当前位置:文档之家› 材料光谱分析技术

材料光谱分析技术

材料光谱分析技术
材料光谱分析技术

X 射线光电子能谱分析技术与应用

摘要:在对许多材料的研究和应用中,了解表面特性是很重要的。X 射线光电子能谱(XPS )对材料表面化学特性具有高识别能力,已经成为材料表面分析的一种重要技术手段。本文介绍了X 射线光电子能谱仪的工作原理以及其主要功能,并对XPS 在材料分析中的应用进行了概括与小结。

关键词:X 射线光电子谱;基本原理;主要功能;应用

X 射线光电子谱(XPS )是重要的表面分析技术之一。它不仅能探测表面的化学组成,而且可以确定各元素的化学状态,因此,在化学、材料科学及表面科学中得以广泛地应用。XPS 方法的最简单描述是当X 射线与样品相互作用后,激发出某个能级上的电子,测量这一电子的动能,可以得到样品中有关的电子结构信息,其最大的优点是样品处理简单,适应性广泛和信息量高,最大特色在于能获取丰富的化学信息,对样品表面的损伤最轻微。它在材料的基础研究和实际应用中都起着非常重要的作用。

1. X 射线光电子谱基本原理

XPS 是测量电子能量的谱学技术[1,2]。我们知道,原子是由原子核及绕核运动的电子组成。电子在一定的轨道上运动,并具有确定的能量。当一束有足够能量 (hv)的X 射线照射到某一固体样品 (M)上时,便可激发出某原子或分子中某个轨道上的电子,使原子或分子电离 ,激发出的电子获得了一定的动能E k ,留下一个离子M +。这一X 射线的激发过程可表示如下:

M hv e -

M +++

e - 被称为光电子。若这个电子的能量高于真空能级,就可以克服表面位垒,逸出体外而成为自由电子。光电子发射过程的能量守恒方程为:

E k hv E B -=

式中EK 为某一光电子的动能,EB 为结合能。这就是著名的爱因斯坦光电发射方程,它是光电子能谱分析的基础。在实际分析中,采用费米能级(EF)作为基准(即结合能为零),测得了样品的结合能(BE)值,就可判断出被测元素。由于被测元素的BE 变化与其周围的化学环境有关,根据这一变化,可推测出该元素的化学结合状态和价态。

在X 射线引发的芯能级电离过程中,还涉及到俄歇(Auger)电子的发射,样品由于X 射线的入射而产生电离,在电离的过程中,某壳层形成空穴,当邻近轨道的电子填充这个空穴时,多余的能量又将某轨道上的另一个电子击出,这就是俄歇电子。.这一电子是Auger P 在1925年的X 射线实验[3]

中发现的。可见,俄歇电子涉及到3个能级,其动能取决于元素的种类。在XPS 分析中常用到俄歇电子,在专用的俄歇电子能谱中,俄歇电子可用作元素

鉴定,且迅速准确。

图1给出XPS仪器的简单示意图。当具有一定能量的X射线与物质相互作用后,从样品中激发出光电子,带有一定能量的电子经过特殊的电子透镜到达分析器,光电子的能量分布在这里被测量,最后由检测器给出光电子的强度。由PC机组成的数据系统用于收集谱图和数据处理。由于电子能谱中所测的电子动能在电子伏特(eV)范围,电子从样品到达分析器之间不能与任何物质相互作用,这就需要包括各种真空泵在内的高真空或超高真空系统[4]。图1的虚线范围内表示系统必须在真空条件下工作。

图一:XPS工作示意图

由于X射线不能聚焦,早期的XPS仪器空间分辨率较差。随着科学技术的飞速发展和仪器厂商对新技术的开发应用,近年来XPS的空间分辨率有很大的提高,可以到几个微米。用XPS可以对选定的某一元素进行图像扫描,即给出化学相,得到元素的空间分布情况。XPS技术对样品的损伤很小,本是无损分析。但是,在X射线的长时间照射下,可能引发元素的价态变化,在实际工作中应引起足够的重视。XPS所探测的样品深度受电子的逃逸深度所限,一般在几个原子层,故属表面分析方法。

2.XPS的主要功能

现代电子能谱仪有3个主要功能:单色XPS(Mono XPS)、小面积XPS(SAXPS)和成像XPS(iXPS),被认为是光电子能谱仪发展方向。

2.1 单色化XPS (Mono XPS) 和小面积XPS (SAXPS)

以前,Mono XPS单纯采用晶体(如石英晶体)单色化X光源;SAXPS简单采用光阑限定实现小面积分析。而现代Mono XPS和SAXPS功能多采用先进的铝靶微聚焦单色器,可同时实现Mono XPS和SAXPS功能(Mono SAXPS),灵敏度、能量分辨率等性能得到明显的改善。这种微聚焦单色器由聚焦电子枪、可移动Al 阳极靶、晶体等组成。其中的AlKɑX 射线经过凹面晶体单色化聚焦,形成高亮度小束斑单色X射线照射到样品表面上,激发出具有能量分辨率很高SAXPS谱。新型SAXPS典型技术参数为:最佳空间分辨15μm;最大分析区域为400μm;最佳能量分辨[5]0.47eV,而常规XPS 极限分辨率为0.8eV。由于现代

XPS 仪器采用一系列新技术,Mono XPS和SAXPS功能的整体灵敏度得到提高,且操作简捷,样品定位准确,完全由计算机自动控制,使得分析效率和质量大大提高。Mono SAXPS 有其独特特点及应用。它不但能准确、有效地分析样品上选微内元素及化学态,具有很高的灵敏度和能量分辨率;而且象AES深度剖析一样,配合离子刻蚀,还能准确、可靠、快速地进行XPS深度剖析。

2.2 SAXPS 深度剖析

由于SAXPS分析束斑小,SAXPS像AES深度剖析一样配备离子枪刻蚀,很容易进行SAXPS深度剖析。图 2 为一计算机硬盘SAXPS 深度剖析结果。结果显示硬盘表面第1层为含C层(一般为类金刚石薄膜),厚度17nm;第2和3层分别为Co Ta合金层和Cr层;衬底层含有Ni和P。

图2 硬盘的SAXPS深度剖析结果,剖析深度10~40nm 图2 中右图为硬盘表面以下不同深度Cr2p SAXPS谱Montage图。不仅如此,这一分析技术同样可得到元素化学态的深度剖析结果。与AES深度剖析相比,虽然定点AES的空间分辨率高于SAXPS,但是SAXPS深度剖析更能有效直观监测元素价态的变化,且能分析绝缘体样品。从这2个方面来说,深度SAXPS剖析优于AES深度剖析。常规的XPS深度剖析由于分析面积大,要求离子刻蚀面积更大,致使离子刻蚀速度慢,因此,效率低,很难得到快速、准确的高深度分辨的剖析结果。

2.3 成像XPS(iXPS)

成像XPS(iXPS)主要有3种,即平行成像法、X射线束扫描法(包括移动样品台实现X 光扫描)和光电子扫描法。每种成像方法都有其优缺点。平行成像法不像后两种方法需要逐点扫描,而是一种快速照相式的多点同时成像法,其优点是速度快,信噪比高。由成像原理可知,平行成像iXPS分析面积和空间分辨率主要决定于成像透镜,目前,最佳空间分辨率可达1μm。与扫描俄歇成像(SAM)类似iXPS能提供样品表面元素分布图像及元素化学态像等。iXPS不仅能分析导体和半导体,还能分析绝缘体。另外,XPS二次电子背景远小于AES,因而iXPS信噪比高。

3. XPS的应用

3.1 定性分析

定性分析就是根据所测得谱的位置和形状来得到有关样品的组分、化学态、表面吸附、

表面态、表面价电子结构、原子和分子的化学结构、化学键合情况等信息。元素定性的主要依据是组成元素的光电子线的特征能量值,因为每种元素都有唯一的一套芯能级,其结合能可用作元素的指纹。同AES定性分析一样,XPS分析也是利用已出版的XPS手册。在XPS 中可以观察到几种类型的谱线。其中有些是XPS中所固有的,是永远可以观察到的;有些则依赖于样品的物理、化学性质。

在XPS中,很多强的光电子谱线一般是对称的,并且很窄。但是,由于与价电子的耦合,纯金属的XPS谱也可能存在明显的不对称。谱线的峰宽一般是谱峰的自然线宽、X射线线宽和谱仪分辨率的卷积。高结合能端弱峰的线宽一般比低结合能端的谱线宽1~4 eV。绝缘体的谱线一般比导体的谱线宽0.5 eV。

3.2 化合态识别

在XPS的应用中,化合态的识别是最主要的用途之一。识别化合态的主要方法就是测量X射线光电子谱的峰位位移。对于半导体、绝缘体,在测量化学位移前应首先决定荷电效应对峰位位移的影响。由于元素所处的化学环境不同,它们的内层电子的轨道结合能也不同,即存在所谓的化学位移。其次,化学环境的变化将使一些元素的光电子谱双峰间的距离发生变化,这也是判定化学状态的重要依据之一。元素化学状态的变化有时还将引起谱峰半峰高宽的变化。由于元素的化学状态不同,其Auger电子谱线的峰位也会发生变化。当光电子峰的位移变化并不显著时,Auger电子峰位移将变得非常重要。在实际分析中,一般用Auger参数α作为化学位移量来研究元素化学状态的变化规律。

3.3 定量分析

在表面分析研究中我们要确定试样元素种类及其化学状态,还要求测得含量。对谱线强度做出定量解释。在电子能谱中,定量分析的应用大多以能谱中各峰强度的比率为基础,把所观测到的信号强度转变成元素的含量,即将谱峰面积转变成相应元素的含量。目前定量分析多采用元素灵敏度因子法。该方法利用特定元素谱线强度作参考标准,测得其它元素相对谱线强度,求得各元素的相对含量。

3.4 小面积XPS分析

小面积XPS是近几年出现的一种新型技术。由于X射线源产生的X射线的线度小至0.01 mm左右,使XPS的空间分辨能力大大增加,使得XPS也可以成像,并有利于深度剖面分析。

近年来,由于仪器方面的不断发展,许多以前不容易得到的信息可以较容易地用新一代的光电子能谱仪来测量,所以XPS的用途也就越来越广了。XPS能谱中的价带区信号一般很微弱(通常只有内层电子光电子信号强度的百分之一左右),而且集中在较窄的能量范围内(0 - 30ev),用一般的X射线光源(非单色的)很难测量价带谱。现在高档的商业化能谱仪一般都带有单色器,而且光电子信号的检测效率高,可以相当有效地记录价带谱。很多材料都有特征的价带谱,其中包含有与材料结构有关的信息。这些结构信息用内层电子的光电子能谱很难得到。比如说,聚乙烯和聚丙烯的Cls图谱基本上没有差别,而它们的价带谱却有明显区别[6]在内层光电子逸出固体时,常伴有能量损失,因而在光电子主峰的高结合能的一边可

出现能量损失的信号。然而,正象价带谱那样,能量损失谱的信号一般也很弱,因而常被忽略。新一代的XPS能谱仪可成功地用来记录微弱的能量损失谱,因为能量损失的测量是相对于主峰的位置,不受样品荷电效应的影响,所以用能量损失谱来研究绝缘体有独到的优点。此外,对于许多元素来说,不同化学状态下的能量损失值的差别比相应的内层电子化学位移的差别来的大[7]在这种情况下,用能量损失谱来判断元素价态变化更为有效。以前,化学组份的深度剖面分析一般是用俄歇电子能谱(AES)来测量,XPS在这方面的应用较少,这主要是由于XPS的记录速度慢且所分析的表面区域大,不容易得到好的深度分辨率。然而,这种状态也由于仪器的进展而改变。现在高质量的XPS仪器可以很容易地记录来自直径小于一百微米区域内的光电子信号,而且记录速度很快,所以XPS可用以常规测量高质量的化学组份深度剖面谱图[8]。和AES相比,用XPS作深度剖面分析主要有以下两个优点:(1) XPS 可以比较方便地用于表征非导体;(2) XPS可以更有效地用来确定元素的化学价态。

除了上面所提到的价带谱、能量损失谱及深度剖面谱方面的进展外,近年来在XPS分析方面的另一个主要成就是微区及化学成像分析。历史上,XPS主要用在对空间分辨率要求不高的场合。然而最近几年XPS已越来越多地被用来研究具有空间分辨的表面化学。已有报道声称,可用商业化的仪器达到二微米的线分辨率。因为材料科学与工程中的许多课题都涉及到表面化学组份的不均匀分布,空间分辨率的提高使XPS在材料研究的应用范围大为扩展。

4.结论

用XPS分析不仅可以进行表面元素的定性和定量分析,还可进行元素组成的选区和微区分析,元素组成的表面分布分析,原子和分子的价带结构分析,在某些情况下还可对元素的化学状态、分子结构等进行研究。而且XPS在原材料分析、工艺监控、环境控制以及开发研究方面都有很大应用。总之,XPS中包含着样品有关表面电子结构的重要信息,是材料研究进展的必备手段。

参考文献:

[1] 陆家和,陈长彦. 表面分析技术. 北京:电子工业出版社, 1987

[2] 桂琳琳等. X射线与紫外光电子能谱. 北京:北京大学出版社, 1984

[3] Auger P. J. Phys. Radium, 1925, 6: 205

[4] WutzM, Adam H, WalcherW. Theory and Practice ofV acu2 um Technology. Friedr. V ieweg & Sohn, Braunschweig/Wies2 baden, 1989

[5] 黄惠忠等著.论表面技术及其在材料分析中的应用〔M〕,北京:科学技术文献出版社,2002

[6] Drummond, IW, Robinson, K S, Carrick, A and Schmiedel, H. Fresenius’J.Anal. Chem. 1993,346:200.

[7] Barr, T L. Modern ESCA: Uie principle and practice of X-ray photoelectron spectroscopy, CRC Press, Boca Raton, 1994.

[8] Stickle, W F. PHI Application Notes, 1991,No. 9103

各种光谱原理解读

紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC

紫外光谱分析实验数据处理部分

【实验数据处理部分】 一.由实验测得的数据可以得到以下几个谱图: 1.苯蒸气的紫外吸收光谱: 左图中,苯的K吸 收带大约在214nm处, B吸收带在256nm左右。 并且,苯蒸气的精细结 构(主要指苯分子的振 动能级)清晰可见。 另外,由于滴加到 比色皿中的苯过多导致 浓度偏大,A值偏大。 (超过了1.0)。 2.不同取代基对苯的紫外吸收带的影响: (1)、苯甲酸与苯乙烯: 左图中,①②标示的 是苯蒸气的K带和B带; ③表示的是苯甲酸的K 吸收带;而④⑤表示的是 苯乙烯的E2带和K带。 (其中为了使谱图便于 比对,将苯蒸气的吸光度 值成比例地缩小了一定 的数值。) 读图可知: 与苯比较,羧基(吸 电子基)取代的苯环,其K 吸收带发生了红移,B吸 收带也有一定程度的红 移,但强度变弱了; 而对于苯乙烯,由于乙烯基双键的存在,增大了苯环的共轭体系,使得价电子跃迁所需要的能量变低,因而发生了很大程度的红移,E2带和K带分别红移至210nm和245nm处。 (2)、苯酚和苯胺:

图中,①②标示的是 苯蒸气的K带和B带; ③④表示的是苯酚的K 吸收带和B吸收带;而 ⑤⑥⑦则表示苯胺的E2 带、K带和B带。 读图可知: 苯酚的E2吸收带与 K吸收带合并了,原因是 酚羟基的助色作用使得 吸收带发生红移,同样 地,与苯相比,苯酚的B 吸收带也发生了红移; 苯胺的氮原子上含 有孤对电子,也和酚羟基一样具有助色效应,因此苯胺的各个吸收带也发生了一定程度的红移(相比较于苯而言)。 二、溶液性质对取代苯紫外吸收的影响: 1.苯酚与其碱性溶液: 图中:①②③分别标 示的是苯酚在碱性溶液 中的E2吸收带、K吸收 带和B吸收带的大致位 置;而④⑤则分别标示苯 酚在中性溶液中的K吸 收带和B吸收带的位置。 读图可知: 由于碱性溶液中的 酚羟基以氧负离子形式 存在,使得酚羟基的助色 作用大大增强,因而苯环 的吸收带均发生较大的 红移。 例如:原本在苯酚的 紫外吸收图谱中未能读出的E1、E2吸收带,此时可以大致从图中读出;另外,碱性溶液中,苯酚的K带红移至245nm左右,B带红移至290nm左右。 苯酚在碱性溶液中的变化见下图:

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用. 高光谱遥感技术的介绍及应用 在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人 类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,

遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文 简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常 <10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪 为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点

同其他常用的遥感手段相比 ,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度 < 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如 AVIRIS在 0. 4~214 波段范围内提供了224 个波段。研究表明许多这是传统的多光谱等。40 nm~20地物的吸收特征在吸收峰深度一半处 的宽度为 遥感技术所不能分辨的(多光谱遥感波段宽度在 100~200 nm 之间),而高光 谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。另外,在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以 使高光谱图像中的每一个像元在各通道的灰度值都能产生一条完整、连续的光谱曲线,即所谓的“谱像合一”,它是高光谱成像技术的一大特点。 2)、由于波段众多,波段窄且连续,相邻波段具有很高的相关性,使得高光数据

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

光谱学及其应用

光谱学及其应用 摘要:光谱学是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。光谱是电磁辐射按照波长的有序排列,根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。 关键词:发展简史;内容;发射;吸收;分析;应用 光谱学的发展简史 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。 其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。 从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 氢原子光谱中最强的一条谱线是1853年由瑞典物理学家埃斯特朗探测出来的。此后的20年,在星体的光谱中观测到了更多的氢原子谱线。1885年,从事天文测量的瑞士科学家巴耳末找到一个经验公式来说明已知的氢原子诺线的位置,此后便把这一组线称为巴耳末系。继巴耳末的成就之后,1889年,瑞典光谱学家里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。 尽管氢原子光谱线的波长的表示式十分简单,不过当时对其起因却茫然不知。一直到1913年,玻尔才对它作出了明确的解释。但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。 能够满意地解释光谱线的成因的是20世纪发展起来的量子力学。电子不仅具有轨道角动量,而且还具有自旋角动量。这两种角动量的结合便成功地解释了光谱线的分裂现象。 电子自旋的概念首先是在1925年由乌伦贝克和古兹密特作为假设而引入的,以便解释碱金属原子光谱的测量结果。在狄喇克的相对论性量子力学中,电子自旋(包括质子自旋与中子自旋)的概念有了牢固的理论基础,它成了基本方程的自然结果而不是作为一种特别的假设了。 1896年,塞曼把光源放在磁场中来观察磁场对光三重线,发现这些谱线都是偏振的。现在把这种现象称为塞曼效应。次年,洛伦兹对于这个效应作了满意的解释。 塞曼效应不仅在理论上具有重要意义,而且在应用中也是重要的。在复杂光谱的分类中,塞曼效应是一种很有用的方法,它有效地帮助了人们对于复杂光谱的理解。

光谱基础知识解读

太阳光光谱 紫外线谱带:波长280-400nm之间,其特点是穿透性强,可使人体皮肤黑色素沉积,颜色加深,过度的紫外线曝晒会导致皮肤癌,可导致地毯、窗帘、织物及家具油漆褪色。 可见光谱带:波长380~780nm之间,其特点是肉眼可以看见的唯一光谱,可见光波段进一步可以分为不同的颜色(赤橙黄绿蓝靛紫七色),对人体没有直接伤害。 红外光谱带:波长700~2400nm之间,其特点是我们可以直接感受到阳光“不可见”的热量,所含能量最大,所以热量也高。 各波段的远近红外线构成了太阳能的53%,紫外线占3%,可见光占44%。 元素光谱简介 如果物质是以单原子的形式而存在,关键看该原子的电子激发能了。如果在可见光的某个范围内,并且吸收某一部分光线,那它就显剩下的部分的光线的颜色。如该原子的电子激发能非常低,可以吸收任意的光线,该原子就是黑色的,如果该原子的电子激发能非常高。不能吸收任何光线,它就是白色的。如果它能吸收短波部分的光线,那它就是红色或黄色的。 具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。 元素燃烧发出的光谱 燃烧所发出的光色根据不同的元素发出不同的光谱,每一种元素燃烧时都发出多条光谱,这种光通过三梭镜或光栅后会在屏障上显现出多条亮线,也就是说只发出有限的几种频率的光,这就是这种元素的光谱。其中会有一条或几条最亮的线,这几条最亮的线决定了在人眼中所看到的颜色。 观察光谱的方法 连续光谱的光线在通过含某种元素的气体时在光谱带上会出现多条暗线,这些暗线刚好与这种元素的光谱线位置相同,强度刚好相反,(光谱线越强的位置暗线越明显)这就是元素的吸收光谱。天文学家就是利用吸收光谱来查明遥远的恒星大气和星云中所含的元素,观察恒星红移或蓝移也要利用吸收光谱。 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱 原子决定明线光谱 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构。 吸收光谱 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,

实验一 紫外吸收光谱定性分析的应用

实验一紫外吸收光谱定性分析的应用 一、实验目的 1、掌握紫外吸收光谱的测绘方法。 2、学会利用吸收光谱进行未知物鉴定的方法。 3、学会杂质检出的方法。 二、基本原理 紫外吸收光谱为有机化合物的定性分析提供了有用的信息。其方法是将未知试样和标准品以相同浓度配制在相同的溶剂中,在分别测绘吸收光谱,比较二者是否一致也可将未知试样的吸收光谱与标准图谱,如萨特勒紫外吸收光谱图相比较,如果吸收光谱完全相同,则一般可以认为两者是同一种化合物。但是,有机化合物在紫外区的吸收峰较少,有时会出现不 同的结构,只要具有相同的生色团,它们的最大吸收波长 max λ相同,然而其摩尔吸光系数ε 或比吸光系数E % 1 1cm 值是有差别的。因此需利用 max λ和 max λ处的ε或E%1 1cm 等数据作进一 步比较。 在没有紫外吸收光谱峰的物质中检查含高吸光系数的杂质是紫外吸收光谱的重要用途之一。如乙醇中杂质苯的检查,只需测定256 nm处有无苯的吸收峰即可。因为在这一波段,主成分乙醇无吸收峰。 在测绘比较用的紫外吸收光谱图时,应首先对仪器的波长准确性进行检查和校正。还必须采用相同的溶剂,以排除溶剂的极性对吸收光谱的影响。同时还应注意PH值、温度等因素的影响。在实际应用时,应注意溶剂的纯度。 三、仪器与试剂 1、仪器 T6型(或其他型号)紫外可见分光光度计 1㎝石英比色皿 2、试剂 苯的乙醇溶液

1,4对苯二酚水溶液 苯甲酸的乙醇溶液 四、实验步骤 1、已知芳香族化合物标准光谱的绘制 在一定的实验条件下,以相应的溶剂作参比,用1㎝石英比色皿,在一定的波长范围内扫描(或测绘)各已知标准物质的吸收光谱作为标准光谱。 如苯甲酸的乙醇溶液的和1,4对苯二酚水溶液的标准溶液的标准光谱的绘制。 各已知芳香族化合物的标准光谱也可通过查阅有关手册得到,但应注意实验条件的一致。 2、未知芳香族化合物的鉴定 (1)称取0.100 g未知芳香族化合物,用去离子水溶解后转让100 ml容量瓶中,稀释至刻度,摇匀。实验前,稀释100倍使用。 (2)用1㎝石英比色皿,以去离子水作参比,在200-600波长范围内扫描测定未知芳香族化合物吸收光谱(如使用无扫描功能的紫外可见分光光度计测定时应首先每间隔 20 nm测量一次吸光度,然后每间隔10 nm 、5 nm 、2 nm、1 nm、0.5 nm 测量 一次吸光度。总之,越靠近吸收峰,波长间隔应越小,以得到较准确的吸收曲线)。 3、乙醇中杂质苯的检出 用1㎝石英比色皿,以乙醇作参比,在220-280 nm波长范围内扫描测定乙醇试样的吸收光谱(吸收曲线)。 五、实验结果 1、通过将未知芳香族化合物吸收光谱与已知芳香族化合物标准光谱进行比对,指出未知芳 香族化合物可能为哪种物质。 2、将乙醇试样的吸收光谱与溶解在乙醇中苯的吸收光谱进行比较,指出乙醇试样中是否有 苯存在。 六、思考题 1、配制试样溶液浓度的大小,对吸光度测量值有何影响?在实验中应如何调整? 2、对已经初步确认的化合物纯品,再设计一个实验方案,对未知物作进一步鉴定。

高光谱这双技术高在哪 分析鉴定堪称“火眼金睛”

高光谱这双技术高在哪分析鉴定堪称“火眼 金睛” 利用高光谱技术能提取古画的颜料信息,推算颜料产地,从而能在修复时精准选用颜料。而高光谱的本领可不只是这些,检测果蔬农药残留这些都不在话下,未来还可能随时检测雾霾,可以说高光谱是一双真正的“火眼金睛”。 看过纪录片《我在故宫修文物》的观众或许会对如下场景有印象:技术人员用一台仪器扫描古字画,扫描信息经过专业处理后,文物修复专家就能发现字画上肉眼看不见的信息,甚至还能分析出绘画技法和当时用的颜料。 这台神奇的仪器就是中科院遥感与数字地球研究所(以下简称中科院遥感地球所)研发的高光谱扫描仪。高光谱遥感为何有如此的超能力?除文物检测修复外还有哪些应用?我国在高光谱遥感领域的研发水平又如何? 人们日常生活中所见的光,是由多种颜色构成的复色光,通过棱镜等分光后显现的是单色光。这些单色光按不同波长(或频率)大小依次排列形成的图案,就是光谱。 光谱分析是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为辨别物质的“指纹”。如果说肉眼光学成像能看到物质的形状、尺寸等信息,光谱分析则能获取物质的成分信息。 要获取更丰富、精细的物质成分信息,除了提升分光系统性能外,还可以改进分光方法、呈现方式等——高光谱遥感就是这样一种思路。中科院遥感地球所高光谱遥感研究室主任张立福介绍说,高光谱遥感的特点是能在可见光到短波红外的光谱区间连续成像,传统的彩色相机只能记录红绿蓝三个通道的影像,且每个通道的带宽很宽,而高光谱成像所记录的通道数量可以达到数百个,且光谱通道很窄,分辨率很高,其光谱探测范围远远超过了人类肉眼的感知范围,能够探测人眼无法看到的大量信息,提高人们对自然和物质的认识。 因为能在非常窄的光谱波段内获取丰富的信息,利用高光谱技术获取的信息分辨率很高,甚至能分辨出观测物质的分子和原子结构,这是普通的光学遥感所达不到的。 如何运用高光谱技术鉴定、修复古字画?在中科院遥感地球所高光谱研究室实验室,张立福画了一张图,并为记者解释高光谱遥感成像的原理:高光谱仪器扫描

仪器分析实验5-紫外可见光谱分析

实验五色氨酸、苯丙氨酸和酪氨酸的紫外吸收光谱分析 一、实验目的 1. 掌握紫外-可见分光光度计的工作原理和基本操作。 2. 掌握紫外-可见吸收光谱的绘制(包括导数光谱)以及定量测定方法。 3. 掌握。 4. 了解氨基酸类物质的紫外吸收光谱特点。 二、实验原理 1. 紫外-可见吸收光谱法测定蛋白质含量的基本原理 紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收广度法,它包括比色分析法和紫外-可见分光光度法。 紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。 图1 电子跃迁示意图 物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。 当一定波长的光通过某物质的溶液时,入射光强度I。与透过光强度I之比的对数与该物质的浓度c及样品池厚度b成正比。其数学表达式为: 此式为Lambert-Beer定律,是分光光度法定量分析的基础,其中A为吸光度。 由于不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,具有不同的吸收光谱,因而,我们可以利用紫外-可见吸收光谱法对物质结构进 行鉴定和进行定量分析、根据被测量物质分子对紫外-可见波段范围

红外光谱分析技术及其应用

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ ) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱;红外指纹图谱技术 【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate if

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

(整理)光谱分析技术及应用

光谱分析技术及应用 一、光谱分析的分类 1、原子吸收光谱法——也叫湿法分析。它是以待测元素的特征光波,通过样品的蒸发,被蒸发中的待测元素的基态原子所吸收,由辐射强度的减弱程度,来测定该元素的存在与否和含量多少;通常是采用火焰或无火焰(也叫等离子)方法,把被测元素转化为基态原子。根据吸收光波能量的多少测定元素的含量。 通常原子吸收光谱法是进行仪器定量分析的湿法分析。 2、原子发射光谱法——利用外部能量激发光子发光产生光谱。 看谱分析法就是原始的、也是最经典的利用原子发射光谱的分析方法。看谱分析法在我国工业生产上的使用是在上世纪50年代,58年北京永定机械厂制造了第一台仿苏联技术的看谱仪,随后天津光学仪器厂成为我国大量生产棱镜分光的看谱镜基地。 上世纪80年代起,德国、英国、美国等国家,开始研制采用CCD (Charge Coupled Device电荷耦合器件)技术作为光谱接收器件的直读式定量光谱仪,德国以实验室用大型直读定量光谱仪为主;英国阿朗公司、美国尼通公司以便携式金属分析仪为主打市场。近年来,德国、芬兰等国家研制生产便携式、直读定量光谱仪,分析精度在一定条件下可以替代实验室直读式定量光谱仪。 二、看谱分析的特点 1、操作简便,分析速度快。 2、适合现场操作。

3、无损检测(现场操作情况下无须破坏样品)。 4、检测成本低。是便携式金属分析仪的1/30左右,是便携式直读定量光谱仪的1/40。 5、有一定的灵敏度和准确度。 三、看谱分析的方法: 定性分析方法,所谓定性就是判定分析的元素是否存在的分析。严格的讲定性分析是根据某元素的特征灵敏线的出现与否,来确定该元素是否存在的分析方法。 那么,什么叫灵敏线呢? 某元素在某几个区域出现的几条与其它元素不同的特征线;或称“在较低含量情况下出现的谱线”,或者说是在某一范围内出现的谱线,叫做灵敏线。 半定量方法就是近似的估计元素含量的方法。 利用谱线进行比较,即通过 亮度比较含量,就是与铁基线进 行比较,含量与亮度的对数成正 比关系。(用来进行比较的铁基线 的亮度应不变。)lgI(谱线强度) 四、看谱分析的一般步骤 1、分析前的准备

紫外吸收光谱实验报告

利用紫外吸收光谱检查物质纯度 紫外-可见分光光度法测定水中苯酚含量 一、实验目的 1.学会使用Cary50型紫外-可见分光光度计 2.掌握紫外-可见分光光度计的定量分析方法 二、原理简介 紫外-可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外-可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、分别为透过样品后光的强度和测试光的强度,为摩尔吸光系数,b为样品厚度。 由于苯酚在酸、碱溶液中吸收波长不一致(见下式),实验选择在碱性中测试,选择测试的波长为288nm左右,取紫外-可见光谱仪波长扫描后的最大吸收波长。 Cary50是瓦里安公司的单光束紫外-可见分光光度计。仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、Cary50型紫外-可见分光光度计 2、1cm石英比色皿一套

3、25 ml容量瓶5只,100 ml容量瓶1只,10ml移液管二支 配置250 mg/L苯酚的标准溶液:准确称取0.0250 g苯酚于250 mL烧杯中,加入去离子水20 mL使之溶解,加入0.1M NaOH 2mL,混合均匀,移入100 mL容量瓶,用去离子水稀释至刻度,摇匀。 取5只25 mL容量瓶,分别加入1.00、2.00、3.00、4.00、5.00 mL苯酚标准溶液,用去离子水稀释至刻度摇匀,作为标准溶液系列。 将溶剂,标准溶液,待测水样依此装入石英比色皿。按测试程序的提示,依次放入样品室中进行测试。 四、测试过程 1、确认样品室内无样品 2、开电脑进入Window 系统 3、点击进入Cary50 主菜单 4、双击Cary-WinUV图标 5、在Win-UV 主显示窗口下,双击所选图标“SCAN”以扫描测定吸收曲线:取上述标准系列任一溶液装进1cm石英比色皿至4/5,以装有蒸馏水的1cm石英比色皿作为空白参比,设定在220-350 nm波长范围内扫描,获得波长-吸收曲线,读取最大吸收的波长数据。 6、在Win-UV 主显示窗口下,双击图标“Concentration”进入定量分析主菜单 7、设定测试分析步骤: (l)单击Setup功能键,进入参数设置页面。在Wavelength处填入由步骤5获取的波长数据。 (2)按Cary Control 、Standards、Options、Samples、Reports、Auto store顺序,分别设置好菜单中每页的参数。按OK回到“Concentration”界面主菜单。 (3)单击View莱单,选择需要显示的内容。 例如基本选项Toolbar,buttons,Graphics,Report。 (4)单击Zero,提示“Load blank press OK to read” (放空白按OK读),放入空白蒸馏水到样品室内,按OK测试,测完取出样品。 (5)单击Start, 出现标准/样品选择页。选Selected for Analysis(选择分析的标准和样品)。此框的内容为准备分析的标准和样品。 (6)按OK进行分析测试。 依Presentstdl的提示:放入标准1然后按OK键进行读数。放标准2按OK进行读数。直到全部标准读完。 (7)出现“Present Samplel Press OK to read”提示框,根据提示,放入样品1按OK开始读样品,直到样品测完。

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中 外层价电子跃迁的结果, 其中包括有形成单键的σ 电子、有形成双键的π电 子、有未成键的孤对n电 子。外层电子吸收紫外或 者可见辐射后,就从基态 向激发态(反键轨道)跃 迁。主要有四种跃迁,所 需能量ΔE大小顺序为 σ→σ*>n→σ*>π→π>n→π* 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线

将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线 将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表:

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

各种光谱分析的原理解读

各种仪器分析的基本原理及谱图表示方法!!!来源:张月娟的日志 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化

实验一 紫外吸收光谱法测定双组分混合物

实验一紫外吸收光谱法测定双组分混合物 一、实验目的 1、掌握单波长双光束紫外可见分光光度计的使用。 2、学会用解联立方程组的方法,定量测定吸收曲线相互重叠的二元混合物。 二、方法原理 根据朗伯—比尔定律,用紫外--可见分光光度法很容易定量测定在此光谱区内有吸收的单一成分。由两种组分组成的混合物中,若彼此都不影响另一种物质的光吸收性质,可根据相互间光谱重叠的程度,采用相对的方法来进行定量测定。如: 当两组分吸收峰部分重叠时,选择适当的波长,仍可按测定单一组分的方法处理;当两组分吸收峰大部分重叠时(见图1),则宜采用解联立方程组或双波长法等方法进行测定。 图1高锰酸钾、重铬酸钾标准溶液吸收曲线 解联立方程组的方法是以朗伯--比尔定律及吸光度的加和性为基础,同时测定吸收光谱曲线相互重叠的二元组分的一种方法。 从图2可看出,混合组分在λ 1处的吸收等于A组分和B组分分别在λ 1处的吸光度之和Aλ1A+B,即: AA+B λ1=κA λ1bc+κ A B

同理,混合组分在λ 2处吸光度之和A AA+B λ2应为: Aλ2 A+B λ2=κbc+κ A B λ2bcB 若先用 A、B组分的标样,分别测得A、B两组分在λ 1和λ 2处的摩尔吸收系数κ 1Aλ1、κA λ2和κB λ、κB λ2;当测得未知试样在λ 1和λ 2的吸光度A

λ1A+B λ1 A 和AA+B λ2后,解下列二元一次方程组:B=κA λ1b c+κB λ1b c AA+B λ2 A=κ BA λ2b c+κ A B λ2b cB 即可求得 A、B两组分各自的浓度c和c。c= (A c= (ABAA+B λ1 A+B

原子光谱解读

光谱『spectrum』 光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识. 分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原理示意图.它是由平行光管A、三棱镜P和望远镜筒B组成的.平行光管A的前方有一个宽度可以调节的狭缝S,它位于透镜L1的焦平面①处.从狭缝射入的光线经透镜L1折射后,变成平行光线射到三棱镜P上.不同颜色的光经过三棱镜沿不同的折射方向射出,并在透镜L2后方的焦平面MN上分别会聚成不同颜色的像(谱线).通过望远镜筒B的目镜L3,就看到了放大的光谱像.如果在MN那里放上照相底片,就可以摄下光谱的像.具有这种装置的光谱仪器叫做摄谱仪. 发射光谱物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱. 连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱(彩图6).炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱. 只含有一些不连续的亮线的光谱叫做明线光谱(彩图7).明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管(图6-19),它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光. 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱. 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构. 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是

相关主题
文本预览
相关文档 最新文档