当前位置:文档之家› 汽轮机性能试验高精度修正曲线计算方法研究

汽轮机性能试验高精度修正曲线计算方法研究

汽轮机性能试验高精度修正曲线计算方法研究
汽轮机性能试验高精度修正曲线计算方法研究

参数的选择与汽轮机内效率分析

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的为表计显示值。其他为计算或模拟值。

本机组型号B6-35 /5,设计蒸汽压力℃,排汽压力。设计内效率%。 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。 从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 2、纯碱行业真空透平机、压缩透平机和背压汽轮机相对内效率比较

各个背压供热机组热效率都接近100%,但汽耗率分别为、、、kg/kwh,即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那

汽轮机静态试验方案

汽轮机静态试验方案 DEH/ETS静态试验方案 1.目的 为确保在机组运行期间油动机运作正常且异常工况下能紧急停运,在机组大小修后或停机超过七天以上,需做试验来验证回路、逻辑以及定值准确性。 2.责任分工 运行人员:根据工期安排,提前两天通知检修单位退回相关工作票,检查 相关系统是否具备送电和运行条件;负责打印相关试验签证单并确认试验正确性。通知生技部、维护部配合试验。 热控人员:配合运行人员按工期完成试验;模拟相关信号;确认试验正确性。 生技部:确认试验正确性 3.试验条件 1)D EH/ETS空制系统检修完成并送电; 2)D EH继电器柜检修完成并送电; 3)汽轮机调节保安系统检修完成; 4)T SI系统检修完成并送电; 5)汽机EH油系统检修完成并送电(EH油循环合格),且油泵运行,油压正常; 6)汽机润滑油系统检修完成并送电,且油泵运行,油压正常; 7)汽机盘车系统检修完毕并投运; 8)汽轮机主汽门、调门检修完成;

9)强制复位MFT(如果锅炉侧检修完毕的后,按FSSS试验方案执行)。 4.试验项目及方法 4.1阀门开度线性试验 试验条件以及范围:主汽阀前无蒸汽(在阀门整定期间,转速大于100r/min时, 应将机组打闸);该试验只针对:CV1、CV2 CV3 CV4 ICV1、ICV2、 MSV2 试验方法:1、启动EH油泵、润滑油泵,待油压正常后。汽机挂闸,所有阀全关,由热工人员按零位校验、满位校验、全行程校验的步骤完成阀门开度线性试 验及整定,汽机专业人员、运行人员现场确认“全关” 和“全开”位置 (油动机检修后、卡件更换后必须执行此步骤,该步骤完成后再执行下一 步,否则跳步)。 2 、启动EH油泵、润滑油泵,待油压正常后。汽机挂闸,所有阀全 关,热控人员进入逻辑中,把相应油动机切换至手动模式操作,分 别给0% 25% 50% 75% 100%提令,由运行人员和机务人员就地共同确认 就地阀门开度是否卡涩、行程是否对应。 4.2油动机快关试验 试验目的:测定油动机自身动作时间,手动打闸汽机,要求所有油动机从全开到全关的快关时间常数<0.15s。测定总的关闭时间,要求从打闸到 油动机全关时间<0.4s。 试验方法:汽轮机挂闸,开启各阀门,然后手动打闸。 试验记录:通过SOE记录查看汽轮机各阀门从全开到全关(从打闸指令到全关)所经过的时间。 4.3手动机械遮断(就地):汽轮机挂闸后,手拉机头停机机构。 4.4手动停机按钮(控制台):汽轮机挂闸,手打集控室停机按钮。 4.5 DEH转速传感器故障:汽轮机挂闸,然后由热工人员拔卡件,模拟DEH专 感器故障。 4.6汽轮机超速》3300rpm (电气超速) 4.6.1汽轮机挂闸,热工人员拆除DEH至ETS转速跳闸回路硬接线,并在DEH 逻辑中模拟汽轮机转速(三取二,每次只能同时模拟两个),汽轮机跳闸。恢复转速性号

电厂实验项目及方法

第一节喷油试验 一、试验条件: 1、试验应在专业人员现场监护指导下进行。 2、机组定速后(2985~3015r/min)。 3、高压胀差满足要求。 4、机组控制在“自动”方式。 5、DEH电超速试验未进行。 6、机械超速试验未进行。 7、喷油试验按钮在允许位。 二、试验方法: 1、检查汽轮机发电机组运行稳定; 2、润滑油冷油器出油温度保持在35~45℃; 3、在OIS上进入“超速试验”画面,按“试验允许”键,使其处于试验位; 4、在“超速试验”画面上选择“喷油试验”,试验完毕,在OIS该画面上显示“成功”或“失败”信号。 5、做好试验相关记录。 第二节超速试验 一、超速试验: 超速试验应在有关人员指导及监护下,有关专业技术人员配合下进行。 (一)在下列情况下应做提升转速试验: 1、汽轮机安装完毕,首次启动时。 2、汽轮机大修后,首次启动时。 3、做过任何有可能影响超速保护动作的检修后。 4、停机一个月以上,再次启动时。 5、甩负荷试验之前。 6、危急保安器解体或调整后。 (二)下列情况禁止做提升转速试验: 1、汽轮机经过长期运行后停机,其健康状况不明时。 2、停机时。 3、机组大修前。 4、严禁在额定蒸汽参数或接近额定参数下做提升转速试验。 5、控制系统或者主汽门、调门、抽汽逆止门有卡涩现象或存在问题时。 6、各主汽门、调门或抽汽逆止门严密性不合格时。 7、任意轴承振动异常或任一轴承温度不正常时。 8、就地或远方停机功能不正常。 9、调速系统不稳定、有卡涩、转速波动大。 (三)超速保护试验前的条件: 1、值长负责下达操作命令。 2、机组3000r/min后,并网前应先做高压遮断电磁阀试验、注油试验、主气门及调速汽门严密性试验合格。 3、机组带20%额定负荷连续运行4 h后,全面检查汽轮机及控制系统各项要求合格,逐渐

参数的选择与汽轮机内效率分析

参数的选择与汽轮机内 效率分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。

从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那么许多压力降是白白损失了,如上述真空透平机实际运行时内效率只有%,如果考虑机组的漏汽损失,内效率还会更低。在同样的进汽参数与排汽参数下,某国产真空工业汽轮机,冲动技术,厂家设计内效率只有%。 中压汽轮机为节省投资,最大限度地提高压力降,选用的第一级调节级为双列速度级,它的内效率也相对较低,为提高整个机组内效率,高压和超高压以上汽轮机组全部摒弃双列速度级只用普通的带反动度的压力级。同样的,当工业透平机的单级压力降太大时或排汽压力远远低于设计压力时,它的压力降不能得到有效的利用,级的内效率下降较快。由于纯碱厂的低压蒸汽管网运行压力远低于设计压力,远离设计参数,汽轮机、压缩汽轮机和真空机的内效率损失较大。 二、参数的选择 1、设计过程中存在的冗余。如DG140/59给水泵设计,内效率约在70-74%,所需轴功率为310-328千瓦(计算略),选用电机400千瓦即可,设计院一般选用电机为440千瓦。同样DG140/59给水泵,设计压力为,实际运行时省煤器进口压力约在-,当给水泵出口压力在时,即可满足锅炉用水需要,如果设计给水泵压力为,给水管道应选比正常值稍大如可选φ200左右,可节能16%左右。又如锅炉送风机风量,理论空气量已经满足燃烧要求,锅炉厂给出的送风量已经乘以的系数,如果设计院选风机时风量再乘以的系数,在选用配套电机时功率将变得更大。在锅炉与汽轮机配套设计中,锅炉以额定参数运行时,汽轮机入口压力将超过设计压力约,高压超高压机组汽轮机超过设计压力也较大。设计中存在的冗余对锅炉和汽轮机经济性影响较大,中压机组热效率影响

汽轮机调试方案.docx

河南神火焦电厂3MW 余热发电项目安装工程 汽轮机调试方案 1.概况 1.1 河南神火集团公司焦电厂3MW余热发电项目安装工程,由汽轮机和发电机组设备是由山东青能动力有限公司设计并提供设备。汽轮机设计参数如下:型号:单缸中温中压凝汽式机组; 额定进汽参数: P=, T=350℃; 额定排汽参数:排汽压力 Pt=,排汽温度 t=80 ℃;汽 轮机额定转速: n=3000r/min ; 发电机设计参数如下: 型号: QFB1-3-2 额定转速: n=3000r/min ; 额定功率: P d=3000r/min ; 输出电压: V=6300伏; 功率因数: cos¢=; 1.2 本机组调节系统采用全液调节系统。保安系统主要由危急遮断器、危急遮断油门、磁力断路油门、轴向位移遮断器、自动主汽门等装置组成。机组 油系统由主油箱、交流离心油泵 1 台、交流齿轮油泵 1 台、手摇泵 1 台、冷油器 2 台、注油器、滤油器、润滑油调节阀等设备组成。 2.组织机构 2.1 由设备厂家、安装单位和使用单位运行人员组成调试小组,组长由建设单位人员担任,副组长由青能调试人员担任和施工单位调试负责人员担任。

调试小组人员由汽机、热工和电气运行人员组成。 2.2 各专业范围内的调试工作由负责其专业的副组长组织协调,需要两个或两个以上专业配合、协调完成的调试工作由组长负责组织协调; 2.3 必须服从统一指挥,紧密配合,不得违章指挥或违章操作; 2.4 每步调试工作应做好信息反馈; 3.调试具备条件 3.1 汽轮、发电机组设备及系统安装完成,油循环合格,各辅机设备单体试车合格; 3.2 电气到送电完成,装置单体调试完成; 3.3 热工各测量装置、仪表、控制仪器安装、单体调试完成; 3.4 锅炉调试完成,锅炉负荷满足需要; 3.5 主蒸汽管道吹管合格,管道恢复; 4.安全环境条件 4.1 锅炉、汽轮机、电气控制室间联系通道畅通,场地平整,临边栏杆完善,管沟、孔洞有盖板,照明齐全; 4.2 厂房内消防水管、消防装置、灭火器配备齐全,能随时投入使用; 4.3 严禁无关人员进入调试现场,无关物品清除现场; 5.调试方案 5.1汽轮机静、动态试验项目 5.1. 1汽机静态试验项目 5.1. 1.1电动交流油泵启动试验; 5.1. 1.2电动直流油泵启动试验;

汽轮机内效率计算方法

楼主对效率的理解有误,透平机输出功率N=G.ΔHs.η/3600,这是你需要的公式,这里: N:kW G:蒸汽流量,kg/h ΔHs:等熵焓降,kJ/kg,注意这里是等熵焓降! η:等熵效率,也称内效率,%,一般也就60~70%,这个效率也就是你所言的那个60%的效率。 再来看看你的蒸汽参数: 1、汽轮机入口过热蒸汽: 压力P=23.5barg,温度T=390C,比焓H=3,218kJ/kg,比熵S= 6.9933 kJ/kg.C;2、汽轮机出口蒸汽: 注意,你既然指定了等熵效率60%,那么你就应该计算和入口蒸汽比熵相等的熵值的蒸汽参数,其温度压力这俩参数你不能都去指定,而需要你计算: 压力P=8barg(压力值你可以指定,这个与背压汽轮机控制出口蒸汽压力的过程是吻合的) 比熵S= 6.9933 kJ/kg.C(比熵一定要和入口蒸汽相等!此点非常重要,这是你计算的基准!) 根据上述两个条件,即指定的压力和比熵,确定最终汽轮机出口蒸汽参数为:温度T=253.22 C,比焓H=2,954kJ/kg,你的计算错在这里!因为你指定了等熵效率60%,那么你就不能再指定出口蒸汽的温度、压力这两个参数了,你应该指定比熵、压力这两个参数,由这俩参数计算比焓,求出焓降: ΔHs=3218-2954=265 kJ/kg; 因此N=G.ΔHs.η/3600=10000x265x60%/3600=441.7 kW=0.442 MW,拿计算器摁都成,MW消耗蒸汽量(俗称的汽耗)W=10/0.442=22.6 T/MW,一般工厂用汽轮机用蒸汽参数要比楼主给出的蒸汽参数更高,比如5MPa,450C蒸汽,汽耗一般在20T/MW(或者说20kg/kW),你这个汽轮机的数据略高了些,但你的蒸汽参数低啊,经验数据还是差不多的,贵厂的汽轮机发电是不是差不多这个数?呵呵。

汽轮机调节系统静态调试总结报告)

汽轮机调节系统静态调试总结报告 一、汽轮机调节 汽轮机调节系统的动态特性是指调节系统从一个稳定工况变化到另一个稳定工况的过渡过程,这些过程可能是稳定的,也可能是不稳定的。若过程是稳定的,调节系统动作结束时能达到新的稳定工况,否则调节系统就会无休止地动作,当然这种系统是无法使用的。 纯凝汽式机组是按电负荷的需求来调整工况的。抽汽式机组,在设计范围内既可以按电负荷的需求来调节工况,也可以按热负荷的需要来调节工况。因此,汽轮机调节系统要适应其实际工况要求,还必须具备一些基本要求。 1、机组运行中负荷的摆动,应在允许的范围内。当运行方式改变时,调节系统应能保证从这一运行方式平稳地过渡到另一运行方式,而不能有较大或较长时间的不稳定状态出现。这一要求就是要保证汽轮机在设计范围内的任何工况下都能稳定地运行。为此,调速不等率、迟缓率、调压不等率等各项指标,都必须控制在合理的范围内。 2、在设计范围内,机组能在高频率、低参数情况下带满负荷,供热机组能达到供汽出力,且汽压波动应在允许范围内。这就要求调节系统中各部套的工作范围(如行程、油压等)必须有一定合理的裕度。 汽轮发电机正常运行时,汽轮机发出的主力矩和发电机担负的反力矩间是平衡的。当发电机的反力矩增大时,如果汽轮机的进汽量不变,则汽轮机的转速就要降低;当发电机的反力矩减小时,若汽轮机不改变进汽量,则汽轮机转速就要升高。汽轮机调节的原理,就是以汽轮机主力矩和发电机反力矩失衡时转速的变化脉冲信号,控制汽轮机的进汽量,从而保证在新的工况下,汽轮机的主力矩和发电机的反力矩重新平衡,并维持汽轮发电机的转速基本

不变。 二、引用标准及设备规范 1、引用标准 DL5011—1992 电力建设施工及验收技术规范汽轮机组篇 JB37—1990 汽轮机调节系统技术条件 JB1273—1986 汽轮机控制系统性能试验规程 DL/T 711-1999汽轮机调节控制系统试验导则 2、设备规范 1)油箱容积:6.3m3 2)冷油器:型式:卧式双联冷却面积:20m2 冷却水量:50t/h 3)滤油器:流量:24m3/h 过滤精度:25um允许压损:<0.08Mpa 4)电动辅助油泵:型号80YL-100 流量30~60m3/h 扬度98~103m 转速 2950r/min 电机功率37KW 效率54%生产厂浙江水泵总厂 5)直流事故油泵型号2CQ12.5/3.6 流量12.5m3/h 出口压力0.36MPa 转 2950r/min 电机功率5.5KW 电机电压220V DC 生产厂浙江仙居县特种齿轮油 泵厂 三、调节系统 两段调节抽汽的冷凝式汽轮机的调节系统是以旋转阻尼为感受元件的全液压式调节系统。该调节系统能将汽轮机转速及两段调整抽汽压力进行自调,三个被调量中一个改变时,其他两个被调量基本保持不变(允许变动量为15%-20%)。整个调节系统可分为调速和调压两个部分。 1、调速部分

汽轮机调试项目

目录 1、编制依据 2、试验目的 3、试验项目 4、试验前必须具备的条件 5、调节系统静止试验 6、调节系统静态特性曲线试验 7、调速试验现场组织措施 8环境、职业健康、安全风险因素控制措施 1、编制依据 《电力建设施工及验收技术规范》、南汽厂C15—4.9/0.981型15MW抽汽式汽 轮机说明书、调节系统说明书、调节系统图纸和有关资料。 2、试验目的 C15—4.90/0.981型15MW抽汽式汽轮机安装后,通过启动整定调速系统的工作点以及确定调节系统的工作性能,应满足制造厂和汽机启动、带负荷的要求。 3、试验项目

3.1调节系统静态试验项目: 3.1.1交流油泵、直流油泵自启动试验 3.1.2自动主汽门关闭时间测定 3.1.3电超速、磁力断路油门试验。 3.1.4润滑油压低联动停机、停盘车试验 3.1.5主汽门及调节汽门严密性试验 3.1.6危急遮断器动作试验 3.1.7调节系统静态特性试验 3.1.8调压器静态特性试验 4、试验前必须具备的条件 4.1汽轮机组所有设备安装完毕,分部试运转合格,安装人员已全部撤离现场。 4.2油质合格、油循环结束,拆除各轴承临时滤网,节流孔板安装完毕。 4.3油系统上各压力、温度仪表全部安装到位,并投入运行。 4.4试验所需仪器、工具、器具齐全。 4.5试验组织措施及人员均已落实、试验场地符合要求、照明充足。 4.6启动交流油泵,油压、油温均达到正常运行要求。 4.7油系统设备周围应设置必要的消防器材。 5、调节系统静止试验

试验时必须将汽轮机电动主汽门、主汽门及旁路关闭严密。启动交流油泵,然后进行下列各项试验。 5.1交流油泵、直流油泵自启动试验 5.1.1试验目的:主要测取当调速油压或润滑油压降低到整定值时,交流油泵和直流油泵是否能自动投入运行。 5.1.2试验要求:(1)当调速油压降至0.9Mpa时,交流高压油泵是否能自动投入运行。(2)润滑油压降至0.055Mpa-0.05Mpa时,交流润滑油泵是否能自动投入运行。(3)润滑油压降至0.04Mpa时,直流润滑油泵是否能自动投入运行。 5.1.3试验方法: 5.1.3.1投入保护、停高压交流油泵,当油压下降至0.9Mpa时,高压交流油泵自动投入运行。 5.1.3.2投入保护、停交流润滑油泵(或关闭出油门),当油压下降至0.05Mpa 时交流润滑油泵自动投入运行。 5.1.3.3投入保护、停交流润滑油泵(或关闭出油门),当油压下降至0.04Mpa时直流润滑油泵自动投入运行。 5.2主汽门关闭时间测定: 5.2.1试验目的:主要测取有关汽轮机安全保护装置动作后,自动主汽门能否在规定时间快速关闭。 5.2.2试验要求:主汽门关闭时间〈1.0s。 5.2.3试验方法:合上手拍危急遮断使自动主汽门处于全开状态,然后手动脱扣装置,记录主汽门关闭时间。(电秒表计时) 5.3磁力断路油门、超速保护动作试验 5.3.1试验目的:检查磁力断路油门、超速保护电磁阀动作是否灵活,动作后油压是否符合要求。

18MW汽轮机静态试验

盛丰钢铁18MW机组汽轮机静态试验 一、试验阶段要求及措施: 1.试验阶段机组一切准备工作就绪; 2.油脂合格; 3.有关热工、仪表完好,热工信号、报警信号良好并投入。 4.DCS控制系统调试完毕,比投入。 5.启动高压油泵出口油压正常1.9-2.0MPa,油温35-45℃。 6.切断新蒸汽源。 二、危急保安器手动打闸试验 1、高压油泵运行,油压正常。 2、危急遮断器复位、挂闸。 3、顺时针旋转调压阀后,逆时针旋转调压阀。自动主汽门开启及调整行程。 4、手动危急遮断器、自动主汽门、调速气门、抽气逆止阀、联动速关,并发出信号。然后将 危急遮断器复位,重新挂闸。 5、控制室电磁阀打闸试验同上两条。 三、轴向位移试验 实验值:-1.0至1.0mm -1.5至1.5停机 四、低真空试验。 -86KPa发出报警信号-60KPa停机 五、低油压试验 0.055MPa报警 0.04MPa启动交流油泵 0.03MPa启动直流油泵 0.02MPa停机 0.015MPa停盘车 六、振动试验 轴振汽轮机前后轴≤80um 正常160um报警250um停机 瓦振≤30um优≤50um合格≥70um停机 七、胀差试验: 1.5mm 3mm至-2mm 报警4mm至-3mm停机 绝对膨胀-11.6 mm 根据现场实际定 八、推力瓦温试验 瓦温:85℃报警100℃停机轴承回油温度65℃报警70℃停机 九、超速试验 DEH 3270r/min TSI 3390 r/min 超速停机 十、发电机主保护动作,联跳自动主汽门、调速气门、抽气管道阀关闭 十一、凝汽器液位650mm 下限200mm-上限1000mm 距油箱顶板 油箱油温300 mm 下限150 mm -上限400mm 十二、汽轮机转速连锁 停盘车≥15 启顶轴油泵小于等于200 r/min 停顶轴油泵≥210 r/min

第一章 汽轮机级的工作原理-第五节 级内损失和级的相对内效率

第五节 级内损失和级的相对内效率 一、级内损失 除前面讨论的级内轮周损失即喷嘴损失n h δ、动叶损失b h δ和余速损失2c h δ之外,级内还有叶高损失l h δ、扇形损失h θδ、叶轮摩擦损失f h δ、部分进汽损失 e h δ、漏汽损失h δδ和湿汽损失x h δ。 必须指出,并非各级都同时存在以上各项损失,如全周进汽的级中就没有部分进汽损失;采用转鼓的反动式汽轮机就不考虑叶轮摩擦损失;在过热蒸汽区域工作的级就没有湿汽损失;采用扭叶片的级就不存在扇形损失。 本节所讨论的各项级内损失,目前尚难以完全用分析法计算,多数是采用在静态和动态试验的基础上建立的经验公式计算。随试验条件的不同,计算损失的公式也不同。下面主要介绍国内计算级内损失的常用公式。 1.叶高损失l h δ 叶高损失又称为端部损失,其产生的物理原因及影响因素在上节已经分析过。它实质上是属于喷嘴和动叶的流动损失。工程上为了方便.把它单独分出来计算。 叶高损失l h δ主要决定于叶高l 。当叶片高度很高时,l h δ可以忽略不计。叶高必须大于相对极限高度,否则l h δ将急剧增加。叶高损失常用下列半经验公式计算: l h δ=u a h l ? (1.5.1) 式中 a ——试验系数,单列级a =1.2(未包括扇形损失)或a =1.6(包括扇 形损失),双列级a =2; u h ?——不包括叶高损失的轮周有效比焓降,即u h ?=0 t h ?—n h δ—b h δ— 2c h δ,/kJ kg ; l ——叶栅高度,单列级为喷嘴高度,双列级为各列叶栅的平均高度, mm 。 叶高损失也可以用以下半经验公式计算: l ξ= 2 1a n a x l (1.5.2)

汽轮机计算题

1. 某级平均直径dm =883mm, 设计流量D =597t/h ,级前压力 P0=5.49MPa, 温度 t0=417℃,级后压力p2=2.35MPa, 级的平均反动度 0.296m Ω=,上级可被余速利用的部分,喷管出汽角011151'α=,速度系数0.97φ=,流量系数0.97n μ=,全周进汽,试计算喷嘴出口的高度。 解:根据h-s 图,由p0,t0,以及 233.5 c h ?=kj/kg, 计算得滞止焓h0*=3264:得到p0*=6.08Mpa, 在h-s 图作等熵线,级的理想焓降t h ?*==227kJ/kg 喷嘴焓降 160 )1(=?Ω-=?t m n h h kJ/kg 根据h-s 图,查的喷嘴出口的蒸汽压力为p1=3.1MPa 喷嘴前后的压力比为:51.0*1 ==o n p p ε 过热蒸汽临界比546.0=cr ε 压力比小于过热蒸汽的临界压力比,为超临界流动。 计算得到MPa p P cr cr 32.3* 0==ε h-s 图上,等熵线上,查的kg m v kg kJ h cr cr /308.0/3090== 计算: 计算得到临界速度:590)(2*0=-=cr cr h h c m/s 临界面积:()22326.359097.008.0*597546.0cm c Gv A cr n cr cr n =??== μ 高度()()cm d A l m cr n cr n 08.4sin 1 == απ

解:喷嘴出口速度: t b gb b h c ?Ω-Ω-Ω-=)'1(21φ=687.6m/s 圆周速度: 11c x u ==0.24*687.6=165m/s 相对速度: 1122 11cos 2αuc u c w -+==530m/s 1 111cos cos w u c -= αβ, 1β=21° 得:?-=2*12ββ=19° 2122w h w t b t +?Ω==530m/s 根据b Ω,t w 2查得动叶速度系数b ?=0.873(图2-16) t 22w w ?==462.7m/s C 2=312.5m/s 2 * 22*2 cos cos c u w -= βα, * 2α=29° ?-=6* 2'1αα=23° 2 2t 12'c h c t gb +?Ω==328.8m/s 查得导叶速度系数gb ?=0.902(图2-16) '11't gb c c φ==296.6m/s 'cos '2'11221'1αuc u c w -+==160m/s ' 'cos ''cos 1111w u c -= αβ, '1β=48° ?-=14''*12ββ=34°

汽轮机静态试验

汽轮机静态试验 一、润滑油压保护试验: 1.全开A、B油泵进出口阀门。 2.控制油压调节旁路阀关闭,开启调节阀前后截断阀,调节阀投自动,设定压力为0.9MPa。 3.润滑油压调节阀旁路阀关闭,开启调节阀前后截断阀设自动。 4.启动A油泵。 5.投入润滑油低油压自启动,润滑油总管压力低联锁,总联锁复位。 6.手控润滑油调节压力阀油压降至0.15MPa时,报警并自启动B油泵,投入B 油泵操作开关,撤除润滑油低油压自启动保护,停A油泵,继续控制润滑油油压至0.1MPa时联锁停车电磁阀动作。 7.重复再做一次A油泵自启动试验。 注意:做此试验前必须投入隔离气密封。试验结束后恢复原状态。 二、控制油压保护试验: a.全开A、B油泵进出口阀门。 b.润滑油压调节阀旁路阀关闭,开启调节阀前后截断阀调节阀投自动,设 定压力为0.245MPa。 c.控制油压调节阀旁路阀关闭,开启调节阀前后截断阀投自动。 d.启动A油泵。 e.投入控制油低油压自启动保护,总联锁复位。 f.手控控制油调节压力阀油压降至0.7MP a时报警并自启动B油泵,投入 B油泵操作开关停A油泵,继续控制油压至0.5MPa时联锁停车电磁阀动作。 g.重复再做一此A油泵自启试验。 注意:做此试验前必须投入隔离气密封。 三、蓄能器性能试验: a.启动A油泵。 b. B 油泵投入自启动联锁总联锁复位。 c.危急遮断装置复位,自动主汽门复位,手动打开自动主汽门。 d.手动停A油泵,B油泵自启动,停车联锁电磁阀不动作。 e.投入B油泵操作开关,可以重复再做一次。 四、危急遮断器试验: 1.全开A、B油泵进出口阀门,启动A油泵。 2.总联锁复位,危急遮断器复位,自动主汽门复位,手动开启自动主汽门。 3.手打危急遮断器,自动主汽门关闭, 4.危急遮断器及自动主汽门复位,重复再做一次。 五、轴向位移、轴振动、轴承温度、超速模拟联锁试验: 1.配合仪表,在仪表控制盘上分别做模拟试验。 2.轴向位移≥0.5mm时报警,≥0.7mm时电磁阀动作。 3.汽轮机轴振动≥31mm时报警,≥50mm时电磁阀动作。 4.压缩机轴振动≥65mm时报警,≥96mm时电磁阀动作。 5.汽轮机转速≥12047r/min时报警,≥13252r/min电磁阀动作。

电厂效率计算方法

一、热电厂能耗计算公式符号说明 单位供电标煤耗 单位发电标煤耗 单位供热标煤耗 bg=bd/[1-(ed/100)] bd=(Bd/E)*102 Bd=B(1-α) br=(Br/Qr)*103 Br=Bα g/kwh g/kwh T Kg/GJ T 4 R 热电比 R=(Qr/36Eg)*102 5η0 热效率 η0=[(Qr+36Eg)/29.3B]*102(%) 二、能耗热值单位换算 千焦(KJ) 大卡(kcal) 1千瓦时(kwh)= 3600kj 备注 1、吉焦、千卡、千瓦时(GJ、kcal、kwh) 1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ 1kwh=3600KJ=3.6MJ=3.6×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Qy=5000kcal/kg=20934KJ/kg 1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg 当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤: br=B/Q=1/Qyη=1/0.0293η=34.12/η 其中:η=ηW×ηg=锅炉效率×管道效率

当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ 当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ 二、热电厂热电比和总热效率计算 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦) 3、统一计量单位后的热电比计算公式为: R=(Qr/Eg×36)×100% 式中: Qr——供热量GJ Eg——供电量万kwh 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为: R=(16×104/634×36)×100%=701% 二、综合热效率(η0) 1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比” η0=(供热量+供电量)/(供热标煤量+供电标煤量) 2、根据热、能单位换算表 1万kwh=36GJ 1kcal=4.1868KJ 1kg标煤热值=7000kcal 1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ 3、统一计量单位后的综合热效率计算公式为 η0=[(Qr+36Eg)/(B×29.3)]×100% 式中:Qr——供热量GJ Eg——供电量万kwh B——总标煤耗量t 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为: η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%

汽轮机调试方案

河南神火焦电厂3MW余热发电项目安装工程 汽轮机调试方案 1.概况 1.1河南神火集团公司焦电厂3MW余热发电项目安装工程,由汽轮机和发电机组设备是由山东青能动力有限公司设计并提供设备。汽轮机设计参数如下:型号:N3-1.3单缸中温中压凝汽式机组; 额定进汽参数:P=1.3MPa,T=350℃; 额定排汽参数:排汽压力Pt=-0.08MPa,排汽温度t=80℃; 汽轮机额定转速:n=3000r/min; 发电机设计参数如下: 型号:QFB1-3-2 额定转速:n=3000r/min; 额定功率:P d=3000r/min; 输出电压:V=6300伏; 功率因数:cos¢=0.8; 1.2本机组调节系统采用全液调节系统。保安系统主要由危急遮断器、危急遮断油门、磁力断路油门、轴向位移遮断器、自动主汽门等装置组成。机组油系统由主油箱、交流离心油泵1台、交流齿轮油泵1台、手摇泵1台、冷油器2台、注油器、滤油器、润滑油调节阀等设备组成。 2.组织机构 2.1由设备厂家、安装单位和使用单位运行人员组成调试小组,组长由建设单位人员担任,副组长由青能调试人员担任和施工单位调试负责人员担任。

调试小组人员由汽机、热工和电气运行人员组成。 2.2各专业范围内的调试工作由负责其专业的副组长组织协调,需要两个或两个以上专业配合、协调完成的调试工作由组长负责组织协调; 2.3必须服从统一指挥,紧密配合,不得违章指挥或违章操作; 2.4每步调试工作应做好信息反馈; 3.调试具备条件 3.1汽轮、发电机组设备及系统安装完成,油循环合格,各辅机设备单体试车合格; 3.2电气到送电完成,装置单体调试完成; 3.3热工各测量装置、仪表、控制仪器安装、单体调试完成; 3.4锅炉调试完成,锅炉负荷满足需要; 3.5主蒸汽管道吹管合格,管道恢复; 4.安全环境条件 4.1锅炉、汽轮机、电气控制室间联系通道畅通,场地平整,临边栏杆完善,管沟、孔洞有盖板,照明齐全; 4.2厂房内消防水管、消防装置、灭火器配备齐全,能随时投入使用; 4.3严禁无关人员进入调试现场,无关物品清除现场; 5.调试方案 5.1 汽轮机静、动态试验项目 5.1.1 汽机静态试验项目 5.1.1.1 电动交流油泵启动试验; 5.1.1.2 电动直流油泵启动试验;

汽轮机机械超速试验方案

#3汽轮机机械超速试验方案 一、试验依据 武汉汽轮机厂说明书、《汽机运行规程》、《25项反措》以及超高压汽轮机运行导则要求。 二、试验目的 验证汽轮机机械超速飞锤的真实动作转速,确认超速过程中动作转速在允许范围内,避免发生机组超速事故。 三、试验前应具备的条件 1、DEH、TSI超速静态试验已完成,主机保护试验完成。 2、就地/远方手动停机试验已完成。 3、机组带25~30%额定负荷暖机结束并解列。 4、机组相关控制数据(汽缸温差、胀差、轴承温度、油压等等)均在允许范围内,没有系统异常报警。 5、润滑油、抗燃油油质合格。 6、机组振动合格。 7、机组各转速表指示正常、显示准确。 8、高中压主、调门无摆动、卡涉。 9、各抽汽逆止门、电动门、高排逆止门开关正常无卡涉现象。 10、主汽压力<4.5Mpa、主再热汽温<450℃。 四、试验前的准备工作 1、机组并网带25~30%额定负荷暖机3~4小时结束。 2、辅助蒸汽母管至轴封供汽投入,高低压轴封供汽温度、压力正常。 3、启动交流润滑油泵,润滑油压正常升高。 4、启动调速油泵,电流、油压正常。 5、开启排汽缸喷水。 6、高低加正常投入状态,加热器水位正常。 7、除氧器、凝汽器、补充水箱水位正常。 8、稍开开启本体、管道疏水排放5分钟。 9、解除电超速保护。 10、高低压旁路暖管充分,随时准备投入。 11、通知锅炉、电气准备超速试验。 五、试验主要操作程序

1、得值长命令逐渐减少机组负荷至零,控制减负荷速度,注意主汽门前汽压<4.5Mpa。 2、随着机组负荷的减少逐渐开大轴封供汽调整门,关闭轴封一漏至5、6抽门,控制轴封供汽压力在0.08~0.12Mpa。 3、确认调速油泵、交流润滑油泵工作正常,油压正常,请示值长解列发电机,注意机组转速飞升。 4、解除电超速保护。 5、转速稳定在3000r/min后可以开始进行试验。 6、在DEH操作面板上将“超速试验”子画面打开,点击“OPC”试验并确认,目标转速变成“3095r/min”,转速上升至3090r/min,OPC保护动作调门关闭,同时发出OPC动作报警。 7、转速低于3000r/min调门开启,转速稳定在3000r/min,就地将超速试验切换阀切至#2飞锤,#2喷油杆弹出。 8、在DEH操作面板上将“超速试验”子画面打开,点击“MOST”试验并确认,目标转速变成“3365r/min”,转速上升至#1飞锤动作,主调门、抽汽逆止门关闭、发出跳闸报警、#1飞锤动作指示灯亮,此时应记录动作转速。 9、转速低于3050r/min机组挂闸,稳定转速在3000r/min,就地将超速试验切换阀切至#1飞锤,#1喷油杆弹出。 10、重复“8”进行#2飞锤试验。 11、试验结束后,将转速稳定在3000r/min,停止调速油泵和交流润滑油泵运行。 12、投入电超速保护,按照值长命令并网接待负荷。 13、并网后若无异常情况,30MW负荷前可以适当加快加负荷速度,30MW 后按照启动曲线升温升压加负荷。 六、试验安全注意事项 1、试验过程中安排专人在机头监视就地转速,升速过程中应每10r/min 向控制室通报机组转速。 2、试验过程中如果机组转速超过3360 r/min而超速保护未动作,应立即远方或就地打闸停机。 3、密切监视机组的运行情况;如有异常;应停止升速;并根据具体情况决定是否停机。 3、超速试验应在负荷到零30分钟内完成。 4、试验中任一轴承振动值比正常值突增0.03mm以上时,应立即紧急停

汽轮机热耗率的实用简捷计算

汽轮机热耗率的实用简捷计算 .j《 汔轮机热耗率的实用简捷计算 [摘要]根据最小二乘法的原理,推导出电厂汽轮机在实用范围内,由压力P与温度表示的水和水 蒸汽比容,烙h的函数表达式,不用查水和水蒸汽性质图表,就能方便地求解汽轮机的热耗率该函 数表达式可用于机组热力性能试验,热力统计计算,现扬热力小指标竞赛,具有计算精度高,简捷,方便, 实用的特点. [关键词]汽轮发电机蛆热耗率简捷计算 汽机的热耗是指汽轮发电机组每发lkW-h的电 能所消耗的热量.它是反映机组能量转换过程中的一 项重要的经济指标.通常的方法以蒸汽的压力P与 温度£查水和水蒸汽性质图表,使用直线插值法求取 比容及焙.或利用国标水和水蒸汽性质的工业用公式 程序编人计算机进行计算,但该公式长而复杂,系数太 多,这样必须使用计算机,给有些场合带来不便.本文 从汽轮机实用范围的水和水蒸汽压力及温度的可测参

数出发,利用最小二乘法,求解比容及焓高精度的分段函数拟合式,将比容和焙用压力P与温度表示为幂 函数(或变幂函数)的表达式,具有方便,简捷,计算精 度高之特点,可以很好地用于汽轮发电机组的供热蒸汽(或辅助蒸汽)的流量是表计流量,当参数偏离流量孔 板或喷嘴基准参数时,要采用下式对表计流量进行参数的修正: D嗔=Do~N/’ D”√ D-Dt/h(5) 式中Ⅳ——发电机出线端的电功率,MW; Ⅳ一驱动给水泵的小汽轮机功率,MW. 对于用小汽轮机驱动给水泵机组,小汽轮机的功 率可以根据具体机组的特性用统计的方法回归得到. 国产亚临界300MW机组: 匝壅亘亟回国 , , =二,/ =2.3476+1.118594×10一D66Mw(6)

汽轮机初次开机试验内容和要求

汽轮机初次开机试验内容和要求 汽轮机经过找正、管道安装等工作结束后,进入初次试车阶段。 该阶段如果是拖动造气鼓风机等带有电机运行的设备,要脱开电机,只带非源动力设备运行。否则没有办法做超速试验。 在初次开车试验阶段,要做好各项检查的记录。经双方参与检查的人员签字后保存。 初次开车试验阶段,除了严格按照开机程序操作开机意外,要做好如下试验和检查。 一、运转稳定性试验和检查。 1、在低转速冲转阶段,要检查汽轮机是否有异常声音。如果有特殊的金属撞击声音,要及时停车检查。甩油环声音除外。 2、转速升高到3000转以后,要检查震动情况。包括前后座的垂直和水平震动值,所拖动设备的振动值。做好记录。汽轮机底座的振动值。 二、温度检查。 1、水温检查。不断检查循环水温度情况,特别是上盖水温。方法:用手感觉进水和出水管温度是否一致。如果不一致,说明循环水有问题。要及时停车处理。 2、瓦温(即油温)检查。随时观察瓦温变化情况。如果瓦温迅速升高,意味着油温冷却不好,要迅速停机检查。 3、初次试车阶段水温和瓦温检查,要在机器连续运行20分钟左右即检查一次。 三、紧急停车设定和检查。 1、控制柜紧急停车检查。 当汽轮机转速达到3000转左右以后,按下紧急停车按钮。检验危急折断器工作是否正常。检查连杆和卡销、转轴以及电磁铁等部件的执行情况。 2、电子超速保护检查。 2.1、将汽轮机电子超速值设定为3330转(该值当为以后的恒定超速保护值)。 2.2、将汽轮机转速逐步拉高到3300转以上,观察超速自动停车系统运行情况,记录实际跳闸转速。 2.3、连续操作三次,取平均值为该机的超速转速,该转速不能高于额定转

汽轮机热效率计算

汽轮机热效率计算 摘要: 计算了一次蒸汽经减温减压后的?损失。提出利用背压式汽轮机进行余压发电,使蒸汽按品质梯级利用。将一次蒸汽(参数为36 t/h、3. 43 MPa、435 ℃)减温减压至工艺设备需要的二次蒸汽(参数为1. 25 MPa、260 ℃) ,一次蒸汽?损失率为0. 15。利用二者压力差进行余压发电,每年发电量为1226. 62×104 kW·h /a。 ?的注音:yòng 简体部首:火?的部首笔画:4 总笔画:9 当系统由任意状态可逆的变化到与给定环境相平衡的状态时,理论上可以无限转换为任何其他能量形式的那部分能量,称为?(Ex)。与此相对应,一切不能转换为?的能量称为火无【目前并未被收录进汉语词典】(An)(anergy)。任何能量E均由?(Ex)和火无(An)所组成,即E=Ex+An。 ?反应能量的”数量“与能量之间“质”的差别的统一尺度,国内一些人把?称为可用能、有效能或可用度。?作为一种评价能量的价值参数,从“量”与“质”的结合上规定了能量的“价值”,解决了热力学和能源科学中长期以来还没有任何一个参数可以单独评价能量的价值问题,改变了人们对能的性质、能的损失和能的转换效率等传统看法。 某钢铁厂炼铁部1号锅炉房现有2台燃用高炉煤气的中温中压锅炉,每台锅炉产汽(一次蒸汽)量为18 t/h,压力为3. 43 MPa,温度为435 ℃。原设计中,利用一次蒸汽通过凝汽式汽轮机发电,带动送风机向高炉送风。现计划用这2台锅炉替代焦化厂锅炉,向焦化厂输送蒸汽,送风机改用外网电力驱动。焦化厂工艺设备用汽(二次蒸汽)压力为1. 25 MPa,温度为260 ℃。为达到焦化厂工艺设备的用汽参数要求,一次蒸汽须经减温减压后变为符合工艺设备要求的二次蒸汽。减温减压过程一般由减温减压装置完成,减温减压装置由减压系统、减温系统、安全保护装置及热力调节仪表组成。一次蒸汽通过减压系统将压力减至设定压力,减温水经喷嘴喷射入蒸汽管道内,使减压后的一次蒸汽降温,变为二次蒸汽。减温水的压力为3. 82 MPa,温度为104 ℃。本文对蒸汽在减温减压过程中的?损失进行了计算,并探讨了余压发电在节能降耗方面的效果。 1 蒸汽在减温减压过程中的?损失 ?表示能量的做功能力,因此可用来评价能量的品质。当工质的?减少时,也就意味着

相关主题
文本预览
相关文档 最新文档