度大,受测量环境条件影响大。 正压法主要应用于大容积高压密闭容器产品的检漏,如高压氦气瓶、舱门检漏仪等。 真空压力法氦质谱检漏 采用真空压力法检漏时,需要将被检产品整体放入真空密封室内,真空密封室与辅助抽空系统和检漏仪相连,被检产品的充气接口通过连接管道引出真空密封室后,再与氦气源相连,当被检产品表面有漏孔时,氦气就会通过漏孔进入真空密封室,再进入氦质谱检漏仪,从而实现被检产品总漏率的测量。 真空压力法的优点是检测灵敏度高,能实现任何工作压力的漏率检测,反映被检件的真实泄漏状态。 真空压力法的缺点是检漏系统复杂,需要根据被检产品的容积和形状设计真空密封室。这里需要说明在检漏过程要求确保充气管道接口无泄漏,或者采取特殊的结构设计将所有充气管道连接接口放置在真空密封室外部。 真空压力法的检测主要应用于结构简单、压力不是特别高的密封产品,如电磁阀、高压充气管道、推进剂贮箱、天线、应答机、整星产品等。 背压法氦质谱检漏 采用背压法检漏时,首先将被检产品置于高压的氦气室中,浸泡数小时或数天,如果被检产品表面有漏孔,氦气便通过漏孔压入被检产品内部密封腔中,使内部密封腔中氦分压力上升。然后取出被检产品,将表面的残余氦气吹除后再将被检产品放入与检漏仪相连的真空容器内,被检产品内部密封腔内的氦气会通过漏孔泄漏到真空容器,再进入氦质谱检漏仪,从而实现被检产品总漏率测量。检漏仪给出的漏率值为测量漏率,需要通过换算公式计算出被检产品的等效标准漏率。 背压法的优点是检测灵敏度高,能实现小型密封容器产品的泄漏检测,可以进行批量化检测。 背压法的缺点是不能进行大型密封容器的漏,否则由于密封腔体容积太大,导致加压时间太长。此外,每个测量漏率都对应两个等效标准漏率,在细检完成后还需要采用其它方法进行粗检,排除大漏的可能。 背压法的检漏主要应用于各种电子元器件产品检漏。

INFICON UL1000氦质谱检漏仪

UL1000

More importantly, its exceptional ability to isolate the helium signal from its environment allows the UL1000 to excel So, if you require pump set delivers unsurpassed performance in a cost- eak Rates), the UL1000 delivers lightning-fast response to leaks in all measure-The UL1000’s high helium pumping speeds with great sensitivity at high pressures means you get excellent gas movement and sensitivity at favorable test pressures to ensure fast, accurate and Features for easy and reliable operation include a rotatable display/user interface, large and integrated wheels for Options include a wireless remote control with touch screen, attachable toolbox, helium bottle holder, and Leakware for PC-controlled operation and data collection. A FA S T Using the special software algorithm I-CAL, the UL1000 provides accurate measurements at unsurpassed speed in all measurement ranges. While other leak detectors must average the signal over long periods of time to ensure a stable leak rate, the UL1000 with I-CAL responds with unparalleled speed and stability even in the smallest leak rate ranges. in several languages. presents results and status information in large characters with excellent clarity. can be monitored conveniently from considerable distances even in bright or low light settings. displayed in digital, bar graph, or trend formats. The Start, Stop and Zero functions are readily accessible on the display.More advanced functions are available in the menus of the easy-to-use, intuitive user interface. The UL1000 system software provides security and testing https://www.doczj.com/doc/fa8378265.html,er access can be limited, and menu items can be protected against unauthorized use or unintended modifications. For quick and easy system operation, the UL1000 can be programmed for three different user applications. C O N V E N I E N T T E S T I N G The test chamber TC1000 turns the UL1000 into a reliable and user-friendly workstation for testing hermetically sealed parts (acc.to MIL-STD 843, Method 1014) and is available as an option. E A S Y S E T-U P T o simplify installation, all the electrical and mechanical connections are located on one side of the UL1000 to provide convenient access to the RS232, I/O, chart recorder, optional remote control, vent, gas ballast, exhaust and acces- sory ports.

相关主题
文本预览
相关文档 最新文档