当前位置:文档之家› 函数的基本性质之一——函数的增减性

函数的基本性质之一——函数的增减性

函数的基本性质之一——函数的增减性
函数的基本性质之一——函数的增减性

函数的基本性质之一——函数的增减性

复习基础知识

1从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是______,若图象是下降的,则此函数是_____________ 2不看课本,能否写出函数单调性的定义?

__________________________________________________________________________________________________________________________________________

一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 内某个区间A 上的任意两个自变量的值1x ,2x ,且21x x <,则

(1)()()?<21x f x f )(x f 在区间A 上是增函数()()

()121212

0f

x f

x x x x x -

?

>≠-;

(2)()()?>21x f x f )(x f 在区间A 上是减函数()()

()121212

0f

x f

x x x x x -

?

<≠-.

如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间.

注意:(1)单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数;(2)定义中,自变量的大小、函数值的大小、函数的单调性,三者中知道其中两个即可推出另外一个;

二、单调函数的图象特征:从左至右增、减函数的图象分别呈上升或下降趋势. 三、基本函数的单调性:掌握反比例函数、一次与二次函数、指、对数函数的单调性. 四、单调性的判断与证明方法

方法一:利用图象的上升、下降趋势加以判断.

方法二:利用定义证明:设值21x x <(任意性)→比较)(1x f 、)(2x f 的大小→下结论.常用差值比较法比较)(1x f 、)(2x f 的大小:作差→变形→定号,变形要彻底(常分离出21x x -),定号的论证要充分;下结论时一定指明在某个区间上函数是增函数或减函数.

讨论函数

)

1,1(x 1

-x ax

)(2

-∈=

(x f 的单调性,其中a 不等于0

【解】 设-1

则f (x 1)-f (x 2)=ax 1x 12-1-ax 2

x 22-1

=a (x 2-x 1)(x 1x 2+1)(x 12-1)(x 22-1)

∵-1

∴|x 1|<1,|x 2|<1,x 2-x 1>0, x 12-1<0,x 22-1<0, |x 1x 2|<1,即-10,

∴(x 2-x 1)(x 2x 1+1)(x 12-1)(x 22-1)

>0.

因此,当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),此时函数为减函数.

当a <0时,f (x 1)-f (x 2)<0即f (x 1)

(2)作差:即f (x 2)-f (x 1)(或f (x 1)-f (x 2)),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形.

(3)定号:根据给定的区间和x 2-x 1的符号,确定差f (x 2)-f (x 1)(或f (x 1)-f (x 2))的符号.当符号不确定时,可以进行分类讨论.

(4)判断:根据定义得出结论

若例1中x ∈(-1,1)改为x ∈R ,a ≠0改为a >0,结果如何?

方法三:利用复合函数的单调性

如:设函数)(x g u =在区间[],m n 上是减函数,函数)(u f y =在区间()(),g n g m ????上是增函数,则复合函数)]([x g f y =在区间[],m n 上是减函数. 已知函数f(x),g(x)在R 上是增函数,求证:f[g(x)]在R 上也是增函数

设有x 1,x 2且x 1

∵g(x)在R 上是增函数 ∴g(x1)

又∵f(x)在R 上是增函数 ∴f(g(x1))

∴f(g(x))在R 上也是增函数同理:f(x)增,g(x)减,则f[g(x)]减

f(x)减g(x) 增,则f[g(x)]减 f(x) 减,g(x)减,则f[g(x)] 增 规律:同增异减.

例3:求函数()f x =

总结:求单调区间的步骤: (1)求定义域

(2)利用复合函数单调性求单调区间。 1. 求f(x)=

2

5243

x x -+的单调区间。

2. f(x)是定义在(-3,3)上的增函数,若f(2+3a)>f(1-2a), 求实数a 的取值范围?

方法四:利用已知函数的单调性.

(1)设函数)(x f y =、)(x g y =在区间A 上都是增函数(或减函数),则函数)()(x g x f y +=在区间A 上也是增函数(或减函数)

; (2)设函数)(x f y =、)(x g y =在区间A 上都是增函数(或减函数),且对任意的

A x ∈都有()0>x f 、()0>x g ,则函数)()(x g x f y ?=在区间A 上是增函数(或减函数);

(3)互为反函数的两个函数在对应的自变量取值区间上具有相同的单调性.

5、单调性的应用

利用函数的增减性可以比较函数值的大小、解不等式、求值域或最值等.其依据是:

(1)已知函数在区间A 上是增函数,1x A ∈,2x A ∈,那么()()1212x x f x f x

例1:已知f(x)在[0,+∞)上是递减的,试比较各式的大小

(1)f(0.1)与f(2006) (2)f(3)与f(π)

(3)f(3

4

)与f(21

a a

++) (4)f(a)与f(

1

a

)(a>0)

练习:

1.已知函数y=

3

,[3,8]

2

x

x

-

,求函数的最大值和最小值。

2.函数y=|x+1|在[3,3]

x∈-上的最大值是?

3.已知2

()2(1)4

f x x a x

=--+在(-∞,4〕上为减函数,求实数a的取值范围?已知f(x)是定义在(0,+∞)上的增函数,求不等式

f(x)>f[8(x-2)]的解集。

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

一次函数性质小结(经典总结)

一次函数的图像、性质总结(阅读+理解) 一、一次函数的图像 Name 1.正比例函数y=kx (k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限. 2.一次函数y=kx+b (k 是常数,k ≠0)的图像是经过A (0,b )和B (- k b ,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况: (1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D 3.一次函数的图像的两个特征 (1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距. (2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-k b ,0). 4.一次函数的图像与直线方程 (1)一次函数y=kx+b(k ≠0)的图像是一条直线,因此y=kx+b(k ≠0)也叫直线方程.但直线方程不一定都是一次函数. (2)与坐标轴平行的直线的方程. ①与x 轴平行的直线方程形如:y=a (a 是常数).a >0时,直线在x 轴上方;a=0时,

直线与x轴重合;a<0时,直线在x轴下方.(如图13-19) ②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20). 二、两条直线的关系 1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b, 若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解; 若l1与l2平行,则k1= k 2. 三、一次函数的增减性 1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性. 2.一次函数的增减性 一次函数y=kx+b在x取全体实数时都具有如下性质: (1)k>0时,y随x的增加而增加; (2)k<0时,y随x的增加而减小. 3.用待定系数法求一次函数的解析式: 若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是: (1)设一次函数的解析式:y=kx+b(k≠0) (2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b① y2=kx2+b②(3)联立①②解方程组,从而求出k、b值. 这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

高中数学函数的对称性与周期性讲义

高中数学函数的对称性与周期性讲义 一、引例:若)(x f 是定义在R 上的函数,对于满足下例条件中,)(,x f r x ∈?某一个,那么对于每个条件下的)(x f ,各具有哪些特殊性质? (1),)1()1(x f x f -=+ (4),)1()1(x f x f --=+ (7),)1()1(-=+x f x f (2),)2()(x f x f -= (5),)2()(x f x f --+ (8),)()2(x f x f =+ (3),)3()1(x f x f -=+- (6),)2(4)(x f x f --= (9),)()1(x f x f -=+ 二、 函数的对称性 1、轴对称 )()()() 2()() ()()(] 0[x f x f y x f x a f x f x a f x a f a x x f a =-?-=?-=+?=?=轴对称关于对称关于 2、点对称 0 )()()()()00()(] 0[) ()()2()()0,()(] 0[2)()()2(2)(),()(=-+?--=?=-=+?--=?==-++?--=?x f x f x f x f x f a x a f x a f x a f x f a x f b b x a f x a f x a f b x f b a x f 对称,关于对称关于对称关于 3、本质特征: 【自变量】 为常数) (定义域)且a a x x D x x (2212,1=+∈? 【函数值】 a x x x x x f x f =→+=→→=对称轴对称轴轴对称性2 )()(2121 ),)22,2(2)()(2121b a b x x b x f x f 对称中心(对称中心中心对称 →+→→=+ 模型:对称关于2 )()()(,b a x x f x b f x a f D x +=?-=+∈? 对称关于)0,2 ()()()(,b a x f x b f x a f D x +?--=+∈? 三,函数的周期性 定义:设定义在D 上的函数,),(D x x f ∈?对于都存在非零常数T ,使得)()(x f T x f =+则函数)(x f 为周期函数,T 为)(x f 的一个周期, 【自变量】 D x x ∈?21,(定义域)且T x x =-21(T 为非零常数)

高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结 一、函数对称性: 1.f(a+x) = f(a-x) ==> f(x) 关于x=a对称 2.f(a+x) = f(b-x) ==> f(x) 关于x=(a+b)/2 对称 3.f(a+x) = -f(a-x) ==> f(x) 关于点(a,0)对称 4.f(a+x) = -f(a-x) + 2b ==> f(x) 关于点(a,b)对称 5.f(a+x) = -f(b-x) + c ==> f(x) 关于点[(a+b)/2 ,c/2] 对称 6.y = f(x) 与y = f(-x) 关于x=0 对称 7.y = f(x) 与y = -f(x) 关于y=0 对称 8.y =f(x) 与y= -f(-x) 关于点(0,0) 对称 例1:证明函数y = f(a+x) 与y = f(b-x) 关于x=(b-a)/2 对称。 【解析】求两个不同函数的对称轴,用设点和对称原理作解。 证明:假设任意一点P(m,n)在函数y = f(a+x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a+m) = f[ b – (2t – m)] ∴b – 2t =a ,==> t = (b-a)/2 ,即证得对称轴为x=(b-a)/2 . 例2:证明函数y = f(a - x) 与y = f(x – b) 关于x=(a + b)/2 对称。 证明:假设任意一点P(m,n)在函数y = f(a - x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a-m) = f[ (2t – m)– b] ∴2t - b =a ,==> t = (a + b)/2 ,即证得对称轴为x=(a + b)/2 . 二、函数的周期性 令a , b 均不为零,若: 1.函数y = f(x) 存在f(x)=f(x+a) ==> 函数最小正周期T=|a| 2.函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期T=|b-a| 3.函数y = f(x) 存在f(x) = -f(x + a) ==> 函数最小正周期T=|2a| 4.函数y = f(x) 存在f(x + a) =1/f(x) ==>函数最小正周期T=|2a| 5.函数y = f(x) 存在f(x + a) = [f(x) + 1]/[1 – f(x)] ==>函数最小正周期T=|4a| 这里只对第2~5点进行解析。 第2点解析: 令X=x+a ,f[a +(x –a)] = f[b +(x – a)] ∴f(x) = f(x + b – a) ==> T=b – a

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

一次函数增减性-两点比较

李艳成老师精品教辅资料助你走上优生之路 第1页(共1页) 一次函数增减性-两点比较 姓名___________班级__________学号__________分数___________ 一、选择题 1.(10706)点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( ) A .12y y > B .12y y < C .12y y = D .无法确定. 2.(820)点A (-5,y 1)和B (-2,y 2)都在直线y =-3x +2上,则y 1与y 2的关系是( ) A .y 1≤y 2; B .y 1=y 2; C .y 1<y 2; D .y 1>y 2; 3.(4732)已知点(1x ,1y )和点(2x ,2y )都在直线y =-12 x +2上,若12x x >,则1y ,2y 的关系是 ( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较 4.(5525)点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( ) A .y 1≥ y 2 B . y 1= y 2 C . y 1<y 2 D . y 1>y 2 5.(6521)若M ??? ?? - 1,21 y 、 N ?? ? ??-2,41y 、P ??? ??3,21y 三点都在函数kx y =(k <0)的图象上,则321y y y 、、的大小关系为( ) A .1y >2y >3y B .2y >1y >3y C .3y >1y >2y D .3y >2y >1y 6.(8482)已知点(-4,y 1),(2,y 2)都在直线y =-1 2 x +2上,则y 1 y 2大小关系是( ) A .y 1 >y 2 B .y 1 =y 2 C .y 1 <y 2 D .不能比较 7.(9284)已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1、y 2大小关系是( ) A .y 1>y 2 B .y 1<y 2 C .y 1= y 2 D .y 1,y 2不能比较 8.(9517)已知正比例函数y =(2m -1)x 的图象上两点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( ) A .m <12 ; B .m >1 2 ;C .m <2;D .m >0; 9.(10128)已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =3 1-x +b 上,则y 1,y 2,y 3的值的大小关 系是( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 3>y 1>y 2 D .y 3<y 1<y 2 二、填空题 10.(4834)已知点A (a ,-2),B (b ,-4)在直线y =-x +6上,则a 、b 的大小关系是a ____b . 11.(6338)已知点A (x 1,y 1),点B (x 2,y 2)在直线y =kx 上. ⑴若x 1<x 2,y 1>y 2时,则k _____0;⑵若x 1<x 2,y 1<y 2时,则k _____0; 12.(9142)已知A (x 1,y 1),B (x 2,y 2)两点在直线y =(m -1)x +7上,且当x 1<x 2 时,y 1>y 2,则m 的取值范围是____________.

函数的基本性质

函数的基本性质 一、单调性定义 1.单调性定义:设函数f(x)的定义域为A,区间M?A,若对于任意的x1,x2∈M,当x10,则 1 f x 为减 (增)函数,f x为增(减)函数. 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.5.奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反. 三、函数单调性的应用有: (1)比较函数值或自变量值的大小. (2)求某些函数的值域或最值. (3)解证不等式. (4)作函数图象. 四、函数的最大(小)值: 定义:一般地,设函数y=f(x)定义域为Ⅰ,如果存在实数M满足: (1)对任意x∈Ⅰ,都有f(x)≤M(或f(x)≥M); (2)存在x0∈Ⅰ,使得f(x0)=M. 称M是函数y=f(x)的最大(或最小)值. 五、复合函数的单调性 对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调增(减)函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,那么函数y=f[g(x)]在区间(a,b)上的单调性由以下表格所示,实施该法则时首先应考虑函数的定义域.

一次函数知识点总结

一次函数知识点总结 变量和函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定 的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。 对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是1 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数取值范围的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义 函数的表示方法 1、三种表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变 量的对应值) 3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。一般情况下, 等号右边的变量是自变量,等号左边的变量是因变量。用函数解析式表示函数关系的方法就是公式法。 4、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、描点法画函数图形的一般步骤(通常选五点法) 第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 一次函数性质、图像 1、一次函数及性质 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

一次函数及其性质

(2019年1月最新最细)2019全国中考真题解析考点汇编☆一次函数及其性质 一、选择题 1. (2019新疆乌鲁木齐,5,4)将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为( ) A 、y =2x -1 B 、y =2x -2 C 、y =2x +1 D 、y =2x +2 考点:一次函数图象与几何变换。 专题:探究型。 分析:根据函数图象平移的法则进行解答即可. 解答:解:直线y =2x 向右平移1个单位后所得图象对应的函数解析式为y =2(x -1), 即y =2x -2. 故选B . 点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键. 2. (2019南昌,8,3分)已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值 可以是( ) A .﹣2 B .﹣1 C .0 D .2 考点:一次函数图象与系数的关系. 专题:探究型. 分析:根据一次函数的图象经过第一、二、三象限判断出b 的符号,再找出符合条件的b 的可能值即可. 解答:解:∵一次函数的图象经过第一、二、三象限,∴b >0,∴四个选项中只有2符合条件.故选D . 点评:本题考查的是一次函数的图象与系数的关系,即一次函数y =kx +b (k ≠0)中,当b <0时,函数图象与y 轴相较于负半轴. 3. (2019陕西,4,3分)下列四个点,在正比例函数x y 5 2 - =的图像上的点是( ) A .(2,5) B .(5,2) C .(2,-5) D .(5,-2) 考点:一次函数图象上点的坐标特征。 专题:函数思想。 分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函 数的解析式.根据正比例函数的定义,知错误!未找到引用源。是定值. 解答:解:由错误!未找到引用源。,得错误!未找到引用源。=﹣错误!未找到引用源。; A 、∵错误!未找到引用源。=错误!未找到引用源。,故本选项错误; B 、∵错误!未找到引用源。=错误!未找到引用源。,故本选项错误; C 、∵错误!未找到引用源。=﹣错误!未找到引用源。,故本选项错误; D 、∵错误!未找到引用源。=﹣错误!未找到引用源。,故本选项正确; 故选D . 点评:本题考查了正比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式. 4. (2019?台湾1,4分)坐标平面上,若点(3,b )在方程式3y=2x ﹣9的图形上,则b 值为何( ) A 、﹣1 B 、2 C 、3 D 、9

函数的单调性

函数的单调性(教学设计) 一、本节内容在教材中的地位与作用: 《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 二、学情、教法分析: 按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。 三、教学目标与教学重、难点的制定: 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:

相关主题
文本预览
相关文档 最新文档