当前位置:文档之家› 悬挂键对石墨烯纳米带电子结构的影响

悬挂键对石墨烯纳米带电子结构的影响

悬挂键对石墨烯纳米带电子结构的影响
悬挂键对石墨烯纳米带电子结构的影响

石墨烯纳米带能带结构调控的理论研究

学位论文诚信声明书 本人郑重声明:所呈交的学位论文(设计)是我个人在导师指导下进行的研究(设计)工作及取得的研究(设计)成果。除了文中加以标注和致谢的地方外,论文(设计)中不包含其他人或集体已经公开发表或撰写过的研究(设计)成果,也不包含本人或其他人在其它单位已申请学位或为其他用途使用过的成果。与我一同工作的同志对本研究(设计)所做的任何贡献均已在论文中做了明确的说明并表示了致谢。 申请学位论文(设计)与资料若有不实之处,本人愿承担一切相关责任。 学位论文(设计)作者签名:日期: 学位论文知识产权声明书 本人完全了解学校有关保护知识产权的规定,即:在校期间所做论文(设计)工作的知识产权属西安科技大学所有。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文(设计)被查阅和借阅;学校可以公布本学位论文(设计)的全部或部分内容并将有关内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存和汇编本学位论文。 保密论文待解密后适用本声明。 学位论文(设计)作者签名:指导教师签名: 年月日

论文题目:石墨烯纳米带能带结构调控的理论研究 专业:微电子学 本科生:朱善旭(签名)___________ 指导教师:徐大庆(签名)___________ 摘要 随着集成电路技术的快速发展,集成密度,速度和存储器容量等集成电路性能指标的进一步发展必须要减小设备的尺寸。但是随着器件尺寸不断减小,硅材料较小的载流子迁移率,较低的热传导率,较差的稳定性成为了集成电路行业进一步发展的障碍,因此寻找新的材料来代替硅成为了科学研究的热点。石墨烯具有极高的电子迁移率(15000cm2·V- 1·S - 1)和优良的热传导率(3-5KW·m- 1·K- 1),因此,石墨烯被认为是可以取代单晶硅或者与单晶硅相结合,进而保持集成电路继续沿着摩尔定律提高性能的一种重要的新材料。 众所周知,本征石墨烯是一种带隙为零的半金属材料。如何打开石墨烯纳米带的带隙,使之具有半导体的基本性质,是研制石墨烯基半导体电子器件的重要条件之一。本研究基于密度泛函理论的第一性原理,利用Materials Studio程序及其CASTEP 模块研究如何改变石墨烯纳米带的能带结构。首先通过建立扶手椅型和锯齿型石墨烯纳米带模型计算分析不同形状的石墨烯纳米带的能带结构,并改变石墨烯纳米带的长度和宽度以及纳米带的层数研究结构变化对石墨烯纳米带带隙的影响,然后通过建立掺杂、吸附模型研究其各自对石墨烯纳米带带隙的影响,最后研究应力下的石墨烯纳米带的能带结构。 研究表明,不同长宽的石墨烯纳米带能带结构有变化。在长度较小,宽度适中时扶手椅型石墨烯纳米带带隙较大,长宽均较小时锯齿型石墨烯纳米带带隙较大,双层结构的石墨烯纳米带的带隙相对单层也会发生变化。另外,掺杂和吸附均可实现石墨烯纳米带能带结构的调控,但吸附对石墨烯优越的电学特性改变较小。最后,研究发现应力的存在使石墨烯纳米带的带隙减小。 关键词:石墨烯纳米带,能带结构,带隙,掺杂,吸附

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯纳米带的制备及其应用

石墨烯纳米带的制备及其应用: [1]于璇,刘一,叶雨萌,肖胜雄.石墨烯纳米带的制备方法[J].上海师范大学学报(自然科学版),2018,47(05):539-551+508. 石墨烯是一种二维大平面结构, 为了维持其自身的稳定, 很容易产生皱褶、起伏等结构缺陷.因此, 近年来研究者们开始着重研究石墨烯不同形态的衍生物.其中, 石墨烯纳米带(GNRs) 成为继CNTs之后被广泛关注的一类准一维碳基纳米材料.GNRs是指宽度小于50 nm的石墨烯条带, 其理论模型最初于1996年由FUJITA等[3,4,5]提出, 以检查石墨烯中的边缘和纳米级尺寸效应.由于其具有高载流子迁移率, 石墨烯也被公认为是纳米电子学未来最有应用前景的材料之一.尽管如此, 在纳米电子学中利用石墨烯的最大挑战之一就是其缺乏足够大的带隙[6].因为没有带隙, 则难以关闭石墨烯场效应晶体管(FETs) , 导致较小的开关比, 所以石墨烯不能直接应用于晶体管.要想在打开石墨烯带隙的同时保证其载流子迁移率不下降, 最好的办法就是将石墨烯裁剪成宽度较小的GNRs.当材料的尺寸变得等于材料中电子运动的特征长度时, 材料的性质在很大程度上取决于其尺寸和形状.GNRs结构引起的量子限域可以引入相当大的带隙, 使得GNRs可以应用于纳米电子学中.虽然GNRs不具有石墨烯那样易于器件化的平面结构, 但它继承了石墨烯的许多优异性质, 且由于GNRs特殊的边缘限域效应, 从而使其具有比石墨烯更灵活的可调节性质和更大的实用价值. 1.1 自上而下的制备方法 到目前为止, 人们对石墨烯的制备方法进行了各种研究, 取得了很多进展, 其基本思路可以分为两种:一种是以天然石墨为原料, 从大到小剥离得到单层的石墨烯材料;另一种是从碳原子出发, 从小到大合成GNRs.但如何大批量的制备高质量石墨烯, 仍然是学术界急需解决的问题. 自上而下的方法是目前较成熟的方法之一, 该方法是把大的GNRs、石墨烯晶体、CNTs 等通过一系列的方法变成所需尺寸的纳米带.这种方法不能提供均匀的超窄带宽度和原子级精确边缘, 但是相比于自下而上的制备方法可以大规模的合成GNRs.如图4所示, GNRs的制备方法可以简单总结为几种[12]: (a) 多壁碳纳米管(MWCNTs) 的嵌入-剥离方法, 包括在液态NH3和Li中进行处理, 以及随后使用HCl和热处理的剥离方法; (b) 化学途径方法, 涉及可能破坏碳-碳键的酸反应, 例如硫酸(H2SO4) 和高锰酸钾(KMnO4) 作为氧化剂; (c) 催化方法, 其中金属纳米粒子像剪刀一样纵向“切割”CNTs; (d) 电学方法, 让电流通过CNTs; (e) 物理化学方法, 将CNTs嵌入聚合物基质中, 然后进行Ar等离子体处理, 得到的结构是展开的碳纳米管, 如图4 (f) 所示, 进一步得到GNRs.下面将具体从解卷CNTs法、催化反应解离石墨烯法和石墨烯刻蚀法等方法详细介绍如何制GNRs. 1.1.1 解卷CNTs法 由于GNRs在结构上与CNTs相关, CNTs可以被视为卷起的GNRs, 因此可以通过纵向拉开CNTs来合成GNRs.而解卷CNTs的方法多种多样, 目前比较成熟的就是将CNTs通过一定的方式变成GNRs.解卷CNTs是利用外界作用将管状CNTs切割成带状GNRs的方法.该方法工艺简单、成本低廉, 并且所得GNRs尺寸均一、边缘平整、缺陷低, 因此在大规模制备高质量GNRs领域呈现具体广阔前景.CNTs是圆柱形碳同素异形体, 有明确且可控的直径, 这使得它们成为精确尺寸GNRs的合适前体. KOSYNKIN等[14]报道了一种基于溶液的氧化工艺以打开MWCNTs.他们首先将MWCNTs悬浮在浓H2SO4中, 然后用KMnO4处理, 将混合物在室温下搅拌1 h, 然后在55~70℃下再加热1 h.该过程完成之后, 纳米带的边缘和表面上都会出现含氧物质, 例如环氧

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用 摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。 关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递 一.纳米石墨烯以及氧化纳米石墨烯自身特性 1.1 纳米石墨烯自身特性 纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。 石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。 而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。 1.2 氧化纳米石墨烯自身特性 氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

石墨烯纳米带的研究进展_李婧

图1 GNRs的TEM照片[4] 基金项目:河北省高校重点学科建设项目资助;河北省高等学校科学技术研究青年基金(No.Q2012111);河北省自(NO.E2013210011);河北省大学生创新创业训练计划项目;河北省高校重点学科建设项目资助。

人员深入研究GNRs 的高效制备方法开启了一扇大门。James 小组认为,他们制备的GNRs 可用于柔韧触摸屏、太阳能电池板、以及制成轻薄导电纤维,以取代笨重的铜线,进而用于航空航天领域。本文对GNRs 的典型制备方法进行了综述,并比较各种方法的优劣,最后对GNRs 的应用进行了介绍,对其未来进行了展望。 1 GNRs 的制备方法 清楚的看到剥离的GNRs 一端连接导电电极,一端是脱离的CNTs 内心。并且产生的GNRs 随着电压的增加,电导率也增加,这为它成为电学材料提供了很好的应用前景。这种方法生成的GNRs 宽度分布均匀(45nm 左右),含杂质量低,如果有效实现批量快速生产,有望实现高质量GNRs 的宏量制备。 1.1.2混酸切割CNTs 法 CNTs 具有与石墨相同的晶体结构,CNTs 的发现远早于石墨烯和 GNRs,并且CNTs 非合成技术现在已经成熟。Zhang 等人提出,切割垂直排列的CNTs 获得的GNRs 有许多优异的电学性质,可用于超级电容器。纵向切割和压制管状CNTs 制成GNRs,这种方法通过控制CNTs 的长度和直径进而控制所需GNRs 的尺寸,从而制备出所需的各种规格GNRs,这种方法操作简单方便,得到的GNRs 边缘光滑。James [5]小组用高锰酸钾和硫酸混合处理CNTs,沿着一个轴心将纳米管打开可以得到宽度在100~500nm 的GNRs,如图3所示。这种方法虽然可以制备大量的GNRs,但是得到的GNRs 不是半导体,应用上有一定限制。 1.1.3钾气裂解CNTs 法 催化法是利用化学沉积或磁控溅射把催化的纳米颗粒分散到CNTs 的表面上,在某些特定的气体(如H 2)氛围下进行加热。在纳米粒子的催化下,气体分子会和CNTs 表面的碳原子反应而使得CNTs 裂解产生GNRs。这种方法相对比较简单,但是会影响产物的性质。后来,Kosynkin 等人用气态钾来做催化剂,在250℃真空环境下催化裂解CNTs,得到了边缘连接着钾的GNRs,用乙醇质子化处理后可以得到质量有所提高的边缘钝化的GNRs。 图2 电解CNTs 制备石墨烯过程示意图 [6] 图3 CNTs 逐级拉开形成GNRs 的示意图 [4] 1.1 切割CNTs 法 1.1.1电极切割CNTs 法 在非常高的电偏压下,碳纳米管(CNTs)会显示出超塑[5]。Kim K [6]等人提出了用电流诱发CNTs 裂解制备GNRs 的方法。在真空下,利用电极的移动,促使CNTs 外层裂解。如图2所示,在电极的移动下,通过对电偏压的控制使CNTs 外层被裂解,移除的内心成为一个新的CNTs,剩下的GNRs 完全悬浮在真空中。在图2 中,我们可以

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯结构

关于材料破坏方式 材料破坏是一种材料疲劳后的结果。 人类所知的所有材料形形色色千奇百怪,从各个方面可以分类成各种不同的种类。比如:固体、液体、液晶体;固体、乳浊液、清浊液、液体;金属、非金属;诸如此类的高分子材料,纳米材料,有机材料,无机材料,生物材料,非生物材料 作为材料科学,材料的物理性质按照性质大体分为韧性材料、脆性材料;材料学上,人们用几个特定的物理量来定义显示材料的各项性能指标,如:弹性模量、泊松比、密度、屈服模量、剪切模量、摩擦系数、膨胀系数、热应变、阻尼系数、比热容、热焓等等。然后进行一定的理想假设根据材料的具体特性和结构得到比较符合实际的理想材料模型,比如,双线性随动强化模型、双线性等向强化模型、多线性随动强化模型、多线性等向强化模型;材料结构性质性质模型,比如,杆件、梁、壳、体、管道、弹簧。 在宏观上,材料发生破坏的原因大体上归结为四个破坏准则。在微观上的破坏归结为共价键或者其他的键得到能量断裂从而发生破坏。本篇文章主要从微观入手一直到宏观结束,构想材料的破坏历程顺序。 目前来讲,构成物质的最基本粒子是夸克(如果考虑反物质会存在反夸克,此不赘述)。夸克构成质子、电子、中子。质子、电子、中子构成原子。原子组成单质物质以及分子物质。物质分为晶体、非晶体、液晶体。对于晶体大体分为离子晶体、分子晶体、原子晶体、金属晶体。晶体的粒子规则整齐地排列。 离子晶体之间存在较强的离子键,离子晶体的硬度比较大、难于压缩;分子晶体存在分子之间作用力(范德华力),一般来说分子量越大范德华力越大。但是分子间的作用力比起化学键弱得多。但是有些氢化物(HF、冰、氨)通过氢键的作用,发生破坏的能量就要消耗的多一些;原子晶体(二氧化硅、金刚石)通过共价键结合生成空间规则的网状结构具有非常大的硬度;金属晶体(除汞以外)中,金属原子好像许多硬球一层一层紧密的堆积着,原子周围有许多的电子围绕。金属离子与自由电子存在较强作用。金属存在不同程度的延展性。 石墨晶体(下图左)是一种层状结构,每层原子是整六边形的碳原子排列而成。层与层之间以范德华力结合。 对于单层石墨晶体就成为石墨烯(上图右)。石墨烯是以三个碳原子SP2杂化而成的正六边形二维结构。剩余一个电子与其他电子形成类似于骈苯的大π键。如此结构造就了石墨烯当前最强的度(111Gpa抗压、0.5tpa的弹性模量)。 对于材料破坏的大体过程大致可分为:键长变化、分子(原子)滑移、共价键重组、断裂四个阶段。不同属性的材料有着不同的过程。比如钢,在受到外拉力作用时,金属晶体内部原子核与电子之间的距离在平行与拉力方向加长,库仑力减小。去掉外力,在库伦力下重新回到原来位置。当某两个原子之间的距离增加到一定距离而其中一个与另外一个的距离逐渐逼近时,原子就会滑落到新的位置达到平衡,即原子滑移。材料不断承受外力载荷下不断滑移,在材料面积较小的部分原子滑移的速度快,从而在滑移过程中原子试图以滑移产生位移来满足外力。有些高分子合成材料(如橡胶)受到外力是的第一反应是发生翘曲。过程如下:

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

石墨烯纳米带场效应管

石墨烯纳米带场效应管原理 微电子与固体电子学专业 学生潘立丁S111411 指导教师石瑞英摘要:由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为了石墨烯晶体管器件制造的关键。本文主要关注的石墨烯纳米带场效应管,通过对肖特基势垒石墨烯纳米带场效应管和金属氧化物半导体石墨烯纳米带场效应管这两种结构进行对比和分析来了解其主要特性。 关键词:石墨烯纳米带场效应管肖特基势垒 Abstract:Because there is no energy gap in graphene,it is very difficult to achieve on-off characteristic while use it to make transistors, and it is metallic behavior also have been a big problem if we want to use it in logical circuits. How to get an energy gap in grapheme has become the key point of the fabrication of grapheme transistors. This paper focus on graphene nanoribbon FETs, the comparison of two structures (GNR SBFET and GNR MOSFET) is used to analyze the main behaviors of graphene nanoribbon FETs. Key words:graphene nanoribbon field-effect-transistor schottky barrier 1、引言 石墨烯[1](Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,石墨烯被成功地从石墨中分离出来。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比碳纳米管或硅晶体迁移率高,而电阻率只约10-6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子传输的速度极快,因此被期待为可用来发展出更薄、导电速度更快的新一代电子元件或电晶体的材料。 2、石墨烯纳米带基本结构 目前已知可以在石墨烯中引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。 (2) 利用量子陷阱效应和边缘效应,通过形成石墨烯纳米结构(如纳米带)引入能

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

石墨烯结构的分析

石墨烯 石墨烯之所以被广泛应用,是由其自身的内部结构决定的。 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为 1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。 在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了优良导热特性。 超级电池采用单原子厚度的碳层构成,这项技术能够在最短时间内对手机和汽车快速充电,能够很容易制造并整合成为器件,未来有望制造更小的手机。 石墨烯储能和放电过程中不发生电池反应,只是将电子储存和释放,是物理变化。由此,应当称其为电容,而不是电池。目前,石墨烯应用于电池上的研究基本上有3个方向: 一是以石墨烯形成全新体系电池。就是说以石墨烯制造一个全新体系的电池,在性能上是颠覆性的,称作“超级电池”。使用这种材料制作的电池,能量密度超过600wh/kg,是目前动力锂电池的5倍,一次充电时间只需8分钟,可行驶1000公里;电池重量只有锂离子电池的一半,体积也会大幅缩小,减轻使用该电池汽车的自身重量;电池的使用寿命更长,是传统氢化电池的4倍,锂电池的2倍;其成本将比目前锂电池降低77%。这些物理参数都符合超级电池的要求。 二是以石墨烯强化现有电池性能。将石墨烯运用到现有电池上,改进提升锂电池、太阳能电池等电池性能,力图达到超级电池的性能。对于那些已投巨资建

掺杂armchair石墨烯纳米带电子结构和输运性质的研究

第39卷第4期2011年8月 福州大学学报(自然科学版) Journal of Fuzhou University(Natural Science Edition) Vol.39No.4 Aug.2011 DOI:CNKI:35-1117/N.20110705.1543.017文章编号:1000-2243(2011)04-0533-06掺杂armchair石墨烯纳米带电子结构和输运性质的研究 安丽萍1,2,刘念华1,刘春梅1,刘正方1 (1.南昌大学高等研究院,江西南昌330031;2.燕山大学物理系,河北秦皇岛066004) 摘要:基于第一性原理计算,研究了B/N掺杂对宽度为N a =3p+2=11的扶手椅(Armchair)型石墨烯纳米带电子结构和输运性质的影响.杂质的存在使得扶手椅型石墨烯纳米带的能隙增大,并在能隙中出现了一条局 域的杂质态能带,杂质的位置也影响其能带结构.另外,杂质的存在还引起输运过程中的电子共振散射,其特 点与掺杂种类、掺杂位置和结构对称性有关. 关键词:扶手椅型石墨烯纳米带;杂掺;电子结构;输运性质 中图分类号:O472文献标识码:A The study of the electronic structure and transport properties of armchair graphene nanoribbons with dopant AN Li-ping1,2,LIU Nian-hua1,LIU Chun-mei1,LIU Zheng-fang1 (1.Institute for Advanced Study,Nanchang University,Nanchang,Jiangxi330031,China; 2.Department of Physics,Yanshan University,Qinhuangdao,Hebei066004,China) Abstract:The electronic structure and transport properties of armchair graphene nanoribbons(AG-NRs)with B/N dopant are studied by using the first-principles calculation.It is shown that because of the existence of the dopant,there is an impurity band in the energy gap of armchair graphene nanor-ibbons and their energy gaps increase.The band structures depend also on the position of the dopant. In addition,the existence of the dopant yields resonant backscattering in the charge transport,whose features are strongly dependent on the types,the position of the dopant and the symmetry of the struc-ture. Keywords:armchair graphene nanoribbons;dopant;electronic structure;transport properties 单层石墨片的成功剥离和石墨烯纳米带(graphene nanoribbon)的成功制备引起了人们对此类碳基纳米 材料研究的极大热情[1-9].这种石墨烯纳米带具有类似碳纳米管(CNTs)的结构和量子限域效应,是潜在 的新一代微纳电子学的候选基础材料之一.石墨烯纳米带是具有一定宽度、无限长度的准一维带状石墨 烯,按照边缘的形状,可以分为锯齿型石墨烯带(zigzag-graphene nanoribbon,ZGNR)和扶手椅型石墨烯 带(armchair-graphene nanoribbon,AGNR).石墨烯纳米带的特性强烈依赖于它们的几何构型,通过控制 几何构型可将其调制成金属或能隙宽度依赖于纳米带宽度的半导体[10],这在能带工程中非常有用. 另外,石墨片和石墨烯纳米带在最初的制备过程中不可避免地产生各种缺陷,如拓扑缺陷、空位、吸 附原子和替位式杂质,这些缺陷的存在会影响其结构和性能[5-9,11-20].类似于传统半导体,如在锯齿型石 墨烯带中掺B/N,将产生受主(施主)杂质能级,实现金属和半导体的转变,而且随着杂质原子在纳米带 中位置的不同,将会发生受主与施主的转变[13].另外,由石墨烯裁制而成的微纳电子器件一般都是在有 限偏压下工作,有必要研究偏压下石墨烯纳米带的电子输运情况.本工作旨在探讨宽度为N a=3p+2=11 的扶手椅型单层石墨烯纳米带的掺杂效应,利用第一性原理方法研究B/N掺杂对扶手椅型石墨烯纳米带 电子结构和输运性质的影响. 收稿日期:2010-10-27 通讯作者:安丽萍(1975-),讲师,E-mail:fox781209@sina.com.cn 基金项目:国家自然科学基金资助项目(10832005)

相关主题
文本预览
相关文档 最新文档