当前位置:文档之家› 平面几何定理符号语言

平面几何定理符号语言

平面几何定理符号语言
平面几何定理符号语言

几何定理

一、七年级 1、∵∠1=∠2

∴a ∥b (同位角相等,两直线平行) 2、∵a ∥b

∴∠1=∠2(两直线平行,同位角相等)

3、∵∠3=∠4

∴a ∥b (内错角相等,两直线平行) 4、∵a ∥b

∴∠3=∠4(两直线平行,内错角相等)

5、∵∠5+∠6=180°

∴a ∥b (同旁内角互补,两直线平行) 6、∵a ∥b

∴∠5+∠6=180°(两直线平行,同旁内角互补)

7、三角形中任意两边的和大于第三边。 8、三角形中任意两边的差小于第三边。 9、n 边形的内角的和等于(n-2)×180° 。 10、n (n ≥3)边形的外角和等于360° 。

二、八年级 1、

∵△ABC ≌△DEF

∴∠A=∠D ,∠B=∠E ,∠C=∠F (全等三角形的对应角相等)

AB=DE ,BC=EF ,AC=DF (全等三角形的对应边)

2、

∵AB=DE ,BC=EF ,AC=DF

∴△ABC ≌△DEF (三边对应相等的两个三角形全等)或(SSS )

3、

∵AB=DE ,∠A=∠D ,AC=DF

∴△ABC ≌△DEF (两边和它们的夹角对应相等的两个三角形全等)或(SAS )

a

b

a

b b a

6

5

34

a

b

6

5

F

E

D

A B C

F

E

D

A

B C

F

E

D

A

B

C

4、

∵∠A=∠D ,AB=DE ,∠B=∠E

∴△ABC ≌△DEF (两角和它们的夹边对应相等的两个三角形全等)或(ASA )

5、

∵∠A=∠D ,∠B=∠E ,BC=EF

∴△ABC ≌△DEF (两角和其中一个角的对边对应相等的两个三角形全等)或(AAS ) 6、

∵AB=DE ,BC=EF (AB=DE ,AC=DF )

∴△ABC ≌△DEF (斜边和一条直角边对应相等的两个直角三角形全等)或(H L )

7、

∵∠APF=∠BPF ,EC ⊥PA ,ED ⊥PB

∴EC=ED (角的平分线上的点到角的两边的距离相等) 8、

∵EC ⊥PA ,ED ⊥PB ,EC=ED

∴∠APF=∠BPF (到角的两边的距离相等的点在角的平分线上)

9、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。

10、

∵MN ⊥AB ,AD =BD (MN 是线段AB 的垂直平 分线)

∴CA=CB (线段垂直平分线上的点与这条线段两个端点的距离相等)

F

E

D

A

B C

F

E

D

A

B C

E F

P

A B

C

D

E F P

A B

C

D

N M A

B

C

D

11、

∵CA=CB

∴点C 在线段AB 的垂直平分线MN 上

(与一条线段两个端点距离相等的点,在这条线段的垂直平分线上)

12、

∵AB =AC

∴∠B =∠C (等腰三角形的两个底角相等)简称(等边对等角)

13、

∵∠B =∠C

∴AB =AC (有两个角相等的三角形是等腰三角形)简称(等角对等边)

14、

①∵AB =AC ,BD =DC

∴∠1=∠2,AD ⊥BC (三线合一)

②∵AB =AC ,∠1=∠2

∴AD ⊥BC ,BD =DC (三线合一)

③∵AB =AC ,AD ⊥BC

∴∠1=∠2,BD =DC (三线合一)

15、

①∵∠C =90°,∠B =30° ∴AC =2

1

AB (或者AB =2AC )

(直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)

②∵∠C =90°

∴AC 2+BC 2=AB 2 (勾股定理)

③∵AC 2

+BC 2

=AB 2

∴∠C =90°(勾股定理的逆定理)

N

M A

B

C

D C

C

C

E A B C D

16、

∵四边形ABCD 是平行四边形

∴AB ∥CD ,AD ∥BC (平行四边形的对边平行) AB=CD ,AD=BC (平行四边形的对边相等)

∠ABC=∠ADC ,∠ BAD=∠BCD (平行四边形的对角相等) OA=OC ,OB=OD (平行四边形的对角线互相平分)

17、

(1)∵AB ∥CD ,AD ∥BC

∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形) (2)∵AB=CD ,AD=BC

∴四边形ABCD 是平行四边形(两组对边分别相等的四边形是平行四边形) (3)∵OA=OC ,OB=OD

∴四边形ABCD 是平行四边形(对角线互相平分的四边形是平行四边形) (4)∵AB

CD (或AD

BC )

∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形) (5)∵∠ABC=∠ADC ,∠ BAD=∠BCD

∴四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形)

18、

∵D 、E 分别是AB 、AC 的中点

∴DE 是△ABC 的中位线 ∴DE ∥BC ,DE=2

1

BC (三角形的中位线平行于三角形的第三边,且等于第三边的一半)

19、

∵四边形ABCD 是矩形

∴∠ABC=∠BCD =∠CDA =∠DAB =90°(矩形的四个角都是直角) AC=BD (矩形的对角线相等)

AB ∥CD ,AD ∥BC (矩形的对边平行) AB=CD ,AD=BC (矩形的对边相等)

OA=OC ,OB=OD (矩形的对角线互相平分)

D

D

A

B

C

D

20、

∵∠ACB =90°,AD=BD 。

∴C D=2

1

AB (或AB=2CD )

(直角三角形斜边上的中线等于斜边的一半)

21、

(1)∵四边形ABCD 是平行四边形,∠ABC= 90°

∴四边形ABCD 是矩形(有一个是直角的平行四边形是矩形) (2)∵∠ABC=∠BCD =∠CDA =90°

∴四边形ABCD 是矩形(有三个角是直角的四边形是矩形) (3)∵四边形ABCD 是平行四边形,AC=BD

∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形)

22、

∵四边形ABCD 是菱形

∴AB=BC =CD =DA (菱形的四条边都相等) AC ⊥BD ,(菱形的两条对角线互相垂直)

∠ABD=∠CBD ,∠ADB=∠CDB (菱形的每一条对角线平分一组对角) AB ∥CD ,AD ∥BC (菱形的对边平行)

OA=OC ,OB=OD (菱形的对角线互相平分)

菱形的面积=对角线(AC 、BD )乘积的一半,即S=2

1

×(AC×BD )。

23、

(1)∵四边形ABCD 是平行四边形,AB=BC

∴四边形ABCD 是菱形(一组邻边相等的平行四边形是菱形) (2)∵AB=BC =CD =DA

∴四边形ABCD 是菱形(四边相等的四边形是菱形) (3)∵四边形ABCD 是平行四边形,AC ⊥BD

∴四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形)

A

C

B

D

三、九年级

1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

注:上述定理中,共有五个条件,即:①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧,这五个条件中知其中二个可得另外三个。

2、弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等(或所对弦的弦心距相等)。在同圆或等圆中,两个圆心角、两条弧、两条弦(或两弦的弦心距)中有一组量相等,它们所对应的其余各组量也相等。

3、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

4、

①∵AB是直径

∴∠C=90°(直径所对的圆周角是直角)

②∵∠C=90°

∴AB是直径(90°的圆周角所对的弦是直径)

5、

∵四边形ABCD是圆内接四边形

∴∠A+∠C=180°(或∠B+

∠D=180°)(圆内接四边形的对角互补)

6、

①∵OA是半径,OA⊥L于A

∴直线

L是⊙O的切线

(经过半径的外端并且垂直于这条半径的直线是圆的切线)

②∵直线L切⊙

O于点A

∴OA⊥L(圆的切线垂直于过切点的半径)

7、

∵PC 、PD 切⊙O 于A 、B 两点

∴PA=PB ,∠APO=∠BPO (从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角) 8、

∵∠C =90° ∴R T △ABC 的外接圆的半径R=21

AB 。

R T △ABC 的内切圆的半径r=2

1

(AC+BC —AB )。

8、

(1)∵DE AB = EF BC =EF

AC

∴△ABC ∽△DEF (三边对应成比例的两个三角形相似) (2)∵DE AB = EF

BC

,∠B=∠E

∴△ABC ∽△DEF (两边对应成比例且夹角相等的两个三角形相似) (3)∵∠A=∠D ,∠B=∠E

∴△ABC ∽△DEF (有两个角对应相等的两个三角形相似) 9、

∵DE AB = EF BC (或DE AB =EF

AC ) ∴△ABC ∽△DEF (斜边的比等于一组直角边的比的两个直角三角形相似)

10、①相似三角形周长的比等于相似比;相似三角形对应高线的比、对应边上的中线的比、

对应角的角平分线的比都等于相似比。 ②相似三角形面积的比等于相似比的平方。

11、n °的圆心角所对的弧长l 的计算公式为180

r

n l π=

12、扇形面积公式:lR R n S 2

13602==π扇 其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

A

B C D

E F F E

B C

D

13、

∵∠ACB =90o ,CD ⊥AB 于D ,

∴2CD AD BD =?,2AC AD AB =?,2BC BD AB =?(射影定理) 14、

∵AP 与⊙O 切于A 点

∴∠PAC=∠B (弦切角等于所夹弧所对的圆周角) 15、

S 圆锥侧=2

1

×底面周长×母线=πrb =π×OB ×PB

16、

∵DE ∥BC

∴△ADE ∽△ABC (平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似)

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

初中生怎样学好简单的几何基础知识

初中生怎样学好简单的几何基础知识 摘要:初中生要学好几何,最关键和首要的就是要学好简单的几何基础知识,只有牢固地掌握好简单的几何基础知识,才能为进一步学习几何知识打下坚实的基础,只要我们掌握了学习几何的方法,勤思多练,学好几何不是没有可能的。 关键词:初中生;几何;基础知识;概念;数学思想 在初中数学的学习中,几何占有重要的地位,但它一直是大多数学生学习数学的障碍,那么初中生如何学好几何呢?它有捷径吗?初中生要学好几何,最关键和首要的就是要学好简单的几何基础知识,只有牢固地掌握好简单的几何基础知识,才能为进一步学习几何知识打下坚实的基础,那么怎样才能学好简单的几何基础知识呢?首先,我们应注意以下两个方面的问题:一是要清楚几何要研究什么样的问题;二是要知道几何要学习什么内容。 几何要研究的问题就是:物体的形状、大小以及位置关系。因此,我们在学习几何知识的时候,要学习以下四个方面的内容:①图形的识别,②图形的画法,③图形的性质,④图形的计算和推理。实际上,以上几个方面都是依据推理来完成的,所以我们学习几何时,要根据已知条件进行一步步的推理,使我们的思维更加有序,逻辑性更强。因此,学习几何会使我们变得更加聪明! 那么我们一开始学习几何时,要怎样做才能学好简单的几何基础知识呢? 1.要学好几何中的概念

弄清概念的几个方面:①定义,②图形,③表达方式。注意概念间的联系和区别。如我们在七年级学习几何时,又进一步系统学习线段、射线、直线时,就要从这三个方面进行比较学习。同时,在理解概念的基础上要记住我们所学的公理、定理、图形的性质等。 2.要学会几何语言的运用 善于用几何语言表示图形的特征。几何语言常包括:①一般的文字语言,②图形语言,③几何符号语言。在几何中,这三种语言是互相并存,互相渗透、互相制约的,因此,我们要学会运用这三种语言,我们来看下面的例子。 例1: (1)文字语言:射线om是∠aob的平分线。根据文字语言,它的图形语言就是: 根据文字语言和图形语言,用符号语言可表示为: ∵射线om是∠aob的平分线 ∴∠aom = ∠mob 或∠aom = ∠mob =12∠aob 或∠aob =2∠aom =2∠bom (2)文字语言:直线mn是线段ab的重直平分线。 根据文字语言,可以用图形语言直观简洁地表示,再结合文字语言和图形语言,通过符号语言认识其本质,用符号语言可表示为:mn⊥ab于o,且oa = ob,我们要学好几何,就必须要学好用几何语言表达。 3.要会根据几何语言画出图形

数学几何定理符号语言

1、基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:∵∠A+∠B=180°,∠A+∠C =180° ∴∠B=∠C(同角的补角相等) ∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:∵∠A+∠B=90°,∠A+∠C =90° ∴∠B=∠C(同角的余角相等) ∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等) 5、对顶角性质:对顶角相等。 ∠1=∠2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短) 8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:∵a∥b,a∥c ∴b∥c 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 ∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b (3)同旁内角互补,两直线平行。 ∵∠5+∠6=180° ∴a∥b 11、平行线性质: 几何语言:如图所示 (1)两直线平行,同位角相等。 ∵a∥b ∴∠1=∠2 (2)两直线平行,内错角相等。 ∵a∥b ∴∠3=∠4 (3)两直线平行,同旁内角互补。 ∵a∥b ∴∠5+∠6=180° 12、平移: (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状与大小完全相同。 (2)新图形中的每一点,都就是由原图形中的某一点移动后得到的,这两个点就是对

初中八数学几何定理符号语言

初中数学“图形与几何”内容 八年级上册 第十一章三角形 1、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 2、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 3、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论:①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。 4、多边形知识要点梳理 边形的内角和等于(n-2)×180°。 360°。

3、n边形的对角线条数等于2)3 (- n n (1)正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。 正三角形正方形正五边形正六边形正十二边 形 要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形。(2)多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线 段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一 条对角线。 要点诠释: ①从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2) 个三角形。 ②n边形共有2)3 (- n n 条对角线。 证明:过一个顶点有n-3条对角线(n≥3的正整数),又∵共有n个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸 n边形,共有2)3 (- n n 条对角线。 (3)多边形的内角和公式 ①公式:边形的内角和为.. (4)多边形的外角和:多边形的外角和等于360°

初中九年级数学几何定理符号语言

初中数学“图形与几何”内容 九年级上册 51、旋转: (1)定义:把一个图形绕着平面内某一点O 转动一个角度,叫图形的旋转。 (2)性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等。 52、中心对称: (1)定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。 (2)性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;中心对称的两个图形是全等图形。 53、中心对称图形: (1)定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 (2)中心对称图形的举例。 54、关于原点对称的点的坐标:点P(x ,y)关于原点的对称点为P ′(-x ,-y)。 55、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 56、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 注:(1)上述定理中,共有五个条件,即:①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧,这五个条件中知其中二个可得另外三个。 (2)相关计算:垂径定理的基本图形中,若半径OC 、弦心距OE 、弦CD (或弦的一半)、弓形高BE 这四个量,知其中二个可求得另外二个。所以在相关题目中,可根据具体情况作出相应的辅助线。具体公式为:BE+OE=OB ,OC 2 + CE 2 = OC 2 。 57、弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等(或所对弦的弦心距相等)。 在同圆或等圆中,两个圆心角、两条弧、两条弦(或两弦的弦心距)中有一组量相等,它们所对应的其余各组量也相等。 F E O D C B A

数学几何定理符号语言

1、基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:∵∠A+∠B=180°,∠A+∠C =180° ∴∠B=∠C(同角的补角相等) ∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:∵∠A+∠B=90°,∠A+∠C =90° ∴∠B=∠C(同角的余角相等) ∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等) 5、对顶角性质:对顶角相等。 ∠1=∠2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短) 8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:∵a∥b,a∥c ∴b∥c 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 ∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b (3)同旁内角互补,两直线平行。 ∵∠5+∠6=180° ∴a∥b 11、平行线性质: 几何语言:如图所示 (1)两直线平行,同位角相等。 ∵a∥b ∴∠1=∠2 (2)两直线平行,内错角相等。 ∵a∥b ∴∠3=∠4 (3)两直线平行,同旁内角互补。 ∵a∥b ∴∠5+∠6=180°

12、平移: (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 13、三角形三边关系定理:三角形两边的和大于第三边。 a+b>c a+c>b b+c>a 14、三角形三边关系推论:三角形中任意两边之差小于第三边。 a-b∠A, ∠1>∠C 18、多边形内角和 :n 边形的内角的和等于(n-219、多边形的外角和等于360°。 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: (1)边边边:三边对应相等的两个三角形全等。(SSS ) 几何语言:如图所示 ∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF (2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS ) B A C C

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容 在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:

初中数学“图形与几何”内容 八年级上册 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: (1)边边边:三边对应相等的两个三角形全等。(SSS ) 几何语言:如图所示 ∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF (2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS ) 几何语言:如图所示 ∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF (3)角边角:两角和它们的夹边对应相等的两个三角形全等。(ASA ) 几何语言:如图所示 ∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF (4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。(AAS ) 几何语言:如图所示 ∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF (5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。(H L ) 22、角平分线的性质:角的平分线上的点到角的两边的距离相等。 23、推论:角的内部到角的两边的距离相等的点在角的平分线上。 24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。 E F P A B C D

25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。 26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 27、轴对称: (1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同; (2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。 28、用坐标表示轴对称: 点(x ,y)关于x 轴对称的点的坐标为(x ,-y); 点(x ,y)关于y 轴对称的点的坐标为(- x ,y)。 29、等腰三角形的性质: (1)等腰三角形的两个底角相等。(等边对等角) 几何语言: 如图所示,在△ABC 中 ∵AB =AC ∴∠B =∠C (等边对等角) (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 几何语言: 如图所示,在△ABC 中 ∵∠B =∠C ∴AB =AC (等角对等边) N M A B C D C C C

数学几何定理符号语言实用版

数学几何定理符号语言 1、基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:∵∠A+∠B=180°,∠A+∠C =180° ∴∠B=∠C(同角的补角相等) ∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:∵∠A+∠B=90°,∠A+∠C =90° ∴∠B=∠C(同角的余角相等) ∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等) 5、对顶角性质:对顶角相等。 ∠1=∠2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短) 8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:∵a∥b,a∥c ∴b∥c 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 ∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b (3)同旁内角互补,两直线平行。 ∵∠5+∠6=180° ∴a∥b 11、平行线性质: 几何语言:如图所示 (1)两直线平行,同位角相等。 ∵a∥b ∴∠1=∠2 (2)两直线平行,内错角相等。 ∵a∥b ∴∠3=∠4

(3) 两直线平行,同旁内角互补。 ∵a ∥b ∴∠5+∠6=180° 12、平移: (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 13、三角形三边关系定理:三角形两边的和大于第三边。 a+b>c a+c>b b+c>a 14、三角形三边关系推论:三角形中任意两边之差小于第三边。 a-b∠A, ∠1>∠C 18、多边形内角和 :n 边形的内角的和等于(n-2°。 19、多边形的外角和等于360°。 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: B 几何语言:如图所示 ∵△AB C ≌△DEF ∴∠A=∠D ,∠B=∠E ,∠C=∠F ,AB=DE ,BC=EF ,AC=DF B A C B A C

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

初中几何的符号语言

初中几何的符号语言 代数的符号率先出现,最早使用符号的是公元3世纪的家丢番图。随着科学的迅速发展,作为科学公仆的迫切需要改进表述方式,于是现代数学的符号体系开始在欧洲形成了。许多数学符号很形象,一看就明了它的含意。如第一个使用现代符号“=”的数学家雷科德就这样说道:“再也没有别的东西比它们更相等了。”他的巧妙构思得到了公认,从而相等符号“=”沿用了下来。 最灿烂而美丽的图形科学──几何,为了进一步发展,许多几何符号应运而生。如平行符号&ldquo 初三;∥”多么简单又形象,给人们抽象而丰富的,在同一个平面内的两条线段各自向两方无限延长,它们永不相交,揭示了两条直线平行的本质。 数学符号有两个基本功能,一是准确、明了地使别人知道指的是什么概念,二是书写简便。自觉地引入符号体系的是法国数学家韦达(1854—1603年),而现代数学符号体系却采取笛卡儿(1596—1650年)使用的符号,欧拉(1707一1783)为符号正规化作出不少贡献。如用a、b、c表示三角形ABC 的三边等等,都应归功于欧拉。 数学中的符号越来越多,往往被人们错误地认为数学是一门难懂而又神秘的科学。当然,如果不了解数学符号含意的人就看不a懂大量天书般符号的数学,唯有进了数学大门才能

真正发觉数学符号给数学理论的表达和说理带来莫大的方便,甚至感到是必不可少的。说来也奇怪,地球上不同地区采用不同的文字,可是数学符号却成了世界通用语言。因此为了学好几何,必须加强几何符号语言的训练。 第一,彻底理解每一个几何符号的含意 例如符号A、B、C......没有什么几何意义,只有分别在它们前面或后面写上“点”字,才表示图1中的点。又如AB前面写上“直线”“线段”或“射线”,就分别表示图2中(a)、(b)、(c)的几何图形,否则符号AB就表示线段AB的长度,是一个数,因此3AB和AB分别表示线段AB长度的三倍和三分之一。 再如符号∠ABC和△ABC表示不同的几何图形,前者是角(图(3a)),后者是三角形(图(3b))。 显然,要真正了解一个几何符号,必须首先理解相应的几何概念。 第二,正确书写几何符号。 数学符号大多是经过长期发展而形成的。有些数学事实曾经有过五花八门的符号,如减号,数学家丢番都用符号“↑”表示,后人又用字母m(minus)表示,到15世纪才确认用符号“-”表示。因此,一个好的数学符号经历了适者生存的规律的考验。对这些数学符号(包括几何符号)都要严格按标准书写,书写几何符号是叫人容易看懂,不是叫人去猜谜语。

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

著名的15个平面几何定理

1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 证明:利用向量,简单明了 设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。 ∵向量OH=向量OA+向量AH =向量OA+2向量OD (1) =向量OA+向量OB+向量BD+向量OC+向量CD =向量OA+向量OB+向量OC; 而向量OG=向量OA+向量AG =向量OA+1/3(向量AB+向量AC) (2) =1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)] =1/3(向量OA+向量OB+向量OC). ∴向量OG=1/3向量OH, ∴O、G、H三点共线且OG=1/3OH。 2、九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

证明:如右图所示,△ABC的BC边垂足为D,BC边中点为L。证法为以垂心H为位似中心,1/2为位似比作位似变换。 连结HL并延长至L',使LL'=HL;做H关于BC的对称点D'。 显然,∠BHC=∠FHE=180°-∠A,所以∠BD'C=∠BHC=180°-∠A,从而A,B,D',C四点共圆。 又因为BC和HL'互相平分于L,所以四边形BL'CH为平行四边形。故∠BL'C=∠BHC=180°-∠A,从而A,B,L',C四点共圆。 综上,A,B,C,D',L'五点共圆。显然,对于另外两边AB,AC边上的F,N,E,M也有同样的结论成立,故A,B,C,D',L',F',N',E',M'九点共圆。此圆即△ABC的外接圆⊙O。 接下来做位似变换,做法是所有的点(⊙O上的九个点和点O本身)都以H为位似中心进行位似比为1/2的位似变换。那么,L'变到了L(因为HL'=2HL),D'变到了D(因为D'是H关于BC的对称点),B变到了Q,C变到了R(即垂心与顶点连线的中点)。其它各点也类似变换。O点变成了OH中点V。 位似变换将圆仍映射为圆(容易用向量证明),因此原来在⊙O上的九个点变成了在⊙V上的九个点,且⊙V 的半径是⊙O的一半。 这就证明了三角形三边的中点,三高的垂足和三个欧拉点都在一个圆上。 3、费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 证明:如图,以△ABC三边为边向外作等边△ABD、△BCE、△ACF, 连接CD、BF、AE交于点O,试证:O是费马点。 证明:在△ACD、△ABF中, AD=AB,∠DAC=∠BAF,AC=AF ∴△ACD≌△ABF(SAS)

数学几何定理符号语言

1基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:τ∠A+ ∠ B=180°,∠ A+ ∠ C =180° ???∠B=∠ C (同角的补角相等) ???∠A+ ∠ B=180°,∠ C +∠ D =180°,∠ A= ∠ C ?∠ B=∠ D (等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:τ∠A+ ∠ B=90°,∠ A+ ∠ C =90° ?∠B=∠ C (同角的余角相等) ???∠A+ ∠ B=90°,∠ C + ∠ D =90°,∠ A= ∠ C ?∠B=∠ D (等角的余角相等)、/ 5、对顶角性质:对顶角相等。L. ∠ 1 = ∠ 2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短)& (基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:T a// b, a// C ?b// C 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。 v∠1 = ∠2 ?a∕/ b (3)同旁内角互补,两直线平行T∠ 5+∠ 6=180° ?a/ b 11、平行线性质:几何语言:如图所示 (1)两直线平行,同位角相等。 V a / b ?∠1 = ∠2 (2)两直线平行,内错角相等。 v a∕/ b ?∠3= ∠4

(3)两直线平行,同旁内角互补。 V a/ b ?∠5+∠6=180°

平面几何四个重要定理

竞赛专题讲座-平面几何四个重要定理 重庆市育才中学瞿明强 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是四个重要定理: 。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是 。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 例题:

1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:。 【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中点。DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理

3.D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。 【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 【评注】托勒密定理

关于平面几何的60条著名定理

关于平面几何的60条著名定理 一些平面几何的著名定理 1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,

设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角

平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有nAB2+mAC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有ABCD+ADBC=ACBD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、

数学几何定理符号语言

数学几何定理符号语言

1、基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:∵∠A+∠B=180°,∠A+∠C =180° ∴∠B=∠C(同角的补角相等) ∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:∵∠A+∠B=90°,∠A+∠C =90° ∴∠B=∠C(同角的余角相等) ∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等) 5、对顶角性质:对顶角相等。 ∠1=∠2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短) 8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:∵a∥b,a∥c ∴b∥c 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 ∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b (3 )同旁内角互补,两直线平行。∵∠5+∠6=180° ∴a∥b 11、平行线性质: 几何语言:如图所示 (1)两直线平行,同位角相等。 ∵a∥b ∴∠1=∠2 (2)两直线平行,内错角相等。 ∵a∥b ∴∠3=∠4

(3) 两直线平行,同旁内角互补。 ∵a ∥b ∴∠5+∠6=180° 12、平移: (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 13、三角形三边关系定理:三角形两边的和大于第三边。 a+b>c a+c>b b+c>a 14、三角形三边关系推论:三角形中任意两边之差小于第三边。 a-b∠A, ∠1>∠C 18、多边形内角和 :n 边形的内角的和等于(n-2°。 19、多边形的外角和等于360°。 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: B 几何语言:如图所示 ∵△AB C ≌△DEF ∴∠A=∠D ,∠B=∠E ,∠C=∠F ,AB=DE ,BC=EF ,AC=DF B A C B A C

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

相关主题
文本预览
相关文档 最新文档