当前位置:文档之家› 《高等数学》第二章.导数和微分的习试题库完整

《高等数学》第二章.导数和微分的习试题库完整

《高等数学》第二章.导数和微分的习试题库完整
《高等数学》第二章.导数和微分的习试题库完整

第二章 导数与微分

一、判断题

1. []00''()()f x f x = ,其中0x 是函数()f x 定义域内的一个点。 ( )

2. 若()f x 在0x 处可导,则()f x 在0x 处连续。

( )

3. 因为()f x x =在0x =处连续,所以()f x 在0x =处可导。 ( )

4. 因为()f x x =在0x =处的左、右导数都存在,所以()f x 在0x =处可导。( )

5. ()f x 在0x 处可导的充要条件左、右导数存在且相等。 ( )

6. 若曲线()y f x =在0x 处存在切线,则'0()f x 必存在。

( )

7. 若()f x 在点0x 处可导,则曲线()f x 在点0x 处切线的斜率为()0f x '。( )

8. ()()()sin sin cos tan cot cos sin cos x x x x x x x

x ''??'====- ?

-'??。 ( )

9. ()()()22

sin cos cos sin sin tan sec cos cos x x x x x x x x x '''-??'=== ???

。 ( )

10. 若()f x ,g()x 在x 处均可导,则[]()g()()g()f x x f x x '''=。 ( )

11. 设()sin cos f x x x =,''

'()(sin ).(cos

)(sin )cos f x x x x x ==-。 ( )

12. 设2()x e f x x =,则'

()2x e f x x

=。

( )

13. 由参数方程0y e xy +=的两边求导得'0y e x xy ++=,于是'

1()y y e y x

=-+。( )

14. ()

()

n x x e e =。

( ) 15. 3(cos )sin x x ωωω'''=。

( ) 16. 3(sin )cos x x ωωω'''=-。

( ) 17. ()

(cos )cos()2

n x x n π

=+?。

( ) 18. 由()(sin )sin()2n x x n π=+?得()

(sin 2)sin(2)2

n x x n π

==+?。

( ) 19. ()()()

43!

ln(1)1n

x x +=

+。

( )

20. ()y f x =在0x 处可导的充要条件是()y f x =在0x 处可微。 ( )

21. 函数()y f x =在0x 处可微,且'

0()0f x ≠,则当0x ?→时y ?与dy 是的等价无穷小。

( )

二、选择题

1. 当函数()f x 的自变量x 由0x 改变到0x x +?时,函数值的改变量y ?=( )

A.0)(

f x x +? B.'

0)(

f x x +? C.00)()(f x x f x +?- D.0()f x x ? 2. 设()f x 在0x x =处可导,则'0()f x =

( )

A.000)()lim (x f x x f x x

?→-?-?

B.000h)(h)

lim

2h f x f x h

→+--(

C.000)(2)lim 2(x f x f x x x

→-+

D.0)(0)lim (x f x f x

→- 3. 函数()f x 在0x =处连续是()f x 在0x =处可导的

( )

A.必要但非充分条件

B.充分但非必要条件

C.充分必要条件

D.既非充分又必要条件

4. 若3

22,1

()3,1

x x f x x x ?≤?=??>?则()f x 在1x =处

( )

A.左、右导数都存在

B. 左导数存在,但右导数不存在

C. 右导数存在,但左导数不存在

D. 左、右导数都不存在

5. 曲线ln y x =在哪一点处的切线平行于直线23y x =-

( )

A.1

(,ln 2)2

-

B.11(,ln )22

-

C.(2,ln 2)

D.(2,ln 2)-

6. 设函数()f x 在0x =处可导,则0

(2)(3)

lim

h f h f h h

→--=

( )

A.'(0)f -

B.'(0)f

C.'5(0)f

D.'2(0)f

7. 设()f x 可导,则220()()

lim x f x x f x x

?→+?-?

( )

A.0

B.2()f x

C. '2()f x

D.'2()()f x f x

8. 设=(-)()(

)f x x a x ?,其中()x ?在x a =连续,则 ( )

A.'

=()(

)f x x ? B.'

=()(

)f a a ? C.'

'=()()f a a ?

D.'

'=()()()(

)f x x x a x ??+- 9. 若对于任意x ,有'

3=4,(1)1(

)f x x x f +=-,则该函数为 ( )

A.2

4

=2

)x f x x + B.24

5

=22

)x f x x +- C.2=121()f x x +

D.42=3(

)f x x x +- 10. 曲线3=3y x x -上切线平行于x 轴的点是

( )

A.(0,0)

B. (2,2)--

C. (1,2)-

D. (2,2) 11. 已知()f x 为可导的偶函数,且0

(1)(1)

lim

22x f x f x

→+-=-则曲线()y f x =在处(1,2)-的

切线方程是

( )

A.46y x =-

B.42y x =--

C.46y x =+

D.42y x =-+ 12. 设1sin 2y x x =-,则dy

dx

=

( )

A.1

1cosy 2

-

B.1

1cos 2x -

C.

2

2cosy -

D.

2

2cos x

-

13. 若()()()()()f x x a x b x c x d =----,'0()()()()f x a b a c a d =---,则( )

A.0x a =

B.0x b =

C.0x c = D.0x d = 14. 设ln y x x =+,则

dx dy

=

( )

A.

1

x x

+ B. 1x x + C. 11x + D. 1

x x -+ 15. 设'()g()f x x =,则2(sin )d

f x dx

=

( )

A.2()sin g x x

B.()sin 2g x x

C.2()sin g x x

D.2(sin )sin 2g x x 16. 设()()x f x y f e e =,且'()f x 存在则'y =

( )

A. '()'()()()x f x x f x f e e f e e +

B.'()'()()x f x f e e f x

C.'()()x f x f e e

D.''()

()()()x x x f x f e e f e f x e ??+??

17. 已知a 是大于零的常数,2()ln(1)x f x a -=+则'(0)f =

( )

A.ln a -

B.ln a

C.1

ln 2

a

D.12

18. 已知ln y x =,则()n y =

( )

A.(1)!n n n x -

B.2(1)(1)!n n n x --+

C.1(1)(1)!n n n x ----

D.11(1)!n n n x ----

19. 函数cos(2)4y x π

=+,则()n y =

( )

A.2+1

2cos(2+)4

n n x π

B.2cos(2)4

n n x π

+

C.cos(2)2

n x π+

D.(2+1)cos 24n x π?

?+????

20. 11n n n y x a x a -=++???+,则()n y =

( )

A.0

B.(1)n a -

C.(1)!n -

D.!

n 21. 设2

3

,x at y bt ==,则22d x

dy

( )

A.24

29a

b t -

B.

24

29a

b t

C.2423a

b t -

D.

24

23a

b t 22. 参数方程3

3

cos sin x a t

y a t

?=??=??确定的函数的二阶导数22d y dx = ( )

A. 23cos sin a t t -

B.23sin cos a t t

C.

41

sec csc 2t t a

D. 41

sec csc 3t t a

23. 由方程sin()0xy e x y ++=所确定函数的一阶导数y '=

( )

A. cos()cos()xy xy ye x y xe x y ++-++

B.cos()cos()xy xy ye x y xe x y ++++

C.cos()cos()xy xy e x y xe x y ++++

D.cos()cos()

xy xy ye x y e x y ++++

24. 由方程0y

e xy -=所确定函数的二阶导数22d y

dx

=

( )

A.

()()

22

2y y

y

y ye x y e e

x --- B.

()()

23

2y y

y

ye x y e e

x --- C.

()()

23

2y y

y

y e x y e x e x --- D.

()()

22

2y y

y

ye x y e e

x ---

25. 若()f x 可微当0x ?→时在点x 处的y dy ?-是关于x ?的 ( )

A.高阶无穷小

B.等价无穷小

C.同阶无穷小

D.低阶无穷小

26. 2()f x x =在点0x 处有增量0.2x ?=,对应函数值增量的主部为1.2时,0x =( )

A.3

B.-3

C.0.3

D.-0.3

三、填空题

1. 已知0(1)(1)

lim

2x f x f x

?→-?-=?,则(1)f '= 。

2. 已知(1)2f '=,则0(12)(1)

lim

x f x f x

→--= 。

3. 若0()0f x =,0()4f x '=,则极限00()

lim

x f x x x

?→+?=? 。

4. 若()f x 在0x 处的导数0()f x ',则000()()

lim h f x h f x h h →+--= 。

5. '(0)f 存在且(0)0f =,则0()

lim x f x x →= 。

6. 若()32f '=,则0(3)(3)

lim 2h f h f h

→--= 。

7. 曲线x y e =在点=x 处切线与连接曲线上两点(0,1),(1,e)的弦平行。 8. 若函数232y x =+,则y '= 。 9. 若函数2351y x x =-+,则y '= 。

10. 若函数)

31y x =-,则y '= 。

11. 若函数1

y x

=,则y '= 。

12. 若函数32()2537f x x x x =-+-,则(1)f '= 。 13. 设函数35232x x y x e =-++,y '= 。 14. 若函数34cos sin

2

y x x π

=+-,则y '= 。

15. 若函数sin x y e x =,则y '= 。 16. 若函数cos x y e x =,则y '= 。 17. 若函数2

cos 2x y e x =,则y '= 。 18. 若函数ln y x x =,则y '= 。

19. 若函数sin cos 1x

y x =

+,则y '= 。

20. 若函数cos sin 1x

y x -=+,则y '= 。

21. 若函数1

1

x y x -=+,则y '= 。

22. 若函数33

1

1

x x y x ++=+,则y '= 。 23. 若函数ln x

y x =

,则y '= 。 24. 若函数sin 2x

y x

=,则y '= 。

25. 若函数()3cos 1y x =+,则y '= 。

26. 若函数()531n

y x x =++,则y '= 。

27. 若函数2lncos y x =,则y '= 。 28. 若函数2lncos y x =,则y '= 。 29.

若函数(ln y x =,则y '= 。 30.

若函数y =y '= 。

31. 若函数2

cos 2x

y =,则y '= 。 32. 若函数2sin 2

x

y =,则y '= 。

33. 由参数方程3

3

cos sin x a t

y a t ?=??=??确定的函数的导数dy dx = 。 34. 由参数方程32t

t

x e

y e -?=??=??确定的函数的导数dy dx = 。 35. 由参数方程sin cos t

t

x e t

y e t

?=??=??确定的函数的导数dy dx = 。 36. 由参数方程2ln(1t )arctan x y t t ?=+?=-?确定的函数的导数dy

dx = 。

37. 函数2sin x

y e

=的微分dy = 。

38. 函数cos ax y e bx -=的微分dy = 。 39.

函数y =的微分dy = 。 40. 函数2ln cos y x =的微分dy = 。 41.

函数y =dy = 。 42.

函数y =的微分dy = 。

四、求解题

1. 已知()23f '=,求()()0

22lim

x f x f x x

→+--。

2. 已知()()

lim

322h h

f f h →=--,求()2f '。

3. 求函数()3sin ,0

,0

x x f x x x >?=?≤?在0x =处的是否可导,并讨论在0x =处的连续性。

4. 求()sin 0

ln(1)0

x x f x x x

5. 求()f x x =在0x =处的可导性。

6. 求()1f x x =-在1x =处的可导性。

7. 求函数2

1sin ,00,

0x x y x

x ?≠?

=??=?在0x =处的连续性与可导性。

8. 求函数sin y x =在0x =处的连续性与可导性。

9. 使函数2;3

;3x x y ax b x ?≥=?+

在3x =处可导,,a b 应取什么值?

10. 使函数2;1

;1

x x y ax b x ?≥=?+

11. 设()f x 在0x 处的导数为0()f x ',求000

(3)()

lim

x f x x f x x

?→+?-?。

12. 设()f x 在0x 处的导数为0()f x ',求000(3)(2)

lim

x f x x f x x x

?→+?--??。

13. 设(0)f '存在,且0

lim ()0x f x →=,求0()

lim

x f x x

→。

14. 求曲线ln y x =在点(),1e 处的切线的斜率,以及切线方程和法线方程。

15. 求曲线22y x x =-+在点()1,2处的切线方程和法线方程。

16. 求曲线1y x =

在点1,22??

???

处的切线的斜率,以及切线方程和法线方程。

17. 求曲线x y e =在点()0,1处的切线方程和法线方程。

18. 求曲线2y x =上的一点,使得曲线上过点11x =,23x =连线平行的切线。且求出过

该点的切线方程和法线方程。

19. ()()()f x x a x ?=-,()x ?在x a =处有连续的一阶导数,求'()f a 。

20. ()(1)(2)(2015)f x x x x x =++???+,求'(0)f 。

21. 设函数1ln 1ln x

y x

-=

+,求y '。 22. 设函数ln(sec tan )y x x =+,求y '。 23. 设函数ln(csc cot )y x x =+,求y '。

24. 设函数y =,求y '。

25. 设函数ln tan 2x y ?

?= ??

?,求y '。

26. 设函数()()ln ln ln y x =,求y '。 27. 设函数3

x y e =,求y '。 28. 设函数35(35)y x =+,求y '。

29. 设函数23

1(

)1x y x

+=-,求y '。 30. 设函数3cos 4y x =,求y '。 31. 设函数()ln cose x y =,求y '。 32. 设函数2

2sin

1x

y x

=+,求y '。 33. 设函数lnsin y x =,求y '。

34. 设函数y =y '。 35. 设函数()ln sin x y e =,求y '。

36. 设函数y =

y

'。

37. 设函数y =

y '。

38. 设函数y =

y '。

39. 设函数y =求y '。

40. 设函数sin x y x =,求y '。

41. 求由方程23570xy x y +--=所确定的隐函数()y f x =的导数。 42. 求由方程1y y xe =+所确定的隐函数()y f x =的导数以及(0)y '。

43. 求由方程1y y xe =-所确定的隐函数()y f x =的导数。 44. 求由方程2220y xy b -+=所确定的隐函数()y f x =的导数。 45. 求由方程x y xy e +=所确定的隐函数()y f x =的导数。 46. 求由方程2290y xy -+=所确定的隐函数()y f x =的导数。 47. 求由方程3330x y axy +-=所确定的隐函数()y f x =的导数。 48. 求由方程ln 50y xe y -+=所确定的隐函数()y f x =的导数。 49. 求曲线ln y x x =平行于直线2230x y -+=的法线方程。

50. 求曲线2t

t

x e

y y e

-?=?=?=??在0t =处的切线方程和法线方程。 51. 求曲线sint cost

x y =??=?在4t π

=所给参数值相应的点处的切线方程和法线方程。

52. 求过椭圆外一点(4,1)-与椭圆22

163

x y +

=相切的切线方程。

53. 求sin t y e t -=的二阶导数。 54. 求2ln(1)y x =-的二阶导数。 55. 求2

1

1y x =

+的二阶导数。 56. 求方程2

3

2y x y x +=所确定的隐函数()y f x =的二阶导数22d y

dx

57. 设函数y =,求y '。

58. 设函数y =,求y '。 59. 设函数1

y arcsin

x

=,求y '。 60. 设函数3(arcsin )y x =,求y '。 61. 设函数1sin x

y e

=,求y '。

62. 求21sin x y x e -=?的二阶导数。

63. 求ln(y x =的二阶导数。 64. 设6()(10),f x x =+求()(5)9f -,()(20)f x 。 65. 求ln y x x =的n 阶导数。 66. 求x y xe =的n 阶导数。

67. 的近似值。

68.

69. 的近似值。

70. 求lg11的近似值。(ln10 2.30585= 小数点后保留4位数)

四、证明题

1. 证明当x 12

x

≈+。

2. 证明当x 很小时,近似公式ln(1)x x +≈。

3. 证明当x 很小时,近似公式tan x x ≈。(其中x 的单位为弧度)

五、应用题

1. 半径为10厘米的金属圆片加热后,其半径增大了0.05cm ,问该圆片面积增大了多少?

该圆片面积增大的近似值是多少?

关于导数的29个典型习题

关于导数的29个典型习题 习题1设函数在0=x 的某邻域内1 C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在 0→h 时是比h 高阶的无穷小,试确定b a ,的值。 解 由题设知 0)0()1()]0()2()([lim 0 =-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知 ).0()2(1 ) 2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可 解出.1,2-==b a 习题2 设,0,00,)()(?????=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论 )(x f '在),(+∞-∞上的连续性. 解 (1) 当0≠x 时,用公式有 ,)1()()()(])([)(2 2x e x x g x g x x e x g e x g x x f x x x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(2 0-''=-='-→g x e x g f x x 二次洛 ???? ?=-''≠++-'='∴-.0,2 1)0(0,)1()()()(2x g x x e x x g x g x x f x (2) 因在0=x 处有 ).0(2 1)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x x x x x '=-''=-''=+-+'-''+'='-→--→→洛 而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f 习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d y d dx dy 222 3 2])(1[定数。 证 求导,,022='++'+y b a y y x 即.22b y a x y ++-=' 再导一次,,02222 =''+'+''+y b y y y 即 .2)1(22b y y y +'--='' )(.42 1...1)2(21...)1(22 22 3 2定数c b a y b y y y -+-=='++-=='''+∴

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数与微分测试题及答案(一)

导数与微分测试题(一) 一、选择题(每小题4分,共20分) 1、 设函数10 ()10 2 x x f x x ?≠??=??=?? 在0x =处( ) A 、不连续; B 、连续但不可导; C 、二阶可导; D 、仅一阶可导; 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( ) A 、1; B 、 12 ; C 、 12e ; D 、2e ; 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( ) A 、1; B 、 2 e ; C 、 2e ; D 、e ; 4、设函数()f x 在点x a =处可导,则0 ()() lim x f a x f a x x →+--等于( ) A 、0; B 、()f a '; C 、2()f a '; D 、(2)f a '; 5、设函数()f x 可微,则当0x ?→时,y dy ?-与x ?相比是( ) A 、等价无穷小; B 、同阶非等价无穷小; C 、低阶无穷小; D 、高阶无穷小; 二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '=______; 2、 设函数()x f x xe =,则(0)f ''=______; 3、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则 01lim ()n nf x n →∞ + =______; 4、 曲线2 28y x x =-+上点______处的切线平行于x 轴,点______处的 切线与x 轴正向的交角为 4 π 。

5、 d ______ = x e dx - 三、解答题 1、(7分)设函数()()() , ()f x x a x x ??=-在x a =处连续, 求()f a '; 2、(7分)设函数()a a x a x a f x x a a =++,求()f x '; 3、(8分)求曲线 sin cos 2x t y t =?? =? 在 6 t π = 处的切线方程和法线方程; 4、(7分)求由方程 1sin 02 x y y -+=所确定的隐函数y 的二阶导数 2 2 d y dx 5、(7分)设函数1212()()()n a a a n y x a x a x a =--- ,求 y ' 6、(10分)设函数2 12()12 x x f x ax b x ?≤?? =? ?+> ?? ,适当选择,a b 的值,使 得()f x 在12 x = 处可导 7(7分)若2 2 ()()y f x xf y x +=,其中 ()f x 为可微函数,求dy 8、(7分)设函数()f x 在[,]a b 上连续,且满足 ()()0,()()0f a f b f a f b +-''==?>,证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c = 导数与微分测试题及答案(一) 一、1-5 CCBCD 二、1. 0; 2. 2; 3. 1; 4.(1,7)、329(, )24 ; 5. x e --; 三、1. 解:()() ()() ()lim lim ()x a x a f x f a x a x f a a x a x a ??→→--'===--;

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

导数和微分练习试题答案解析

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

导数与微分习题(基础题)

导数与微分习题(基础题) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量=?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可导,则()()=?-?-→?x x f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0 ,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

第二章 导数与微分(测试题)

第二章 导数与微分 单元测试题 考试时间:120分钟 满分:100分 试卷代码:M1-2b 一、选择题(每小题2分,共40分) 1.两曲线21y y ax b x = =+,在点1(22 ,处相切,则( ) A.13164a b =-=, B.11164 a b ==, C.912a b =-=, D.712a b ==-, 2.设(0)0f =,则()f x 在0x =可导的充要条件为( ) A.201lim (1cos )h f h h →-存在 B.01lim (1)h h f e h →-存在 C.201lim (sin )h f h h h →-存在 D.[]01lim (2)()h f h f h h →-存在 3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( ) A.间断点 B.连续而不可导的点 C.可导的点,且(0)0f '= D.可导的点,且(0)0f '≠ 4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0lim x dy y y →-= ( ) A.-1 B.1 C.0 D.∞ 5.设()f x 具有任意阶导数,且[]2 ()()f x f x '=,则()()n f x =( ) A.[]1()n n f x + B.[]1!()n n f x + C.[]1(1)()n n f x ++ D.[]1(1)!()n n f x ++ 6.已知函数 0() 0x x f x a b x x x ≤??=?>?? +cos 在0x =处可导,则( ) A.22a b =-=, B.22a b ==-, C.11a b =-=, D.11a b ==-, 7.设函数32()3f x x x x =+,则使()(0)n f 不存在的最小正整数n 必为( ) A.1 B.2 C.3 D.4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x =的( )

导数与微分练习题

题型 1.由已知导数,求切线的方程 2.对简单的、常见函数进行求导 3.对复合函数、隐函数、对数求导法进行求导 4.参数方程与一些个别函数的应用 5.常见的高阶导数及其求导 内容 一.导数的概念 1.导数的定义 2.导数的几何意义 3.导数的物理意义 4.可导与连续之间的关系 二.导数的计算 1.导数的基本公式 2.导数的四则运算法则 3.反函数的求导法则 4.复函数的求导法则 5.隐函数的求导 6.参数方程所确定的函数的导数 7. 对数求导法 8.高阶导数

三.微分 1.微分的定义 2.可导与可微的关系 3.复合函数的微分法则 4.微分在近似计算中的应用 典型例题 题型I 利用导数定义解题 题型II 导数在几何上的应用 题型III 利用导数公式及其求导法则求导 题型IV 求高阶导数 题型V 可导、连续与极限存在的关系 自测题二 一.填空题 二.选择题 三.解答题 4月9日微分练习题 基础题: (一)选择题 1.若 ? ??≥+<+=1,1,3)(2x b ax x x x f 在1=x 处可导,则( ) A. 2,2==b a B. 2,2=-=b a C. 2,2-==b a D. 2 ,2-=-=b a

2. 设 0'()2f x =,则000 ()() lim x f x h f x h h ?→+--=( ). A 、不存在 B 、 2 C 、 0 D 、 4 3. 设 )0()(32>=x x x f , 则(_))4(='f A.2 B.3 C.4 D.5 4.已知函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则当n 为大于 2的正整数时, )(x f 的n 阶 导数 )()(x f n 是( )。 A 、1)]([+n x f n B 、1)]([!+n x f n C 、n x f 2)]([ D 、n x f n 2)]([! (二)填空题 5. 设 2 sin x e y = ,则=dy _____. 6.已知 x y 2sin =,则) (n y = . 7.设函数 ()y y x =由参数方程(),()x x y y θθ==确定,()x θ与()y θ均可导,且00()x x θ=, '0()2x θ=, 2x x dy dx ==,则'0()y θ= . 8.设 0,sin )(>=a x x f ,则=--→h a f h a f h 2) ()(lim ; 9. 已知设 cos2x y e = ,则=dy ____ _. 10. sin x y x = ,则2 x dy π==_____________ 11. 已知函数()x f x xe =,则(100)()f x = . 12. 设 )]([22x f x f y +=, 其中)(u f 为可导函数, 则 =dx dy 13.2 x x y =,则 dx dy .=______ 14. 已知函数)100()2)(1()(---=x x x x x f ,则)0('f = 15. 设函数,22x x y -+=求.) (n y . 综合题: (三)解答题 16. 求与抛物线2 25y x x =-+上连接两点(1,4)P 与(3,8)Q 的弦平行,且与抛物线相切的

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

导数及其应用典型例题

第一章 导数及其应用 1.1 变化率与导数 【知识点归纳】 1.平均变化率: 2.瞬时速度: 3.导数及导函数的概念: 4.导数的几何意义: 拓展知识: 5.平均变化率的几何意义: 6.导数与切线的关系: 【典型例题】 题型一 求平均变化率: 例 1.已知函数2 ()21y f x x ==-的图像上一点(1,1)及其邻近一点(1,1)x y +?+?,则y x ??=_______. 变式训练: 1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2 s t v t gt =-,求物体在0t 到0t t +?这段时间的平均速度v . 2.求正弦函数sin y x =在0x =和2x π= 附近的平均变化率,并比较他们的大小.

题型二 实际问题中的瞬时速度 例 2 已知质点M 按规律223s t =+做直线运动(位移单位:cm ,时间单位:s ) (1)当2,0.01t t =?=时,求s t ??;(2)当2,0.001t t =?=时,求s t ??; (3)求质点M 在t=2时的瞬时速度. 题型三 求函数的导数及导函数的值 例 3求函数1y x x =-在1x =处的导数. 题型四 曲线的切线问题 例 4 (1)已知曲线22y x =上一点A (1,2),求点A 处的切线方程. (2)求过点(-1,-2)且与曲线32y x x =-想切的直线方程. (3)求曲线321()53f x x x = -+在x=1处的切线的倾斜角. (4)曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

高中数学导数、微积分测试题

导数、微积分 1、(2012德州二模)如图,在边长为π的正方形内的正弦曲线sin y x x =与轴围成的区域 记为M (图中阴影部分),随机往正方形内投一个点P ,则点P 落在区域M 内的概率是 A .2 1 π B .2 2 π C . 2 3 π D . 2 4 π 答案:B 解析:区域M 的面积为:S M =0 sin xdx π ? =-cosx 0|π=2,而正方形的面积为S =2 π,所以, 所求概率为P = 2 2 π ,选B 。 2、(2012济南三模)已知函数2 ()321f x x x =++,若1 1 ()2()(0)f x dx f a a -=>? 成立, 则a =________. 答案:1 3 解析:因为??-11f(x)d x =??-1 1 (3x 2+2x +1)d x =(x 3+x 2+x)|1-1=4,所以2(3a 2 +2a +1)=4?a =- 1或a =13 . 3、(2012莱芜3月模拟)函数201 ()212x x f x x x ?≤≤=?-≤≤? 的图像与x 轴所围成的封闭图形 的面积为 . 【答案】5 6 【解析】 6 5)212(3 1)2()(21210 32 1 1 2 2 =- += -+=??? x x x dx x dx x dx x f 4、(2012济南三模)已知α、β是三次函数32 11()2(,)32 f x x ax bx a b R =++∈的两个极值点,且(0,1)α∈,(1,2)β∈,则3 2 b a --的取值范围是( ) A .2(,)5 -∞ B .2(,1)5 C .(1,)+∞ D .2(,)(1,)5 -∞?+∞ 答案:B 解析:因为函数有两个极值,则0)('=x f 有两个不同的

导数与微分总结

arccos求导 1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: 要注意细心观察发现,是描述趋近任意x时的斜率。而可以刻画趋近具体x0时的斜率。 3、 若x没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率----导数。 4、可导与连续的关系: 导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意中的到底是神马。比如求上图中,这个f(x0)千万要等于2/3,而不是1! 由此也可以知道,这个函数是不存在导数的,也不存在左导数,只存在右导数。

5、反函数的导数与原函数的关系: 有这样一条有趣的关系:函数的导数=对应的反函数的导数的倒数。 注意,求反函数时候不要换元。因为换了元虽然对自身来讲函数形式不变,但是与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算。结果显然是错误的。举例子: 求的导数。显然反函数(不要换元)是。反函数的导数是。反函数导数的倒数是,因此, 再如,求的导数。 解:令函数为,则其反函数为,导数的倒数为。但是必须消去。因此变形得 (注意到在定义域内cosy恒为正,因此舍掉负解) 6、复合函数求导法则: 只要父函数和子函数随时能有定义,就拆着求就可以了。 7、高阶导数: 如果f(x)在点x处具有n阶导数,那么f(x)在点x的某一邻域内必定具有一切低于n阶的导数。 ; ;其余的也记不住,自己慢慢推导。 ; 二项式定理中有:;类似的,乘法的n阶导数也有: 。这个是要熟练记忆的。 8、隐函数,参数方程的导数,相关变化率 建议隐函数,参数方程的导数,以及求导数的相关变化率时使用形式求解。只有这样才能准确,安全,方便。 举例:求(隐函数f(x,y)=0)中y对x的导数 解:两边求导,,解完以后发现效果还不错。如果直接用什么y’神马的净是错误,所以不要直接用口算,用dy/dx方法求解。

相关主题
文本预览
相关文档 最新文档