当前位置:文档之家› 湘潭大学大学物理1练习册答案

湘潭大学大学物理1练习册答案

湘潭大学大学物理1练习册答案
湘潭大学大学物理1练习册答案

练习1 质点运动学(一)参考答案

1. B ;

2. D;

3. 8m, 10m.

4. 3, 3 6;

5. 解:(1) 5.0/-==??t x v m/s

(2) v = d x /d t = 9t - 6t 2

v (2) =-6 m/s

(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m

6. 答:矢径r

是从坐标原点至质点所在位置的有向线段.

而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为

0r r r

-=?

0r 为初始时刻的矢径, r 为末时刻的矢径,△r

为位移矢量.

若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r

即r

既是矢径也是位移矢量.

1. D ;

2. -g /2 , ()g 3/322v

3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)

4. 17.3 m/s, 20 m/s .

5. 解: =a d v /d t 4=t , d v 4=t d t

?

?=v

v 0

d 4d t

t t

v 2=t 2

v d =x /d t 2=t 2

t t x t

x

x d 2d 0

20

??

=

x 2= t 3 /3+x 0 (SI)

6. 解:根据已知条件确定常量k

()

222/rad 4//s Rt t k ===v ω

24t =ω, 24Rt R ==ωv

t=1s 时, v = 4Rt 2 = 8 m/s

2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v

()

8.352

/12

2=+=n

t a a a m/s 2

1.D

2.C

3.

4. l/cos 2θ

5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

解:(1)

m

M m )(m 0

0+=

+===μμ联立方程得:

g m M N N

T T g (2)

g

M

m m m M T g

M

m m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到

利用)()(0''0'0)1(μ

(1)

(2)

BA

A A P

B

6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律

t

m

K d d v v =- ∴ ?

?=-=-v

v v v

v

v

d d ,

d d 0t t m K t m K ∴ m

Kt /0e -=v v

(2) 求最大深度 解法一: t

x

d d =

v

t x m

Kt d e

d /0-=v

t x m Kt t

x d e d /0

00

-?

?

=v

∴ )e

1()/(/0m

Kt K m x --=v

K m x /0max v =

解法二:

x

m t x x m t m

K d d )d d )(d d (d d v

v

v v v ===- ∴ v d K

m

dx -=

v v d d 0

m

a x

?

?-=K m

x x ∴ K m x /0max v =

1. B

2. A

3.

211m m t F +?, 2

1

211m t F m m t F ?++?

4. 140 N·s , 24 m/s ,

???=+==2

1

2

s N 140d )4030(d t t t t t F I

1212;v v v v m I m I m m +==-

m /s 24/)(12=+=m m I v v

5. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '

有 m v 0 = m v +M v ' v ' = m (v 0 - v )/M =3.13 m/s T =Mg+M v 2/l =26.5 N

(2) s N 7.40?-=-=?v v m m t f (设0v

方向为正方向)

负号表示冲量方向与0v

方向相反.

6. 解:设V 为船对岸的速度,u 为狗对船的速度,由于忽略船所受水的阻力,狗与船组成的系统水平方向动量守恒:

0)(=++u V m MV 即 u m

M m

V +-=

船走过的路程为 l m M m

t u m M m t V L t

t

+=+==??00

d d 狗离岸的距离为 l m

M M

S L l S S +-

=--=00)(

1. B

2. C

3. 18J, 6 m/s

4. m

t F 22

2, t F m t F 0222v +

5. 解:(1) 0sin kx mg =θk mg x /sin 0θ=

(2) 取弹簧原长处为弹性势能和重力势能的零点,平衡位置处 θsin 2

102

000mgx kx E E K -+

= 伸长x 处系统的机械能 θsin 2

12

mgx kx E E K x -+

= 由机械能守恒定律, x E E =0 解出 20]sin )/1([2

1

θmg k x k E E K K --

= 另解: (2) 取平衡位置为振动势能零点,可证明振动势能(包括弹性势能和重力势能)为

20)(2

1

x x k -, 则由A 、弹簧、地球组成系统,在振动过程中机械能守恒: 020)(2

1

K K E x x k E =-+ 200)(21x x k E E K K --

=20]sin )/1([2

1

θmg k x k E K --=

6. 解:两自由质点组成的系统在自身的引力场中运动时,系统的动量和机械能均守恒.设两质点的间距变为l /2时,它们的速度分别为v 1及v 2,则有

02211=-v v m m ①

l

m Gm m m l m Gm 212222112122121-+=-v v ② 联立①、②,解得 )(2212

1m m l G m +=v ,)

(22112m m l G

m +=v

练习6 刚体力学(一)参考答案

1. B

2. C

挂重物时, mg -T = ma =mR β, TR =J β,

P =mg

由此解出 J

mR mgR

+=

而用拉力时, mg R = J β' J

mgR

=/

β 故有 β'>β

3. ma 2 ,

21 ma 2 , 2

1

ma 2 . 4. 4.0rad/s

5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑

轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。求: (1)滑轮的角加速度β。(绳轻且不可伸长)

解:

β

βR a R m I I R T R T a T a m ===-=-=2

3212221112121

m g m m T -g m m 上升下降,设

联立方程得到,

m 3

g

m m m m m m m T g m m m m

m m m T g

R m m m m m g

m m m m m a 3

213

2212321312113212132121)(24)(24])(2[)

(2)(2)

(2+++=

+++=++-=

++-=

β

6 解:撤去外加力矩后受力分析如图所示. m 1g -T = m 1a Tr =J β a =r β

a = m 1gr / ( m 1r + J / r ) 代入J =

2

2

1mr , a =m

m g

m 2

111+= 6.32 ms -2 ∵ v 0-at =0 ∴ t =v 0 / a =0.095 s

T a

练习7 刚体力学(二)参考答案

1. E

2. C

3. 2275 kgm 2·s -1 , 13 m·s -1

4.

θsin 3gl

5. 解:由人和转台系统的角动量守恒

J 1ω1 + J 2ω2 = 0

其中 J 1=300 kg ·m 2,ω1=v /r =0.5 rad / s , J 2=3000 kg ?m 2 ∴ ω2=-J 1ω1/J 2=-0.05 rad/s 人相对于转台的角速度 ωr =ω1-ω2=0.55 rad/s ∴ t =2π /r ω=11.4 s

6. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为2

1

3

ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;

(2) 棒转到水平位置时的角加速度.

解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J β

其中 4/30sin 2

1

mgl mgl M ==

于是 2rad/s 35.743 ===l

g

J M β

当棒转动到水平位置时, M =2

1

mgl

那么 2rad/s 7.1423 ===

l

g

J M β

1. B

2. B

3. c

4.

c 5

4 5. 解:解:根据洛仑兹变换公式:

2

)

(1/c t x x v v --=

' ,2

2)

(1//c c x t t v v --=

'

可得 2

222

)

(1/c t x x v v --=' ,2

111

)

(1/c t x x v v --='

在K 系,两事件同时发生,t 1 = t 2,则

2

1212

)

(1/c x x x x v --='-' ,

2

1

)/()()/(112

122='-'-=-x x x x c v 解得 2/3c =v .

在K ′系上述两事件不同时发生,设分别发生于1

t '和 2t '时刻, 则 2

2111

)

(1//c c x t t v v --=',2

2222

)

(1//c c x t t v v --='

由此得 2

2

1221

)(1/)(/c c x x t t v v --='-'=5.77×10-

6 s

6. 解:设两系的相对速度为v .根据洛仑兹变换, 对于两事件,有

2

)

/(1c t x x v v -'

+'=

???

2

2

)

/(1(c x )/c

t t v v -'

+'=

???

由题意: 0='?t 可得 x c t ??=)/(2

v 及 2

)/(1c x x v -='?? 由上两式可得 x '?2

/122

2

]

)/()[(c t c x ??-=2/1222][t c x ??-== 4×106 m

1. C

2. C

3. C

4. 2/3c =v , 2/3c =v

5. 5.8×10-13, 8.04×10-2

6. 解:据相对论动能公式 202c m mc E K -=

得 )1)/(11(2

20--=c c m E K v 即

419

.11)/(112

02

==

--c m E c K

v 解得

v = 0.91c

平均寿命为

82

1031.5)/(1-?=-=

c v ττ s

7. 解:根据功能原理,要作的功 W = ?E

根据相对论能量公式 ?E = m 2c 2- m 1c 2

根据相对论质量公式 2/12202])/(1/[c m m v -=

2/12101])/(1/[c m m v -=

∴ )1111

(

2

212

2220c

c

c m W v v --

-==4.72×10-

14 J =2.95×105 eV

1. D

2. E

3. )212cos(π-πT t A , )312c o s (π+πT t A

4. 3.43 s, -2π/3

5. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1

∴ T = 2π/ω = 4.19 s

(2) a m = ω2A = v m ω = 4.5×10-2

m/s 2

(3) π=

2

1

φ x = 0.02)2

1

5.1cos(π+

t (SI)

6. 证:(1) 当小物体偏离圆弧形轨道最低点θ 角时,其受力如图 所示.

切向分力 θsin mg F t -= ①

∵θ 角很小, ∴ sin θ ≈θ

牛顿第二定律给出 t t ma F = ② 即 2

2

d /)(d t R m mg θθ=- θωθθ2

2

2

//d d -=-=R g t ③ 将③式和简谐振动微分方程比较可知,物体作简谐振动. (2) 由③知

R g /=ω

周期 g R T /2/2π=π=ω

g

练习11 机械振动(二)参考答案

1. B

2. B

3.

2

2

22T

mA π

4. )2

1cos(04.0π-πt

5. 解:(1) 由题意 kA F m =,m x A =,m m x F k /=.

16.021

212===m m m x F kx E J (2) π===

2m

m

m x A v v ω rad /s 由 t = 0, φc o s

0A x ==0.2 m , 0sin 0<-=φωA v 可得

π=3

则振动方程为 )3

1

2cos(4.0π+

π=t x

6. 解:(1) 2

2

1kA E E E p K =

+= 2

/1]/)(2[k E E A p K +== 0.08 m

(2)

222

1

21v m kx = )(sin 2

2

2

2

2

φωωω+=t A m x m

)(sin 2

2

2

φω+=t A x 2

2

2

2

)](cos 1[x A t A -=+-=φω

2

22A x =, 0566.02/±=±=A x m

(3) 过平衡点时,x = 0,此时动能等于总能量 22

1

v m E E E p K =

+= 8.0]

/)(2[2

/1±=+=m E E p K v m/s

练习12 机械波(一)参考答案

1. C

2. B

3. 30, 30.

4. ]/2c o s [1φ+π=T t A y , ])//(2cos[2φλ++π=x T t A y

5. 解:(1) O 处质点振动方程

])(cos[0φω++

=u

L

t A y (2) 波动表达式

])(cos[φω+--=u

L

x t A y (3) ω

u

k

L x L x π±=±=2 (k = 0,1,2,3,…)

6. 解:(1) 由振动曲线可知,P 处质点振动方程为

])4/2cos[(π+π=t A y P )2

1cos(π+π=t A (SI) (2) 波动表达式为

])4

(2c o s [π+-+

π=λ

d

x t

A y (SI)

(3) O 处质点的振动方程

)2

1c o s (0t A y π=

练习13 机械波(二)参考答案

1. A

2. D

3. )2

2cos(1π

-π=t T A y x 或写成 )/2sin(1T t A y x π=

4. π

5. 解:(1) 坐标为x 点的振动相位为

)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 波的表达式为 )]20/([4cos 10

32

x t y +π?=- (SI)

(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]20

5

[4-+π='+x t t φω (SI) 波的表达式为 ])20

(4cos[10

32

π-+

π?=-x

t y (SI)

6. 解:(1) 由P 点的运动方向,可判定该波向左传播.

原点O 处质点,t = 0 时

φcos 2/2A A =, 0sin 0<-=φωA v

所以

4/π=φ

O 处振动方程为 )4

1

500cos(0π+

π=t A y (SI) 由图可判定波长λ = 200 m ,故波动表达式为 ]4

1

)200250(2cos[π++

π=x t A y (SI) (2) 距O 点100 m 处质点的振动方程是 )4

5500cos(1π+

π=t A y 振动速度表达式是 )4

5

500cos(500π+

ππ-=t A v (SI)

练习14 机械波(三)参考答案

1. D

2. C

3. ]2212cos[]π2212cos[2λφνλλL t L x

A π-+π±π?-π±π

4. 1065Hz, 935Hz

5. 解:(1) 设振幅最大的合振幅为A max ,有

φ??++=cos 22)2(2

22max A A A A A

式中

λφ/4x π=?,

又因为 1/4cos cos =π=?λφx 时, 合振幅最大,故 π±=πk x 2/4λ

合振幅最大的点 λk x 2

1

±= ( k = 0,1,2,…) (2) 设合振幅最小处的合振幅为A

min

φ??++=cos 22)2(2

2

2

min A A A A A 因为 1cos -=?φ 时合振幅最小

且 λφ/4x π=? 故 π+±=π)12(/4k x λ 合振幅最小的点 4/)12(λ+±=k x ( k = 0,1,2,…)

6. 解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:

ν = 4 Hz , λ = 1.50 m ,

波速 u = λν = 6.00 m/s (2) 节点位置 )2

1

(3/4π+π±=πn x 31

()42

x n =±

+ m , n = 0,1,2,3, … (3) 波腹位置 π±=πn x 3/4 4/3n x ±= m , n = 0,1,2,3, …

1. D

2. A

3. 1.33×105 Pa

4.

23kT , 25kT , 2

5

MRT /M mol .

5. 解:(1) M / M mol =N / N A ∴ N =MN A / M mol

21A

mol 1027.8-?===

MN E M N E w K

k J (2) k

w

T 32== 400 K

6. 解:(1) RT M M i RT M M i E 2

mol 2

21mol 1122+=

R M M i M M i E/T ????

?

?+=2mol 2

21mol 1122=300 K (2) kT 2

6

1=

ε=1.24×10-20 J kT 2

5

2=

ε=1.04×10-20 J

1. B

2. B

3. 4000 m ·s -1 , 1000 m ·s -1

4. 495 m/s

5. 解: p 1V =νRT 1 p 2V =

2

1

νRT 2 ∴ T 2=2 T 1p 2 / p 1

2

1

21

2

12P P T T ==

v v

6. 解:由状态方程求得分子数密度 ==kT

p

n 2.69×1025 m -3 分子平均速率 =π=

mol

M RT

8v 4.26×102 m/s

平均碰撞频率 ==n d Z v 2π2 4.58×109 s -1

平均自由程

==

Z

v

λ9.3×10-8 m

练习17 热力学基础(一)参考答案

1. B

2. A

3. ||1W - , ||2W -

4. 112

3

V p , 0

5. 解:氦气为单原子分子理想气体,3=i

(1) 等体过程,V =常量,W =0 据 Q =?E +W 可知 )(12T T C M M

E Q V mol

-=

?==623 J (2) 定压过程,p = 常量, )(12T T C M M

Q p mol

-=

=1.04×103 J ?E 与(1) 相同. W = Q - ?E =417 J (3) Q =0,?E 与(1) 同

W = -?E=-623 J (负号表示外界作功)

6. 解:等压过程 W = p ΔV =(M /M mol )R ΔT

iW T iR M M E

mal 2

1

21)

/(==?? 双原子分子 5=i ∴

72

1

=+=

+=?W iW W E Q J

练习18 热力学基础(二)参考答案

1. A

2. C

3. 8.31J , 29.09J

4. 01)31(T -γ, 0)3

1

(p γ.

5. 解:(1) 312111035.5)/ln(?==V V RT Q J

(2) 25.011

2

=-

=T T η. 311034.1?==Q W η J (3) 3121001.4?=-=W Q Q J

6. 解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4

故 V 2 = 4 V 1 循环过程 ΔE = 0 , Q =W . 而在a →b 等体过程中功 W 1= 0. 在b →c 等压过程中功

W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4

在c →a 等温过程中功 W 3 =p 1 V 1 ln (V 2/V 2) = -p 1V 1ln 4

∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1

Q =W=[(3/4)-ln4] p 1V 1

大学物理答案第1~2章

大学物理答案第1~2 章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点的运动 1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。 解:22 cos ,sin x y x y dx dy v Rw wt v Rw wt dt dt v v v Rw ==-==-∴=+= 2 222 2 sin ,cos y x x y x y dv dv a Rw wt a Rw wt dt dt a a a Rw ====∴=+= sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为 质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点 作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω2 1-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2 解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则 012132 012221201112()0,2()/2 ()11 222 12 v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=- =-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx . 解:取汽艇行驶的方向为正方向,则 020 0,,ln v x v kx dv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v v kx v v v e -==-= ∴=-=-∴=-=-∴=?? 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。 解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理答案(第三版)汇总

大学物理答案(第三版)汇总

习题七 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微

观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 7.6 计算下列一组粒子平均速率和方均根速率? 解:平均速率 2 8642150 24083062041021++++?+?+?+?+?= = ∑∑i i i N V N V 7.2141 890== 1 s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6 .25= 1 s m -? 7.7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数). (1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)?v v v f 0 d )( (5)?∞ d )(v v f (6)?2 1 d )(v v v v Nf 解:)(v f :表示一定质量的气体,在温度为T 的平

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理(上)课后习题答案1

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自 然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1-3 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述); t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为 22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l l t x -== v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θ l h l cos /0 220v v v = -= ,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C). 1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

中国石油大学华东大学物理2-2第十六章课后习题答案

习题16 16-6在均匀密绕的螺绕环导线内通有电流20A ,环上线圈 400匝,细环的平均周长是40cm ,测得环内磁感应强度是1.0T 。求: (1)磁场强度; (2)磁化强度; (3)磁化率; (4)磁化面电流的大小和相对磁导率。 [解] (1) 螺绕环内磁场强度 由nI d L =??l H 得 1 -42 m 100.2104020400??=??== -A L nI H (2) 螺绕环内介质的磁化强度 由M B H -= μ得 1-547 m 1076.710210 40 .1??=?-?= -= --A H B M πμ (3) 磁介质的磁化率 由H M m χ=得 8.381021076.74 5 m =??==H M χ (4)环状磁介质表面磁化面电流密度 -15m 1076.7??==A M j 总磁化面电流 A L j dL M I L 55101.34.01076.7?=??=?=?='? 相对磁导率 8.398.3811m 0r =+=+== χμμH B

16-7.一绝对磁导率为μ1的无限长圆柱形直导线,半径为R 1,其中均匀地通有电流I 。导线外包一层绝对磁导率为μ2的圆筒形不导电磁介质,外半径为R 2,如习题16-7图所示。试求磁场强度和磁感应强度的分布,并画出H -r ,B-r 曲线。 [解] 将安培环路定理∑?=?I d L l H 应用于半径为r 的同心圆周 当0≤r ≤1R 时,有 2 2 1 12r R I r H πππ?= ? 所以 2 112R Ir H π= 2111 112R Ir H B πμμ== 当r ≥1R 时,有I r H =?π22 所以r I H π22= 在磁介质内部1R ≤r ≤2R 时,r I H B πμμ22222== 在磁介质外部r ≥2R 时,r I H B πμμ20202 ==' 各区域中磁场强度与磁感应强度的方向均与导体圆柱中电流的方向成右手螺旋关系。 H -r 曲线 B-r 曲线 习题16-7图 R 1 R 2 本图中假设 B 2 12 1μμ>r r 1

大学物理C课后答案1

习题 5 题5-2图 题5-2图 5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题5-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度9 5.010C m λ-=?的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示 题5-4图 (1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为 2 0) (d π41d x a x E P -= λε 2 22 ) (d π4d x a x E E l l P P -= =? ?-ελ

]2 12 1[π40 l a l a + --= ελ ) 4(π220l a l -= ελ 用15=l cm ,9 10 0.5-?=λ1m C -?, 5.12=a cm 代入得 21074.6?=P E 1C N -? 方向水平向右 (2)同理 22 20d d π41d += x x E Q λε 方向如题5-4图所示 由于对称性? =l Qx E 0d ,即Q E ? 只有y 分量, ∵ 22 2 222 20d d d d π41d ++= x x x E Qy λε 2 2π4d d ελ ?==l Qy Qy E E ? -+22 2 3 222) d (d l l x x 22 2 0d 4π2+= l l ελ 以9 10 0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代入得 21096.14?==Qy Q E E 1C N -?,方向沿y 轴正向 5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强. 解: 高斯定理0 d ε∑?=?q S E s ?? 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =??? ? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

1大学物理1课后答案

习 题 一 1-1 一质点在平面xOy 内运动,运动方程为t x 2=,2219t y -= (SI ).(1)求质点的运动轨道;(2)求s 1=t 和s 2=t 时刻质点的位置矢量;(3)求s 1=t 和s 2=t 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大? [解] 质点的运动方程t x 2=,2219t y -= (1)消去参数t ,得轨道方程为: 22 1 19x y -= ()0≥x (2)把s 1=t 代入运动方程,得 j i j i r 172+=+=y x 把s 2=t 代入运动方程,得 ()j i j i r 1142219222+=?-+?= (3)由速度、加速度定义式,有 4 /d d ,0/d d 4/d d ,2/d d y y x x y x -====-====t v a t v a t t y v t x v 所以,t 时刻质点的速度和加速度分别为 =v j i j i t v v 42y x -=+ j j i a 4y x -=+=a a 所以,s 1=t 时,j i v 42-=,j a 4-= s 2=t 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有 0=?v r 即 ()[] []04221922=-?-+j i j i t t t 整理,得 093=-t t 解得 01=t ; 32=t ;33-=t (舍去) m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时 (5)任一时刻t 质点离原点的距离 ()()()222222192t t y x t r -+= += 令 0d d =t r 可得 3=t 所以,s 3=t 时,质点离原点最近 () 6.08m 3=r

大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.;(提示:首先分析质点的运动规律,在t <时质点沿x 轴正方向运动;在t =时质点的速率为零;,在t >时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

大学物理 上海交通大学 16章 课后习题答案

习题16 16-1.如图所示,金属圆环半径为R,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端 a、b间的电势差。 解:(1)由法拉第电磁感应定律 i d dt ε Φ =- ,考虑到圆环内的磁通量不变,所以,环中的感应电动势 i ε=; (2)利用: () a ab b v B dl ε=?? ? ,有: 22 ab Bv R Bv R ε=?= 。 【注:相同电动势的两个电源并联,并联后等效电源电动势不变】 16-2.如图所示,长直导线中通有电流A I0.5 =,在与其相距cm 5.0 = d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4 = l,宽cm 0.2 = a。 不计线圈自感,若线圈以速度cm/s 0.3 = v沿垂直于长导线的方向向右运动,线圈中的感生电动势多大? 解法一:利用法拉第电磁感应定律解决。 首先用0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 则矩形线圈内的磁通量为: 00ln 22 x a x I I l x a l dr r x μμ ππ ++ Φ=?= ? , 由 i d N d t ε Φ =- ,有: 11 () 2 i N I l d x x a x dt μ ε π =--? + ∴当x d =时,有: 04 1.9210 2() i N I l a v V d a μ ε π - ==? +。 解法二:利用动生电动势公式解决。 由0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11 NB l v ε= , 远端部分:22 NB lv ε= , 则:12 εεε =-= 004 11 () 1.9210 22() N I N I al v l v V d d a d d a μμ ππ- -==? ++。 16-3.如图所示,长直导线中通有电流强度为I的电流,长为l的金属棒ab与长直导线共面且垂直于导线放置,其a端离导线为d,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a、U b的电势大小。 解法一:利用动生电动势公式解决: () d v B dl ε=?? 2 I v d r r μ π =? ,

大学物理1-模拟试卷及答案Word版

大学物理模拟试卷一 一、选择题:(每小题3分,共30分) 1.一飞机相对空气的速度为200km/h,风速为56km/h,方向从西向东。地面雷达测得飞机 速度大小为192km/h,方向是:() (A)南偏西16.3o ;(B)北偏东16.3o;(C)向正南或向正北;(D)西偏东16.3o ; 2.竖直的圆筒形转笼,半径为R,绕中心轴OO'转动,物块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要命名物块A不下落,圆筒转动的角速度ω至少应为:() (A);(B);(C) ;(D); 3.质量为m=0.5kg的质点,在XOY坐标平面内运动,其运动方程为x=5t,y=0.5t2(SI),从t=2s到t=4s这段时间内,外力对质点作功为 () (A) 1.5J ;(B) 3J;(C) 4.5J ; (D) -1.5J; 4.炮车以仰角θ发射一炮弹,炮弹与炮车质量分别为m和M,炮弹相对于炮筒出口速度为v,不计炮车与地面间的摩擦,则炮车的反冲速度大小为() (A);(B) ;(C) ; (D) 5.A、B为两个相同的定滑轮,A滑轮挂一质量为M的物体,B滑轮受拉力为F,而且F=Mg,设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,这两个滑轮的角加速度的大小比较是() (A)βA=β B ; (B)βA>βB; (C)βA<βB; (D)无法比较; 6.一倔强系数为k的轻弹簧,下端挂一质量为m的物体,系统的振动周期为T。若将此弹簧截去一半的长度,下端挂一质量为0.5m的物体,则系统振动周期T2等于() (A)2T1; (B)T1; (C) T1/2 ; (D) T1/4 ; 7.一平面简谐波在弹性媒质中传播时,媒质中某质元在负的最大位移处,则它的能量是:()

大学物理II练习册答案16

大学物理练习 十六 一、选择题 1.一束波长为λ的平行单色光垂直入射到一单缝 AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则 BC 的长度为 [A ] (A) λ (B)λ/2 (C) 3λ/2 (D) 2λ 解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1) 2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝 上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [ B ] 解: 0 304sin ===θλλ θa k a 可得k=2, 可分成的半波带数目为4个. 3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某 点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。 (B )光强之和。 (B ) 振动振幅之和的平方。 (D )振动的相干叠加。 [D ] 解: 所有面积元发出的子波各自传到P 点的振动的相干叠加. 4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。若 使单缝宽度a 变为原来的23 ,同时使入射的单色光的波长λ变为原来的3/4,则 屏幕C 上单缝衍射条纹中央明纹的宽度x ?将变 为原来的 (A) 3/4倍。 (B) 2/3倍。 (C) 9/8倍。 (D) 1/2倍。 (E )2倍。 [ D ] 解:a f x λ 2=? C 屏 f D L A B λ

5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C ] (A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动; (D) 变宽,同时向上移; (E) 变宽,不移动。 解: ↑a ↓?x 6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [ D ] (A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12…….. 解: 2211sin λλθk k d == 6,103 ,52121====k k k k 当.....)3,2,1( 32==n n k 7.设星光的有效波长为55000A ,用一台物镜直径为1.20m 的望远镜观察双星时, 能分辨的双星的最小角间隔δθ是 [ D ] (A) rad 3102.3-? (B) rad 5104.5-? (C) rad 5108.1-? (D) rad 7106.5-? 解:

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

《大学物理》(第三版)第16章习题及答案

习题十六 16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的 m 29.0m μλ=,试求这些星球的表面温度. 解:将这些星球看成绝对黑体,则按维恩位移定律: 3- 红限)波长有多大? 解:(1)已知逸出功eV 2.4=A 据光电效应公式2 2 1m mv hv =A + 则光电子最大动能: A hc A h mv E m -=-== λ υ2m ax k 21

eV 0.2J 1023.310 6.12.41020001031063.6191910 834=?=??-????=---- m 2 m ax k 2 1)2(mv E eU a = = ∴遏止电势差 V 0.210 6.11023.319 19 =??=--a U 此? 1秒钟落到2m 1地面上的光子数为 2 1198347 m s 1001.21031063.6105888----??=?????= ==hc E n λ 每秒进入人眼的光子数为

1 1462192 s 1042.14 /10314.31001.24 --?=????==d n N π 16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量. 解:电子的静止质量S J 1063.6,kg 1011.93431 0??=?=--h m 当 2 0c m h =υ时, 则 p 或 ? ε与∴ 5)(00=-=-= υ υυ υυυε h h E k 已知 2.10=λλ 由2.10=∴=υ υλυc 2.110=υυ则 52 .01 12.110==-=-υυυ

相关主题
文本预览
相关文档 最新文档