当前位置:文档之家› 基于压电阻抗技术和BP网络的结构健康监测

基于压电阻抗技术和BP网络的结构健康监测

基于压电阻抗技术和BP网络的结构健康监测
基于压电阻抗技术和BP网络的结构健康监测

结构健康监测

工程结构健康监测与诊断 姓 名: 查 忍 指 导教 师: 学 号: 专 业: 沈 圣 170527005 建筑与土木工程

琅岐大桥结构健康监测系统初步设计方案 目录 1 桥梁健康监测的必要性 (3) 2琅岐闽江大桥工程概况 (5) 3系统设计原则与功能目标 (9) 3.1 系统设计依据 (9) 3.2 系统设计原则 (10) 3.3 功能目标 (11) 4 健康监测系统方案设计 (11) 4.1 传感器子系统 (11) 4.1.1 环境监测 (12) 4.1.2 视频监测系统 (12) 4.1.3 结构变形监测 (13) 4.1.4 应变(应力)及温度场监测 (14) 4.1.5 斜拉索索力监测 (15) 4.1.6 结构动力性能监测 (15) 4.1.7 监测传感器统计 (16) 4.2 数据采集系统 (17) 4.2.1 数据采集系统设计 (17) 4.2.2 数据采集系统硬件系统 (18)

4.3 数据传输系统 (19) 4.4 监测数据分析与结构安全评定及预警子系统 (19) 4.5 健康监测网络化集成技术和用户界面子系统 (21) 4.6 中心数据库子系统 (21) 4.7 系统后期维护、升级和服务等要求 (21) 4.8 施工注意事项 (22) 4.9 其它 (22) 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m米的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立

航空结构健康监测的压电夹层设计

传感器与微系统(Transducer and M icr osyste m Technol ogies) 2008年第27卷第7期设计与制造 航空结构健康监测的压电夹层设计3 王 强,袁慎芳 (南京航空航天大学智能材料与结构航空科技重点实验室,江苏南京210016) 摘 要:根据智能夹层思想和真实航空飞行器结构特点,研究了面向航空结构健康监测的压电夹层技术, 并将该技术应用到了某无人机机翼盒段结构健康监测验证实验中。实验结果表明:压电夹层工作性能稳 定,寿命长,压电元件的一致性良好,抗干扰、串扰能力较好,该技术对于结构健康监测技术实用化具有推 动作用。 关键词:结构健康监测;压电夹层;机翼盒段 中图分类号:T B552;V214.8 文献标识码:A 文章编号:1000-9787(2008)07-0072-03 PZTs l ayer techn i que for aerocraft structure hea lth m on itor i n g3 WANG Q iang,Y UAN Shen2fang (The Aeronauti c Key Labora tory for S martM a ter i a l and Structure,Nan ji n g Un i versity of Aeronauti c and A stronauti c,Nan ji n g210016,Ch i n a) Abstract:Based on the ideal of s mart layer and the structure characterastic of aviati on flyer,PZTs Layer technique f or aer ocraft structure health monit oring(S HM)is studied and used in the SH M validati on experi m ent f or a testbox of an UAV wing.The experi m ent result p r oves that the PZTs layer works stably and has l ong service life, and the PZTs have good consistency,l ow interference.A ll of these indicate that the PZTs layer technique is hel pful for the p racticality of SHM. Key words:SH M;PZTs layer;wing testbox 0 引 言 自20世纪后期以来,由于世界各地发生的航空事故所引起的灾难性后果,使得来源于仿生原理的结构健康监测技术得以提出并迅速发展起来[1~4]。该技术研究在结构中安装或集成传感器/激励器、控制器以及信号处理器等功能单元来实现对结构健康状态的在线监测。在众多的传感器和激励器中,压电元件由于具有正逆压电效应,既可作为驱动器也可以作为传感器,因此,得到很多研究学者的关注并大量采用。在安装时,传统的方法是将压电元件逐个粘贴与分别连线,这样的做法会引起各压电元件存在性能差异,且稳定性、电气特性以及使用寿命等方面难以控制。为此,美国斯坦福大学率先进行了分布式传感器系统的研制,将这种分布式传感器系统叫做智能夹层(s mart layer)[5,6],国内南京航空航天大学是首先进行此方面研究的机构,在原理研究和应用等方面取得了一系列成果[7,8]。然而,目前国内压电智能夹层的应用研究还都是以小型结构为主,工作环境也大多局限于实验室内,距离真实工程应用还存在一定差距。本文以航空结构为应用对象,在国内外研究成果的基础上,研究了面向航空结构健康监测的实用化压电夹层技术,并在大型某无人机机翼盒段综合健康监测系统验证实验中得到了成功应用,取得了良好的效果。 1 压电夹层原理 电夹层的设计思想是采用柔性印刷线路工艺将压电传感器/激励器网络设计制作成夹层的形式,其中,压电元件按照一定工艺封装在夹层中,并用印刷线路代替普通导线连线[7,8]。通过这样的方法有效解决压电监测系统中常用的直接将压电元件粘贴在结构上所引起的胶层厚度不均、电绝缘问题、传感性能分散、串扰大的弊端。 2 设计方案 将压电夹层集成到结构中实现航空飞行器健康监测时,需要根据结构的特点和使用环境来确定夹层设计、安装工艺等。机翼盒段是航空飞行器中较为典型的结构部件, 收稿日期:2008-03-25 3基金项目:国家自然科学基金国际合作重大计划资助项目(50420120133);航空科学基金资助项目(20060952);教育部新世纪优秀人才支持计划资助项目(NCET-04-0513);江苏省研究生科技创新计划资助项目(CX07B_076Z) 27

土木工程结构健康监测系统的研究状况与进展

土木工程结构健康监测系统的研究状况与进展 发表时间:2018-09-17T16:19:53.787Z 来源:《基层建设》2018年第25期作者:韦广深[导读] 摘要:本文对土木工程结构健康监测系统进行了简单的介绍,阐述了土木工程结构健康监测系统的组成和功能,针对土木工程结构健康监测系统未来的发展展开了深入的研究分析,结合本次研究,发表了一些自己的建议看法,希望可以对土木工程结构健康监测系统的发展起到一定的参考和帮助,提高其在土木工程结构方面应用有效性。 身份证号:45252519760606XXXX 摘要:本文对土木工程结构健康监测系统进行了简单的介绍,阐述了土木工程结构健康监测系统的组成和功能,针对土木工程结构健康监测系统未来的发展展开了深入的研究分析,结合本次研究,发表了一些自己的建议看法,希望可以对土木工程结构健康监测系统的发展起到一定的参考和帮助,提高其在土木工程结构方面应用有效性。关键词:土木工程结构;健康监测系统;研究状况;进展在土木工程发展过程中,人们越来越重视土木工程建设安全性。单一结构设计健康检测系统已经很难满足人们实际需要,相关部门为了更好地实现土木工程结构检测,开大大力建设更加科学的结构检测系统。土木工程结构长时间使用后会因为老化、磨损以及地震、雨雪等因素影响出现一定的损坏,降低建筑物整体质量和荷载能力,尤其是一些重要结构构件,如果建筑损伤较为严重后,将非常有可能使整个建筑结构崩坏,出现更为严重的安全事故,定期做好对土木工程结构健康状况的检查,发现损伤及时修整,能够使土木工程结构安全可靠性得到有效保证。土木工程结构健康监测系统在实际应用中能够更好的实现这一目的,本文就此展开了研究分析。 1.土木工程结构健康监测系统概述土木工程结构健康监测主要是利用无损检测技术对结构的特性进行分析,实现对结构损伤情况的准确判断,明确损伤的部位。土木工程结构健康监测主要是测量超常荷载情况下结构的变化情况,明确工程结构特性变化,以此为基础判断结构损伤程度,明确损伤部位。包含损伤识别以及安全性评估两个方面内容,结构健康监测需要以损伤识别为基础,以安全性检测作为结构健康监测的核心。在损伤识别方面,土木工程结构损伤来源有两种,一种是积累损伤,另一种是外来损伤,积累损伤主要是指工程结构在长期使用过程中所积累的损伤,包含有材料老化、腐蚀、荷载效应等方面内容,外来损伤则指泥石流、爆破等自然灾害以及人为损害所带来的损伤。损伤检测目标可以分为不同步骤,首先是推测结构是否出现损伤,之后明确结构损伤部位,判断损伤类型,最后对损伤程度展开量化评估分析,估计结构使用剩余期限。需要注意的是,在结构损伤的识别和判断过程中,必须要有效区分建模偏差以及结构损伤偏差。在安全评估方面,工程结构安全性评价需要以健康监测和损伤识别为基础,安全状态测试属于一种工程结构安全等级的有效测试方法,工程结构安全等级的评价主要利用工程临界状态比较方式展开,不同工程结构安全等级与该工程结构的重要性密不可分,必须要做好工程结构安全性评估与可靠性评估之间的区分,安全性评估主要是实现对工程结构安全级别的有效判断。 2.结构健康监测系统组成和功能不同土木工程结构所处的环境以及承载存在明显的区别,在结构形式方面存在有较大差异性,但是其监测洗头工结构存在非常大相似性,主要表现在以下几个方面: 2.1 数据采集、处理、传输子系统该子系统包含有软件和硬件两大主要组成结构,通过软件方式将数据信号储存至计算机,常见的数据采集软件有VC++、LabV oew等,硬件系统主要组成包含有传输数据的电缆和相应的数模转换卡。数据采集子系统在实际应用中能够实现将传感器子系统与数据管理子系统有效联系,以此实现对数据的采集和储存。 2.2 传感器子系统传感器子系统属于整个结构健康测试系统最为关键的组成结构,为硬件部分,传感器子系统在实际应用中主要用来感知结构荷载和状态方面信息,并通过物理、光、声音等形式表现出来。 2.3 安全预警子系统该系统的主要组成结构包含有结构安全评定软件和相应的预警设备,当传感器子系统采集到结构信息并发送至数据采集处理子系统后,该系统识别出损伤后会发出相应的报警信号。 2.4 模型修正、结构损伤识别子系统该系统包含有损伤识别软件以及模型修正软件,在实际应用中,先启动结构损伤识别软件,在识别到结构损伤后,模型修正软件以及安全评定软件就会运行发挥作用。结构损伤识别软件的开发一般由计算机分析软件平台进行。损伤识别判断需要以结构感知信息基础上进行,数据采集子系统在接收到来自传感器子系统发送的数据信息后,将信息数据储存至数据管理子系统,结构损伤识别软件的运行需要从数据管理子系统中获取相应的数据信息,同时完成分析后分析结果还会自动保存至数据管理子系统,作为历史数据信息备用。 3.土木工程结构健康监测系统的发展当前土木工程结构健康监测系统尚处于初期发展阶段,在实际工程中的应用还不是十分广泛。未来土木工程结构健康监测系统的发展,需要做好以下几个方面工作:首先,研发更为科学合理的算法,实现对传感器子系统所接收到信息的实时监控,使数据信息的真实性和可靠性得到保证;其次,对工程结构健康监测系统的相关安全标准进行优化和完善,与土木工程结构实际情况相结合,方便工作人员根据监测结构准确判断工程结构的安全状况;最后,统一土木工程结构健康监测系统的设计和开发,提升整个系统的标准化视频,使该系统在实际应用中更好的发挥出价值和作用。结束语 土木工程结构健康监测系统在实际应用中可以实现对土木工程结构健康状况的有效监测,及时发现土木工程结构存在的问题和隐患,提高结构各类隐患问题处理的及时性和有效性,降低土木工程结构问题所带来的影响和损失,在土木工程结构领域有着非常广阔的发展前景。当前土木工程结构健康监测系统尚处于初期发展阶段,还存在有一定的缺陷和问题,在今后使用中,想要更好的发挥土木工程结构健康监测系统的价值和作用,还要从实践和理论等方面对其优化和完善,结合土木工程结构实际情况,提高其应用有效性,为我国建筑行业发展进步打下良好的基础。参考文献:

现代桥梁健康安全监测系统++

目录 一、传统桥梁结构检查与评估概述 (1) 二、现代桥梁健康监测系统概述 (2) 三、健康监测系统研究现状 (3) 四、健康监测系统实施现状 (5) $ 五、健康监测系统应用效果与存在问题 (9) 六、健康监测系统改善建议与发展前景 (10) "

一、传统桥梁结构检查与评估概述 桥梁在建成后,由于受到气候、腐蚀、氧化或老化等因素,以及长期在静载和活载的作用下易于受到损坏,相应地其强度和刚度会随时间的增加而降低。这不仅会影响行车的安全,并会使桥梁的使用寿命缩短。为保证大桥的安全与交通运输畅通,加强对桥梁的维护管理工作极为重要。桥梁管理的目的在于保证结构的可靠性,主要指结构的承载能力、运营状态和耐久性能等,以满足预定的功能要求。桥梁的健康状况主要通过利用收集到的特定信息来加以评估,并作出相应的工程决策,实施保养、维修与加固工作。评估的主要内容包括:承载能力、运营状态、耐久能力以及剩余寿命预测。承载能力评估与结构或构件的极限强度、稳定性能等有关,其评估的目的是要找出结构的实际安全储备,以避免在日常使用中产生灾难性后果。运营状态评估与结构或构件在日常荷载作用下的变形、振动、裂缝等有关。运营状态评估对于大桥工件条件的确认和定期维修养护的实施十分重要。耐久能力评估侧重于大桥的损伤及其成因,以及其对材料物理特性的影响。 传统上,对桥梁结构的评估通过人工目测检查或借助于便携式仪器测量得到的信息进行。人工桥梁检查分为经常检查、定期检查和特殊检查。但是人工桥梁检查方法在实际应用中有很大的局限性。美国联邦公路委员会的最近调查表明,根据目测检查而作出的评估结果平均有56%是不恰当的。传统检测方式的不足之处主要表现在: (i)需要大量人力、物力并有诸多检查盲点。现代大型桥梁结构布置极其复杂,构件多且尺寸大,加之大部分的构件和隐蔽工程部位难于直接接近检查,因此,这对现代大型桥梁尤其突出; (ii)主观性强,难于量化。检查与评估的结果主要取决于检查人员的专业知识水平以及现场检测的经验。经过半个多世纪的发展,虽然桥梁的分析设计与施工技术已日趋完善,但对某些响应现象,尤其是损伤的发展过程,尚处于经验积累中,因此定量化的描述是很重要的; (iii)缺少整体性。人工检查以单一构件为对象,而用于现代机械、光学、超声波和电磁波等技术的检测工具,都只能提供局部的检测和诊断信息,而不能

结构健康监测

结构健康监测 【结构健康监测】是指对工程结构实施损伤检测和识别。我们这里所说的损伤包括材料特性改变或结构体系的几何特性发生改变,以及边界条件和体系的连续性,体系的整体连续性对结构的服役能力有至关重要的作用。结构健康监测涉及到通过分析定期采集的结构布置的传感器阵列的动力响应数据来观察体系随时间推移产生的变化,损伤敏感特征值的提取并通过数据分析来确定结构的健康状态。对于长期结构健康监测,通过数据定期更新来估计结构老化和恶劣服役环境对工程结构是否有能力继续实现设计功能。监测简介 监测起源 长期以来,我们一直使用针对质量的不连续的方法来评估结构是否有能力继续服役以实现设计目的。从19世纪初开始,列车员借助小锤通过听锤击铁轨的声音来确定是否存在损伤。在旋转机械行业,几十年来振动监测一直作为检测手段。在过去的十到十五年里,结构健康监测技术开始兴起并产生一个联合不同工程学科分支的新的领域,而且专注于这个领域的学术会议和科学期刊开始产生。因此这些技术变得更为常见。 识别算法 结构健康监测的问题可归入数据模式识别算法的范畴[3-4] 。这个算法可分解为四部分:(1)实用性评估,(2)数据采集和提纯,(3)特征提取和数据压缩,(4)统计模型的发展。当你试图将此算法应用于实际工程结构上获取的数据时,很明显的是,第2-4部分,即数据提纯、压缩、正规化和数据融合来贴近工程实际服役环境是非常关键的环节,我们可通过硬件、软件以及二者的有机结合来实现。 实用性评估 对于健康监测对结构的损伤识别能力,实用性评估涉及到四个方面:

(1)结构健康监测的应用对于生命安全和经济效益有什么好处, (2)怎样对结构进行损伤定义,多重损伤同时存在的可能性,哪种类型最值得关注, (3)什么条件下(不同用途、不同环境)的体系需要监测 (4)使用过程中采集数据的局限性 使用环境对监测的体系和监测过程的完成形成限制条件。这种评估开始将损伤识别的过程和损伤的外部特征联系起来,当然也用到独特的损伤特征来完成检测。 数据采集和提纯 结构健康监测的数据采集部分涉及到选择激励方法、传感器类型、数量和布置,以及数据采集、存储、传输设备。经济效益是选择方案一个重要的参考因素,采样周期是另一个不可忽视的因素。因为数据可在变化的环境中获取,将这些数据正规化的能力在损伤识别过程中变得非常重要。当应用于结构健康监测时,数据正规化是一个分离出由于环境或操作而导致的传感器测得的不准确的数值。最常见的方法是通过测量输入参数来正规化测得的响应。当环境或操作影响比较显著时,我们需要来对比相似时间段的数据或对应的操作周期。数据的不 稳定性的来源需要认识到并把它对系统监测的影响降到最低。总的来说,不是所有的影响因素都可以消除,因此,我们有必要才去适当的措施来确保这些无法消除的因素对监测系统的影响作用大小。数据的不稳定性会因为变化的环境因素、测试条件以及测试的不连续性而加剧。 数据提纯是一个筛选部分有价值数据以完成传递的过程,与特征提取的过程相反。数据提纯很大程度上基于个人相关数据采集的经验。举例来说,通过检查测试设备的安装或许会发现某个传感器的固结已经松动,因此基于个人经验可以在数据

超大跨径【桥梁】结构健康监测关键技术模板

《超大跨径桥梁结构健康监测关键技术》 2017年度湖南省科技进步奖项目公示材料 一、项目名称:超大跨径桥梁结构健康监测关键技术 二、项目简介 桥梁是公路交通的重要节点,而超大跨径桥梁由于结构形式与结构安全的重要性,成为交通线路的重中之中。大桥在投入使用后,不可避免地会受到外界因素(自然灾害、外荷载等)的影响,造成结构安全隐患,最终影响社会经济发展和人民生命财产的安全。 超大跨径桥梁结构健康监测关键技术主要以矮寨特大悬索桥(吉茶高速公路控制性工程,创造了最大峡谷跨径、塔梁完全分离结构设计、轨索滑移法架梁以及岩锚吊索结构四项世界第一)为工程依托,在课题组累积的前期研究基础之上,从监测系统整体效能优化设计、健康监测元器件开发、结构损伤分析与评估等方面开展了深入系统的研究,主要内容及创新点包括: (1)针对桥梁健康监测与评估系统功能划分不明确、系统框架不完全等问题,结合现代计算机通信技术,提出了基于网格的超大跨径桥梁结构健康监测系统。对桥梁结构健康监测系统中评估分析模块效率低、系统间存在信息孤岛等问题进行了优化,最终实现健康监测系统评估功能共享。 (2)针对超大跨径桥梁监测任务点繁多,数据量大等问题,以K-L信息距离为理论基础,提出了K-L信息距离准则。利用该准则研究了超大跨径桥梁传感器优化布置方法,达到用最少测点监测桥梁全面状态的目的。 (3)研究了超大跨径桥梁有限元模型修正方法,提出了基于径向基函数的桥梁有限元模型修正方法,避免了传统的矩阵型和参数型模型修正中修正目标众多、监测自由度与有限元模型自由度不匹配的问题。 (4)根据桥梁的损伤机理与车匀速过桥时与桥梁的耦合特性,提出了基于动能能量比和小波包能量比边缘算子的桥梁结构损伤识别方法。 (5)提出了基于健康监测系统的桥梁拉索疲劳寿命预测方法,研发了低功耗便携式索力在线监测设备等桥梁结构监测元器件。 (6)研发了超大跨径桥梁结构健康监测综合系统,编制了《湖

压电阻抗ANSYS程序

压电陶瓷阻抗分析ANSYS 程序 阻抗概念简介 大家都知道直流电路中,欧姆定律中定义的电阻R V I = ,电阻的含义代表对电流的阻碍作用。随着学习的深入,我们知道电压不仅仅有直流电压,更多存在的是交流电压,比如家用电压220V~,变压器等等。 图 1 一般交流电压有幅值,频率,相位这些参数,如果用实数表示就是 00cos()m t v V V ω?+=+ (1) v 代表任意时刻的电压,0V 代表偏置,m V 代表幅值,2f ωπ= 代表角频率与频率有关,0? 为初始相位。 随着学习继续深入,有出现了用虚数表示电压 00jwt m v V V e ?+=+ (2) 其实如果只要将(2)式中实部取出来,虚部不用管,就和(1)一样了。既然(2)比(1)还要复杂,为什么还要用复数表示交流电压呢,其实这是因为复数的运算要比实数要简单许多许多。比如将两个交流电相乘(实际中可以用电子电路中乘法器实现),复数的相乘:只要将幅角相加就行了,实数就要复杂很多。 到此,我们知道了为什么要复数表示阻抗,而任何一个复数都可以用实部和虚部表示: Z R jX =+ (3)

实部和虚部到底有什么含义呢,很多教科书说实部就是电阻,虚部是由电容产生的容抗和电感产生的感抗组成的。但大家看完这些介绍依然是云里雾里,太抽象,难以理解。实际上对于阻抗的理解就直接把其理解为电阻,阻抗就是用来阻碍电流的,比如如果我们要在1V电压施加下获得1A电流,那么我们找1Ω电阻和绝对值为1Ω的阻抗是一样的。但是用阻抗有个优点,阻抗的虚部是复数,复数不会做功不会产生能量消耗,虽然1Ω的电阻和1Ω的阻抗都能获得1A的电流,但是阻抗由于有虚部因此消耗的能量要少,如果阻抗虚部设计的大一些,实部设计的小一些,这对于节约功耗具有无比重要的意义!注意以上讨论的前提是交流电。 ANSYS获得压电阻抗 ANSYS中要输入压电单元的参数,当然自己可以慢慢用GUI输入,也可以用命令流输入,其实最简单的方法就是从网上找一个别人论文中的PZT压电参数直接用File->read input from.. 命令读取就行了,这里将参数贴在附录A. 下面开始建立模型,从最简单的板开始入手。板的尺寸为24*4*0.35 mm,这很简单用block命令或者直接GUI。 建立模型后要进行网格划分,用GUI 直观简单,MeshTool 选中长宽厚,分别设置划分个数为10*5*2,划分类型为映射网格,计算快,看起来漂亮~ 图 2 施加电压要用到Coupled Field的概念,耦合场其实就是将选中的面偶合成一个量,也就是如果要对某一点施加电压,那么耦合的面都会具有所施加的电压值,这在施加电压的时候只要施加在耦合的点(ANSYS映射的原点就是耦合点,选错了点ANSYS会报

健康监测系统设计方案

天津市海河大桥结构健康监测系统初步设计方案 天津市市政工程研究院 2009年3月

天津市海河大桥结构健康监测系统初步设计方案 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194mM的Flintshire独塔斜拉桥、日本主跨为1991mM 的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。 导致桥梁结构发生破坏和功能退化的原因是多方面的,有些桥梁的破坏是人为因素造成的,但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。 现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非常困难 的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。 桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决策提供依据和指导。安装结构健康监测系统是提高桥梁的养护管理水平,保证桥梁安全运营的高效技术手段。 特别值得一提的是,桥梁的健康监测和施工监控系统均是通过检测和监测手段,测试桥梁结构的内力、变形、环境和荷载,因此,它们在传感器系统、数据传输系统和数据采集系统都具有很大的共享性和重复性。此外,两个阶段在时间顺序上具有衔接性,施工监控阶段的监测数据是健康监测阶段的基础。为了节约资源、降低工程造价,应充分发挥两个系统的共享性,对上述两个系统进行统筹规划和实施,即采取统一设计、统一施工和统一管理的方式,以实现海河大桥的健康监测和施工监控两位一体的工程实施。 2海河大桥工程简况 集疏港公路二期中段工程起点于津沽一线立交以北,向北过津沽公路、海河大桥南侧收费站,与现状海河大桥相邻向北跨越海河后沿现状临港路、东海路向北分别跨越进港铁路一线,新港二号路,三号路,进港铁路二线,新港四号路,泰达大街,会展中心入口,第五大街,第八大街,第九大街,丰田七号路,与疏港二线立交相接。该段桩号范围K9+342.802~K20+419.245,路线全长11.076公里,除起点引路约500M和海河大桥南侧收费站前后各约300M为道路外,其余将近9.8公里均为高架桥。从南向北依次有津沽公路支线上跨分离式立交一座,海河特大桥一座,临港立交、泰达大街立交、第九大街立交互通式立交三座,其他与现状及规划道路交叉位置为直线上跨。海河特大桥工程为海滨大道工程的一部分,设计速度V=80km/h,双向八车道。

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

紧固件连接失效的压电阻抗监测技术

试验研究 2017年第39卷第8期 收稿日期:2016-11-16 基金项目:国家自然科学基金重点资助项目(61533010) ;中国博士后基金资助项目(2015M570401);南京邮电大学先进技术研究院开放基金资助项目(XJKY15005) ;南京邮电大学科研资助项目(NY215093) 作者简介:常源隆(1995-) ,男,主要研究方向为结构健康监测通信作者:王 强(1980-) ,男,博士,副教授,主要研究方向为结构健康监测二先进智能传感技术二信号与信息处理等,wan gq ian g @ n j u p t.edu.cn DOI :10.11973/ws j c201708003 紧固件连接失效的压电阻抗监测技术 常源隆,董鸿祥,王 强 (南京邮电大学自动化学院,南京210023) 摘 要:针对紧固件连接失效的压电阻抗监测方法对设备要求高且损伤判断方法不统一的问 题,推导了压电传感器电导纳实部的计算公式,根据推导结果设计了结构损伤诊断系统,研究通过压电传感器的电导纳实部的频率谱来检测紧固件连接失效的可行性.试验结果表明,根据压电传感器的电导纳实部相对变化率频谱可以准确地判断紧固件连接是否失效. 关键词:PZT 压电传感器;结构健康监测;机电耦合原理;连接失效 中图分类号:TP211+.4;TG115.28 文献标志码:A 文章编号:1000-6656(2017)08-0011-05 Fastener Joint Failure Monitorin g Techni q ue Usin g Piezoelectric Im p edance Method CHANG Yuanlon g ,DONG Hon g xian g ,WANG Q ian g (Colle g e of Automation ,Nan j in g Universit y of Post and Telecommunications ,Nan j in g 210023,China ) Abstract :The existin g methods ado p ted to monitor the fastener j oint failure based on electromechanical im p edance method demand for hi g h q ualit y e q ui p ment.At the same time ,there was a lack of a unified method on the j ud g e of fastener j oint failure.Formulas were derived and a monitorin g s y stem was desi g ned to investi g ate the feasibilit y of a new method based on the fre q uenc y s p ectrum of the real p art of electrical admittance.The am p le evidence p resented enables us reasonabl y to conclude that fastener j oint failure can be well monitored usin g fre q uenc y s p ectrum of real p art of electrical admittance in the wa y mentioned. Ke y words :PZT actuator /sensor ;health monitorin g ;electromechanical cou p lin g p rinci p le ;j oint failure 在诸多实际工程结构, 如桥梁二航空器二汽车以及空间桁架等结构(如输电铁塔等)中,紧固件的使用是必不可少的.紧固件的松紧问题是结构完整性检查的一个重要环节,紧固件的松动可能会引起整 个机构的失效,造成灾难性的事故[ 1] .目前对紧固件失效的监测已经存在大量研究:美国缅因州大学对复合材料结构中螺钉连接失效的监测进行了研究 [2] ;北京工业大学研究了螺钉松动对压 电元件特性的影响[1] ;南京航空航天大学在小型环氧板上实现了螺钉松动的实时监测[3] ;西安热工研究院 对某台兆瓦级风力机塔上的高强度螺栓进行了无损 检测,并通过渗透检测验证了检测结果的有效性[ 4] .然而,试验对损伤信息的收集多采用昂贵的网络分析仪,以较高频率(?50kHz )进行测量;对于损伤的判断一般采用电阻抗谱的变化或通过乘法器分离所得的电导纳实部谱的变化来表征,但前者由于压电片阻 抗有效值较大而变化不明显,影响监测可靠性,后者器件相对复杂而受外界干扰严重[6-12] 进行验证. 笔者针对紧固件失效监测中电导纳实部信息的应用,推导了压电传感器的电导纳实部信息的计算公式,采用标准化总线式模块实现了损伤诊断系统,克服了阻抗变化不明显的问题,并进行了验证试验. 1 结构损伤的压电阻抗监测技术 当对压电传感器施加一个交变电场时, 由逆压1 1

结构健康监测

工程结构健康监测与诊断 姓名:查忍 指导教师:沈圣 学号: 专业:建筑与土木工稈 琅岐大桥结构健康监测系统初步设计方案 目录 1桥梁健康监测的必要性 .............................. 2琅岐闽江大桥工程概况 .............................. 3系统设计原则与功能目标 ............................ 3.1系统设计依据.............................. 3.2系统设计原则.............................. 3.3 功能目标............................... 4健康监测系统方案设计 .............................. 4.1传感器子系统.............................. 4.1.1 环境监测 .......................... 4.1.2视频监测系统.......................... 4.1.3结构变形监测.......................... 4.1.4应变(应力)及温度场监测................... 4.1.5斜拉索索力监测.......................... 4.1.6结构动力性能监测........................

4.1.7监测传感器统计.......................... 4.2数据采集系统.............................. 4.2.1 数据采集系统设计....................... 4.2.2数据采集系统硬件系统....................... 4.3数据传输系统.............................. 4.4监测数据分析与结构安全评定及预警子系统 ................. 4.5健康监测网络化集成技术和用户界面子系统 ................. 4.6中心数据库子系统........................... 4.7系统后期维护、升级和服务等要求 .................... 4.8 施工注意事项............................. 4.9其它................................. 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m米的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194m米的Flintshire 独塔斜拉桥、日本主跨为1991m米的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East 悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing 和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用

相关主题
文本预览
相关文档 最新文档