当前位置:文档之家› 年产40000吨苯酐的车间工艺设计_毕业设计

年产40000吨苯酐的车间工艺设计_毕业设计

年产40000吨苯酐的车间工艺设计_毕业设计
年产40000吨苯酐的车间工艺设计_毕业设计

第一章文献综述

1.1苯酐简述

苯酐,全称为邻苯二甲酸酐(Phthalic Anhydride),常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。苯酐能引起人们呼吸器官的过敏性症状,苯酐的粉尘或蒸汽对皮肤、眼睛及呼吸道有刺激作用,特别对潮湿的组织刺激更大。苯酐主要用于生产PVC 增塑剂、不饱和聚酯、醇酸树脂以及染料、涂料、农药、医药和仪器添加剂、食用糖精等,是一种重要的有机化工原料。在PVC 生产中,增塑剂最大用量已超过50%,随着塑料工业的快速发展,使苯酐的需求随之增长,推动了国内外苯酐生产的快速发展。

最早的苯酐生产始于1872 年,当时德国BASF 公司以萘为原料,铬酸氧化生产苯酐,后又改用发烟硫酸氧化生产苯酐,但收率极低,仅有15%。自1917 年世界开始以氧化钒为催化剂,用萘生产苯酐后,苯酐的生产逐步走向工业化、规模化,并先后形成了萘法、邻法两种比较成熟的工艺[1]。

1.2苯酐的性质[2]

苯酐,常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。

分子式C8H4O3,相对密度1.527(4.0℃),熔点131.6℃,沸点295℃(升华),闪点(开杯)151.7℃,燃点584℃。

微溶于热水和乙醚,溶于乙醇、苯和吡啶。

1.3苯酐的合成方法比较及选取

1.3.1合成苯酐的主要工艺路线

1.3.1.1 萘法[1]

1.3.1.1.1反应原理

萘与空气在催化剂作用下气相氧化生成苯酐。

+O O

O 2

V 2O 5

CO 2O

H 29/2++2

2

1.3.1.1.2 工艺流程

空气经净化、压缩预热后进入流化床反应器底部,喷入液体萘,萘汽化后与空气混合,通过流化状态的催化剂层,发生放热反应生成苯酐。反应器内装有列管冷却器,用水为热载体移出反应热。反应气体经三级旋风分离器,把气体携带的催化剂分离下来后,进入液体冷凝器,有40%-60%的粗苯酐以液态冷凝下来,气体再进入切换冷凝器( 又称热融箱)进一步分离粗苯酐,粗苯酐经预分解后进行精馏得到苯酐成品。尾气经洗涤后排放,洗涤液用水稀释后排放或送去进行催化焚烧。 1.3.1.2邻法 1.3.1.2.1 反应原理[1]

邻二甲苯与空气在催化剂作用下气相氧化生成苯酐。

CH 3

CH 3

+3O 2

3O

O

O

H 225

+

1.3.1.

2.2 工艺流程

过滤、净化后的空气经过压缩,预热后与汽化的邻二甲苯混合进入固定床反应器进行放热反应,反应管外用循环的熔盐移出反应热并维持反应温度,熔盐所

带出的反应热用于生产高压蒸汽(高压蒸汽可用于生产的其他环节也可用于发电)。反应器出来的气体经预冷器进入翅片管内通冷油的切换冷凝器,将苯酐凝结在翅片上,然后再定期通入热油将苯酐熔融下来,经热处理后送连续精馏系统除去低沸点和高涨点杂质,得到苯酐成品。从切换冷凝器出来的尾气经两段高效洗涤后排放至大气中。含有机酸浓度达30%的循环液送到顺酐回收装置或焚烧装置,也可回收处理制取富马酸[1]。

目前,全球苯酐生产所采用的工艺路线有萘流化床氧化和萘/邻二甲苯固定床氧化,其中邻二甲苯固定床氧化技术约占世界总生产能力的90% 以上。萘流化床氧化工艺在国外已逐步淘汰,但在我国的苯酐生产中仍占有一定比例。邻二甲苯固定床气相氧化技术主要BASF,Wacker-Chemie,ElfAtochem/日触和Alusuisse Italia 等几种典型的生产工艺。

BASF工艺:

BASF工艺于1976 年工业化生产,总生产能力超过100×104t/a,BASF工艺的单台反应器最大生产能力为4.5×104 t/a。经净化预热后的空气与气化的邻二甲苯混合进入列管式固定床反应器,在钒-钛环形催化剂表面进行反应,反应温度为360℃,空速为3000h- 1,反应热由熔盐导出。粗苯酐在微负压下采用高温或同时添加少量化学品除去某些杂质后送入精馏塔精制。BASF工艺能有效地回收顺酐,苯酐的质量收率超过105%[3]。

Wacker-Chemie 工艺:

近年来各国新建的苯酐生产装置基本上都采用Wacker-Chemie工艺,至今世界上已有110套以上的装置采用此工艺,总生产能力为160×104 t/a,单台反应器的最大生产能力为4.5×104 t/a。该工艺所采用的催化剂适用于邻二甲苯、萘以及邻二甲苯和萘的混合料,设计的催化剂负荷为邻二甲苯100g/m3空气(标准态),苯酐的质量收率为114%~115%(以萘为原料时,苯酐收率为97%~99%),催化剂寿命大于3 年[3]。

ElfAtochem/日触工艺:

ElfAtochem公司于1970 年开始开发低能耗工艺,1986 年该公司决定采用日触公司寿命长、选择性高的苯酐催化剂,并与日触公司共同开发了ElfAtochem/日触工艺。采用该工艺的总生产能力约40×104t/a。该工艺与BASF工艺相似,

工艺尾气全部催化焚烧处理,有机杂质含量低,无大气污染[3]。

Alusuisse Italia 工艺:

意大利的Alusuisse公司于1986 年开发了Alusuisse Italia低空烃比工艺,空气对邻二甲苯的质量比减少到9.5:1,而原料气浓度可提高到邻二甲苯134g/m3空气标准态。到1996 年世界各地共有11 套装置采用该工艺,总生产能力为24. 9×104 t/a[3]。

1.3.2 合成工艺路线分析及技术经济评价

萘法作为最早生产苯酐的方法,也是最早形成工业化生产的方法,其原料为焦油萘。我国在1953 年开始萘法生产苯酐,当时是以萘为原料,固定床气相氧化法生产苯酐。1958 年我国又开发了流化床工艺,并在此基础上建设了多套工业生产装置。由于我国萘流化床法发展较快,到1988 年大部分工厂仍在采用萘流化床法生产苯酐,当时萘法产量高达总产量的90%。随着石油工业的发展以及邻法技术的开发,萘法的劣势显露出来:原料焦油萘供应日趋紧张,价格不断上扬,单台反应器生产能力较低,这些都不可避免地造成了萘法的高能耗[1]。

随着苯酐产量的迅速增长,焦油萘越来越不能满足生产的需要,而随着石油工业的发展,又提供了大量廉价的邻二甲苯,扩大了苯酐的原料来源。从20世纪60年代开始,生产苯酐的原料从萘转向邻二甲苯。随着催化剂研发的重大进展以及参加反应的空气和邻二甲苯比例的降低,再加上生产设备大型化的实现等一系列新技术的开发和应用,进一步加速了原料的转换进程。近几年,各厂家也都在为提高自身产品的竞争力而不断地在节能降耗等方面改进、完善自己的工艺,这就使得邻法工艺更加成熟,更加先进[1]。

Wacker-Chemie工艺特点是低能耗,高负荷,生产能力大,催化剂活化时不必使用SO2。BASF工艺的技术特点是低反应温度和高空速,水洗回收副产的顺酐,生产费用低,无废水排出,采用蒸汽透平,输出中压空气。ElfAtochem/日触工艺的特点是低空烃比,操作安全性能好,负荷高,空气量相应减少,总能耗下降。因此该工艺具有投资较低、能耗少、成本低和无污染的优势。Alusuisse Italia 工艺的设备投资较少[3]。

1.3.3 未来发展方向

近年来世界各苯酐生产公司都致力于改进以邻二甲苯为原料的固定床氧化

技术,并在催化剂、生产工艺和反应器设计等方面取得了重要的进展。

1.3.3.1催化剂的改进[3]

世界各生产公司着重研制低温、高邻二甲苯浓度、高负荷及高收率的催化剂。ElfAtochem/日触公司在进料邻二甲苯浓度为85g/m3空气(标准态)时,苯酐质量收率达到114%~115%,目前正在开发110g工艺的催化剂,并进一步开发120g 工艺的催化剂。BASF公司开发的固定床双层催化剂,第一层:7%(质量分数)V2O5,2.5% Sb2O3,0.16%铷,其它部分为TiO2;第二层:7% V2O5,2.5% Sb2O3,0.5%磷,其它部分为TiO2,当反应温度分别控制在359℃和342℃时,苯酐质量收率达到109.8%。Wacker公司和Alusuisse公司也加快了催化剂的研制工作,日本KawasakiSteel公司开发的V-Cs-Ti-B-Si-S-O催化剂,当以邻二甲苯为原料、用于流化床反应器中时,苯酐质量收率达到114.4%。随着催化剂技术的进一步改进,各国开发的催化剂在活化时都不添加SO2。

1.3.3.2生产工艺的开发[3]

Sisas公司开发了邻二甲苯两步氧化法制苯酐的工艺,苯酐的选择性达到85%~88%(一般方法为80% ),且提高了产品纯度,未反应的邻二甲苯容易循环再氧化,由于气相氧化的放热减少50%,反应可在更低的温度下进行,降低了操作风险。日本触媒公司开发了尾气部分循环工艺,这样强化了操作安全、降低了操作费用和投资,苯酐的质量收率达到114%~116%。

1.3.3.3反应器的改进[3]

高效催化剂的开发,使邻二甲苯在空气中的浓度可提高到120g/m3(标准态),并充分利用放出的反应热,使能耗大大地降低,苯酐的生产成本大幅下降。反应器的相应改进包括:采用外循环反应器,反应器趋于大型化、双填充催化剂的固定床反应器。日触公司开发的双层反应器能优化反应器中的温度分布,降低热点温度,并延长催化剂的使用寿命;BASF 公司在主反应器后设置一个后继反应器,使邻二甲苯完全氧化,改善了环保状况;Lurgi公司开发出的反应器采用反向进料和有效的撤热措施,降低了反应器“飞温”的可能性。

总之,苯酐生产商都在积极研制高收率、高选择性和高负荷的催化剂,进行反应动力学和反应机理的研究,用数学模拟法放大反应器,提高了单台反应器的生产能力,进一步地降低了能耗和成本,提高了操作的安全性和自动化水平。

随着苯酐生产的快速发展,苯酐市场的竞争也越来越激烈。目前,我国邻法苯酐的生产已处于国际领先地位。但是我国对于催化剂的研发却一直处于相对落后的状态,致使国内一些厂家(如周村、白龙、哈尔滨等)一直在使用进口催化剂进行苯酐的生产。面对技术相对先进的国际市场,我们应加快催化剂的国产化步伐,同时大型苯酐氧化反应器的国产化步伐也要加快[1]。为了提高自身的竞争力,各生产厂家应在加强工艺改进的同时,还要不断开发新技术,以提高单台反应器的产能,降低产品的能耗,力求在大量进口产品冲击下在国内苯酐市场站稳脚跟并冲向国际市场,使我国的苯酐行业走向一个辉煌的阶段。

1.3.4合成工艺路线选取

我的内容主要是根据所查资料并总结,做出苯酐的一条生产线,并对主要反应器进行设计。由于石油邻二甲苯资源比较丰富,理论收率高,价廉,选择性高成为现代生产苯酐的首选原料,所以决定按以下技术路线进行研究:

CH3

CH3+3O23

O

O

O

H2

V2O5

+

计划年产量为40000吨,年工作时数为每年8000h,产品流量5000kg/h,产品纯度(质量分数)大于99.9%,精馏阶段产品回收率为92%。

第二章工艺流程

2.1原料名称及规格[4]

邻二甲苯(96%),工业级(国内一些大型石化企业生产)。

空气,(21%氧气、78%氮气)。

催化剂,V2O5-T iO2系列负载型催化剂。

2.2主要设备

固定床反应器,离心泵,空气压缩机,精馏塔,冷凝器,预热器,储罐。

2.3工艺流程简述[4]

苯酐生产工艺系统包括氧化反应部分、冷凝水洗部分、苯酐精制部分。

2.3.1 氧化部分

邻二甲苯通过换热器预热,经净化换热器加热后在汽化器内混合均匀并完全雾化,进入反应器反应。反应器内埋填化热列管,用熔盐循环移去反应热,热的熔盐产生高压蒸汽。

2.3.2 冷凝水洗部分

反应气体冷却后在切换冷凝器中凝华,然后再融化,苯酐粗产品流到储罐中。从冷凝器中排出的尾气为未反应的空气和反应生成的一氧化碳、二氧化碳及少量有机物,经水洗塔洗涤回收有机物后排放。洗涤水中主要含有顺酸(顺丁烯二酸),通过加工可经济的回收,使过程无废水排出。

2.3.3 精制部分

粗品苯酐经高压蒸汽预热后,进入第一精馏塔,顺酐及少量的苯甲酸作为塔顶馏出物而分离出来,使苯酐得到进一步提纯,塔底产物为苯酐。塔底苯酐进入第二个精馏塔,在热虹吸式再沸器和重力及真空作用下回流循环纯化,脱除重组分杂志后,苯酐从塔顶流出。

2.4 生产流程

第三章物料衡算

3.1物料衡算概述

为了弄清生产过程中原料、成品以及损失的物料数量,必须要进行物料衡算。

物料衡算是设备热量衡算乃至整个工艺设计的基础,一般在以下几种情况下需进行物料衡算。

⑴对某个操作过程作物料衡算;

⑵对已有的设备:一个设备、一套设备或整个车间作物料衡算; ⑶设计一套新的装置或一个新的车间时,一般均需做出全面的物料衡算。 因此正确的物料衡算结果为正确的设备热量衡算和设备工艺设计提供可靠的保证,在整个设备设计过程中具有重要的意义[5]。

3.2 物料衡算的计算依据[6]

物料衡算为质量守恒定律的一种表现形式,即

I

O

A

G G G

=+∑∑∑

式中,I G ∑ —输入物料的总和;

O

G ∑—输出物料的总和; A

G

∑—累计的物料量。

式I O A G G G =+∑∑∑为总物料衡算式。当过程没有化学反应时,它也适用于物料中任一组分的衡算;但有化学反应时,它适用于任一元素的衡算。若过程中累积的物料量为零,则该式可简化为

I

O

G G

=∑∑

上式所描述的过程属于定态过程,一般连续不断的流水作业(即连续操作)为定态过程,其特点是在设备的各个不同位置,物料的流速、浓度、温度、压强等参数可各自不相同,但在同一位置上这些参数随不同时间而变。若过程中有物料累积,则属于非定态过程,一般间歇操作(即分批操作)属于非定态过程,在设备的同一位置上诸参数随时间而变。

式I O A G G G =+∑∑∑或式I O G G =∑∑中各股物料数量可用质量或物质量衡量。对于液体及处于恒温、恒压下的理想气体还可用体积衡量。常用质量分率表示溶液或固体混合物的浓度(即组成),对理想混合气体还可用体积分率(或摩尔分率)表示浓度。

3.3物料衡算的计算范围和计算基准

作物料衡算时需要确定一个计算范围,即从哪里开始作为进料,从哪里作为出料。根据实际需要来确定计算范围,可以是某一设备或一套设备。对分批操作,可从开始加料到最终出料作为计算范围,有时也取整个过程中的某一阶段作为物料衡算的范围。

作物料衡算时也要选定一个计算基准。例如分批操作可以分批投料量或每昼夜的处理量作为计算基准。连续生产可以用每小时、每天或每分钟的投料量作为计算基准。根据需要有时也采用每吨产品或原料作为计算基准,或者用每千摩尔(kmol)的投料量作为计算基准。基准的选择是跟据物料衡算的目的和计算的方便来考虑决定[7-8]。

3.4 计算任务

3.4.1 生产任务和涉及的主要反应方程

年产4万吨的苯酐工厂。由生产工艺可知操作方式为连续操作。

反应过程中涉及的反应方程见表3-1[4,9-10]。

表3-1 反应方程式

3.4.2 操作流程

3.4.3 反应器参数[4]

反应床层温度:360~380℃;

反应压力:0.1013MPa;

原料:工业级邻二甲苯,洁净空气;

进料量:4700kg/h;

转化率:99.8%;

苯酐选择性:约0.9;

催化剂:低温高空速、V2O5-T iO2负载在惰性载体上的催化剂;

空邻比:9.5:1;

主要副产物:马来酸酐、苯甲酸、柠糠酐、苯酞、二氧化碳;

根据催化剂厂商提供的数据,反应器出口气体组成见表3-2[10]。

表3-2反应器出口气体组成

3.4.4 原材料和动力的消耗定额和消耗量

原料及动力消耗量见表3-3[4]。

表3-3 原料及动力消耗

3.4.5 物料衡算过程及物料衡算表

连续操作过程以小时为衡算基准。由所查文献可知:主反应为反应1,副反应为反应2、3、4,反应5、6、7可忽略。

确定已知变量参数(查文献)[4,9-10]:

邻二甲苯转化率99.8%,苯酐选择性0.9;

反应器出口组成:

苯酐93.0%(质量分数,下同),马来酸酐6.0%,苯甲酸0.4%,柠糠酐0.35%;进料:

邻二甲苯4700kg/h,洁净空气44650kg/h。

原料中含杂质的量4700×4%=188 kg/h

参与主反应的邻二甲苯的量4700×96%×99.8%×0.9=4052.68kg/h

生成苯酐的量4052.68÷106×148=5658.46kg/h

生成马来酸酐的量5658.46÷93%×6.0%=365.06kg/h

生成苯甲酸的量5658.46÷93%×0.4%=24.34kg/h

生成柠糠酐的量5658.46÷93%×0.35%=21.29kg/h

消耗氧气的量:

反应1 4052.68÷106×3×32=3670.35kg/h

反应2 365.06÷98×15÷2×32=894.02 kg/h

反应3 24.34÷122×13÷4×32=20.75 kg/h

反应4 21.29÷112×6×32=36.50 kg/h

总共消耗氧气的量3670.35+894.02+36.50+20.75=4621.62 kg/h

生成二氧化碳的量:

反应2 365.06÷98×4×44=655.62 kg/h

反应3 24.34÷122×44=8.78 kg/h

反应4 21.29÷112×3×44=25.09 kg/h

总共生成二氧化碳的量655.62+8.78+25.09=689.49 kg/h

生成水的量:

反应1 4052.68÷106×3×18=2064.57 kg/h

反应2 365.06÷98×4×18=268.21 kg/h

反应3 24.34÷122×5÷2×18=8.98 kg/h

反应4 21.29÷112×3×18=10.26 kg/h

总共生成水的量2064.57+268.21+8.98+10.26=2352.02kg/h

反应后空气的量44650-4621.62+689.49=40717.87kg/h

物料衡算表如表3-4所示。

表3-4 物料衡算单位:

kg/h

第四章 热量衡算

4.1 热量衡算方程式

热量衡算按能量守恒定律,在无轴功条件下,进入系统的热量与离开热量应该平衡,在实际中对传热设备的热量衡算可由下式表示[5,11]:

123456Q Q Q Q Q Q ++=++

式中, 1Q — 所处理的物料带入设备中的热量kJ ;

2Q — 加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热

量为“+”冷却剂吸收热量“-”)kJ ;

3Q — 过程的热效应(符号规定过程放热为“+”,过程吸热为“-”)

kJ ;

4Q — 离开设备物料带走的热量kJ ; 5Q — 设备各部件所消耗的热量kJ ;

6Q — 设备向四周散失的热量,又称热损失kJ 。

热量衡算的时间基准可与物料衡算相同,即对间歇生产可以每日或每批处理物料作基准。对连续生产以每小时作基准。但不管是间歇还是连续生产,计算传热面积的热负荷,必须以每小时作基准,而该时间必须是稳定传热时间。热量衡算温度基准,一般规定以25℃或0℃,也可以进料温度作基准。

4.2 1Q 与4Q 的计算

1Q 与4Q 均可用下式计算:

140()()i pi Q Q GC t t =-∑

式中,i G — i 物料质量kg ;

pi C — i 物料平均等压比热容/kJ kg

℃; t — 物料的温度℃; 0t — 计算基准温度℃。

4.3 过程热效应3Q 的计算

过程热效应可分为两类,一类是化学过程热效应即化学反应热效应,另一类是物理过程热效应,即物理状态变化热,如溶解、结晶、蒸发、冷凝、熔融、升华及浓度变化等吸入或放出热量。纯物理过程无化学反应热效应,但物料经历化学变化过程,除化学反应热效应外,往往伴随物料状态变化热效应,则两者应结合在一起考虑,可用下式计算:

3r p Q Q Q =+

式中,r Q — 化学反应热效应kJ ;

p Q — 物理过程热效应kJ 。

r Q — 化学反应热效应,可通过标准化学反应热0

r q [11]

,按下式计算:

1000A r r A

G Q q M =

式中,0r q — 标准化学反应热/kJ mol ;

A G — 参与化学反应的A 物质量kg ; A M — A 物质分子量。

4.4所需数据

热量衡算所需数据如下[5,8,12-14]:

空气的组成比较复杂,为方便计算,把空气的组成近似为21%氧气和79%氮气。 氧气:

比热容: 0.919/(p C kJ kg =?℃) 标准生成热:00/f q kJ mol = 氮气:

比热容: 1.039/(p C kJ kg =?℃) 标准生成热:00/f q kJ mol = 2.二氧化碳:

比热容: 0.843/(p C kJ kg =?℃) 标准生成热:0393.51/f q kJ mol = 3.水:

比热容: 4.183/(p C kJ kg =?液℃)

1.867/(p C kJ kg =?气℃)

标准生成热:0285.830/f q kJ mol =液

0241.826/f q kJ mol =气

汽化热:2260/vH kJ kg ?= 4.邻二甲苯:

比热容: 1.756/(p C kJ kg =?液℃)

1.257/(p C kJ kg =?气℃)

标准生成热:024.4/f q kJ mol =液

019.1/f q kJ mol =气

汽化热:347/vH kJ kg ?=

比热容: 1.08/(p C kJ kg =?℃) 标准生成热:0460.1/f q kJ mol = 汽化热利用基团贡献法估算[14]: 1000(15.30)

i i n vH M

?+∑??=

其中,i n -分子中i 种基团的个数; i ?-i 种基团的贡献值,/kJ mol ;

M -化合物的摩尔质量,/kg kmol 。

通过参考文献[14]可知,CH =-的基团贡献值为2.544/kJ mol ,C ==的基团贡献值为3.059/kJ mol ,CO --酮的基团贡献值为6.645/kJ mol ,O --的基团贡献值为4.682/kJ mol

1000(15.30)

1000[15.304()2()2()()]1000(15.304 2.5442 3.0592 6.645 4.682)148

334.905/i i n vH M

CH C CO O M

kJ kg ?+∑??=

?+?=-+?==+?--+--=

?+?+?+?+=

=酮 熔化热利用基团贡献法估算[14]:1000(0.88)

i i n mH M

?-+∑??=

其中, i n -分子中i 种基团的个数; i ?-i 种基团的贡献值,/kJ mol ;

M -化合物的摩尔质量,/kg kmol 。

通过参考文献[14]可知,CH =-的基团贡献值为1.101/kJ mol ,C ==的基团贡献值为2.394/kJ mol ,CO --酮的基团贡献值为3.624/kJ mol ,O --的基团贡献值为5.879/kJ mol

1000(0.88)

1000[0.884()2()2()()]1000(0.884 1.1012 2.3942 3.624 5.879)148

144.858/i i n mH M

CH C CO O M

kJ kg ?-+∑??=

?-+?=-+?==+?--+--=

?-+?+?+?+=

=酮

比热容利用Missenard 法估算[14]:/i i p C n c M =∑ 式中,M -化合物的摩尔质量,/kg kmol ;

i n -分子中i 种基团的个数;

i c -i 种基团的摩尔热容,/()kJ kmol ?℃。

通过参考文献[14]知,CH =-的摩尔热容为28.1/()kJ kmol ?℃, CO --酮的摩尔热容46.1/()kJ kmol ?℃,O --的摩尔热容31.0/()kJ kmol ?℃

2()()2()/(228.131.0246.1)/981.83/()

p C CH O CO M kJ kg =?=-+--+?--????=?++?=?酮℃ 标准生成热:0469.8/f q kJ mol = 汽化热利用基团贡献法估算:

通过参考文献[14]知,CH =-的基团贡献值为2.544/kJ mol , CO --酮的基团贡献值为6.645/kJ mol ,O --的基团贡献值为4.682/kJ mol

1000(15.30)

1000[15.302()2()()]1000(15.302 2.5442 6.645 4.682)98

391.429/i i n vH M

CH CO O M

kJ kg ?+∑??=

?+?=-+?--+--=

?+?+?+=

=酮 熔化热利用基团贡献法估算:

通过参考文献[14]知,CH =-的基团贡献值为1.101/kJ mol , CO --酮的基团贡献值为3.624/kJ mol ,O --的基团贡献值为5.879/kJ mol

1000(0.88)

1000[0.882()2()()]1000(0.882 1.1012 3.624 5.879)98

147.439/i i n mH M

CH CO O M

kJ kg ?-+∑??=

?-+?=-+?--+--=

?-+?+?+=

=酮

比热容: 1.203/(p C kJ kg =?℃) 标准生成热:0385.2/f q kJ mol = 汽化热利用基团贡献法估算:

通过参考文献[14]知,CH =-的基团贡献值为2.544/kJ mol , C ==的基团贡献值为3.059/kJ mol ,COOH -的基团贡献值为19.537/kJ mol

1000(15.30)

1000[15.305()()()]1000(15.305 2.544 3.05919.537)122

414.885/i i n vH M

CH C COOH M

kJ kg ?+∑??=

?+?=-+==+-=

?+?++=

= 熔化热利用基团贡献法估算:

通过参考文献[14]知,CH =-的基团贡献值为1.101/kJ mol , C ==的基团贡献值为2.394/kJ mol ,COOH -的基团贡献值为11.051/kJ mol

1000(0.88)

1000[0.885()()()]1000(0.885 1.101 2.39411.051)122

148.115/i i n mH M

CH C COOH M

kJ kg ?-+∑??=

?-+?=-+==+-=

?-+?++=

= 8.柠糠酐:

比热容利用Missenard 法估算:

通过参考文献[14]知,C ==的摩尔热容为8.4/()kJ kmol ?℃,3CH -的摩尔热容48.4/()kJ kmol ?℃,O --的摩尔热容31.0/()kJ kmol ?℃,CH =-的摩尔热容28.1/()kJ kmol ?℃,CO --酮的摩尔热容46.1/()kJ kmol ?℃

3()()()()()/(8.428.148.431.0246.1)/1121.858/()

p C C CH CH O CO M kJ kg ===+=-+---+--????=++++?=?酮℃

标准燃烧热利用卡拉奇法估算[14]:0

109.07c q n K =+?∑

其中,n -化合物燃烧时的电子转移数; ?-取代基和键的校正值/kJ mol ; K -分子中同样取代基的数目;

0c q -标准燃烧热/kJ mol 。

通过参考文献[14]知,羧酸酐的?值为41.9,核环上的双键的?值为27.2

109.079227.241.92032.36/c q kJ mol =??++=

标准生成热用公式000

f c ce q q nq +=∑转换, 其中,0

ce q -元素的标准燃烧热,/kJ mol ;

n -化合物中同种元素的原子数;

0f q ,0

c q -分别为同一化合物的标准生成热和燃烧热。

通过参考文献[14]知,C 原子的元素的标准燃烧热395.15/kJ mol ,H 原子的元素的标准燃烧热143.15/kJ mol

05395.154143.152032.36515.99/f q kJ mol =?+?-= 汽化热利用基团贡献法估算:

通过参考文献[14]知,C ==的基团贡献值为3.059/kJ mol ,3CH -的基团贡献值为2.373/kJ mol ,O --的基团贡献值为4.682/kJ mol ,CH =-的基团贡献值为2.544/kJ mol ,CO --酮的基团贡献值为6.645/kJ mol

31000(15.30)

1000[15.30()()2()()()]1000(15.30 2.544 3.0592 6.645 4.682 2.373)112

368.286/i i n vH M

CH C CO O CH M

kJ kg ?+∑??=

?+=-+==+?--+--+-=

?+++?++=

=酮 熔化热利用基团贡献法估算:

通过参考文献[14]知,C ==的基团贡献值为2.394/kJ mol ,3CH -的基团贡献值为0.908/kJ mol ,O --的基团贡献值为5.879/kJ mol ,CH =-的基团贡献

毕设任务书_车间设计

2014届应用化学制药方向《毕业设计任务书》 设计人: 设计题目: 设计目的:设计的目的是把选定的实验室的的小试工艺放大到规模化大生产的相应条件,在选择中设计出最合理、最经济的生产工艺流程,做出物料和能量衡算;根据产品的档次,筛选出合适的设备;按GMP规范要求设计车间工艺平面图;估算生产成本,最终使该制药企业得以按预定的设计期望顺利投入生产。 设计规范:《中华人民共和国药典(2010版)》、《药品注册管理办法(局令第28号)》、《医药工业洁净厂房设计规范(GB50457--2008)》、《药品生产质量管理规范(2010年版)》等。 设计内容: 1.处方设计 (1)查阅文献,详细列出药物的临床用途、理化性质、稳定性和生物学特性(天然药物罗列指标性成分的生物学特性)等信息(天然药物提取物还需列药物浸膏的性状信息)。说明这些信息对选择剂型的指导意义。 药物的理化性质信息至少包括:溶解度和pKa、粒径(天然药物浸膏的过筛目数)、晶型、吸湿性、脂水分配系数(天然药物浸膏列指标性成分的脂水分配系数)、pH-稳定性关系。 稳定性包括:药物(或天然药物的指标性成分)对光、湿、热的稳定性。 生物学特性包括:药物(或天然药物的指标性成分)在人体内的吸收、分布、代谢、排泄等。 (2)处方的筛选与优化 列出选定处方的处方全部组成及各原辅料的用量。处方组成应包括:原料药、全部辅料、包装材料或容器。 原料药、全部辅料、包装材料或容器应通过对比分析,选择固定的供应商。 说明处方筛选过程,并结合药物的临床用途、理化性质、稳定性和生物学特性及辅料的理化性质、稳定性和生物学特性等信息,说明所选定处方的合理性及存在的问题。 说明处方优化的过程及理由。 处方的筛选与优化的原则:根据临床用途及给药途径慎重选择,尽量优化处方,做到处方与生产工艺为最佳匹配、有利于设备选型与生产工艺验证。

机床铸造车间设计

【文章编号】1007-9467(2007)05-0105-03 机床铸造车间设计■任永明(机械工业第一设计研究院,安徽蚌埠233017) 【摘要】介绍了一个年产15000t高档机床铸件车间的设计过程,重点分析车间设计的要点,各生产工序的关系、总体布局和主要设备的选择。 【关键词】机床铸件;树脂砂;铸造车间 【中图分类号】TB491;TU274【文献标志码】 DesignofenginebedFoundry RENYong-ming (FirstDesign&RecearchInstitute,MI,Bengbu233017,China)【Abstract】Thisarticleintroducedthedesignprocessofafoundryyearlyproduces15,000tonupscaleenginebedcasting,analyzedproductclassoftheworkshopwithemphasis,mainequipmentchoiceandoveralllayout.Thisworkshopinvestmentservicecondition,indicatedthedesignissuccessful. 【Keywords】enginebedcasting;resinsand;foundry 1设计任务 某机床铸造车间年产机床铸件15000t,产品主要为各种机床厂配套及出口;主要铸件为床身、工作台、升降台。最大件4590×1250×710mm(长×宽×高),7400kg。材料为高强度孕育铸铁。 2机床铸件生产的特殊性 1)HT350高强度孕育铸铁,具有良好的精度稳定性,抗压强度和减震性,高的弹性模量和耐磨性。 2)单件小批量生产方式;大型铸件多采用地坑造型,床身等箱体类铸件大量采用组芯生产。 3)外形多箱形,易产生应力,不宜上落砂机振动落砂。 4)铸件的重量、尺寸差别大,生产组织复杂。其中,工作台铸件由于长宽比大,要特别关注生产的特殊性。 3车间设计要点 1)熔化方式必须使铁液出炉温度达到1470℃ ̄1520℃,能够可靠加大炉料组成中废钢比例(质量分数达到40% ̄50%),可灵活采用C-Si,Ca-Ba和CaMnSiBi系孕育剂等技术措施,多措施保证铸件的材质要求。能够适应不同重量铸件的生产,特别要满足大型铸件对铁液供应的要求。 2)针对不同铸件的特点,具备包括地面有箱造型、地坑造型、简易造型线(小件)等多种造型方式;混砂机的配置与造型任务相适应。 3)充分考虑组芯生产特点,组芯精度保证措施,对起吊设备的要求。 4)砂芯的生产能力与造型能力的匹配问题要引起足够重视。由于机床铸件需要大量砂芯,仅考虑砂芯混砂能力是不够的,必须解决砂芯涂料、烘干、储存、转运等一系列问题;同时考虑制芯工序的机械化程度,提高生产效率和面积利用率。 5)由于机床铸件大部分不宜上落砂机,在砂再生落砂机选择上要考虑落砂机台面尺寸与承载力的合理关系,做到大台面中等承载。 6)重视各工序间的转运,包括熔化的铁液到合 ManufactureEngineeringDesign 制造工程设计 105

片剂车间工艺设计

《课程设计》 设计成绩: 批阅人: 批阅日期: 设计题目:年产2.8亿芍甘片生产车间工艺设计 设计者: 班级: 学号: 指导教师: 设计日期: 南京中医药大学药学院

设计任务书 一、设计题目 年产2.8亿芍甘片生产车间工艺设计 二、设计条件 (1)生产制度 年工作日:250天;1天2班,每班8 h,一天2班。 (2)药剂规格及原辅材料的消耗 依照各“中药制药分离技术课程设计”而定 ①规格:0.35 g/片 ②主要工序及原辅材料可参照 a. 药材干浸膏提取率:7.5%,干浸膏粉碎过筛收率:98% b.干法制粒:干浸膏粉末和辅料比为30:70,收率为98% c. 整粒、总混:收率为99% d. 压片、包衣:收率为98% e. 包装:内包收率为99%;外包无损耗 三、设计内容与要求 (1)确定工艺流程及净化区域划分; (2)物料衡算; (3)设备选型; (4)按GMP规范要求设计生产工艺流程图和车间工艺平面图; (5)编写设计说明书; 四、设计成果 (1)设计说明书一份 包括工艺概述、工艺流程及净化区域划分说明、物料衡算、设备选型及主要设备一览表、车间工艺平面布置原则、技术要求和说明。 (2)工艺流程图; (3)提取车间、制剂车间平面布置图(1∶100) 五、设计时间

设计时间为2周,从2015年6月12日至2016年6月24日。 目录 1 片剂生产工艺概述 (05) 1.1项目概述 (05) 1.2设计目的和意义……………………………………… 07 1.3设计内容 (07) 1.4 设计指导思想和设计原则 (08) 2 生产工艺流程简述 (08) 2.1生产方案、产品类型与包装方式 (08) 2.2生产规模、制度与方式 (09) 2.3工艺流程 (09) 2.3.1工艺流程制定的原则 (09) 2.3.2制粒压片工艺 (09) 2.3.3片剂的生产工艺 (11) 2.3.4工艺简介 (12) 3 物料衡算 (14)

低压铸造工艺设计毕业论文

摘要 本文运用反重力铸造技术—低压铸造来对铝合金铸件带轮的铸造工艺进行方案设计,包括分型面、浇注位置的选择、各项铸造工艺参数的确定以及浇注系统的设计。根据铸件形状较复杂的特点,在进行实验浇注时设计了两个浇注方案即两个内浇道或者一个内浇道,并同时进行调压和重力铸造浇注,以方便比较。根据实际零件建立了铸件的三维模型,并用View-cast铸造模拟软件对铝合金铸件带轮的充型过程进行了模拟计算。模拟结果显示,充型过程平稳,没有明显的液相起伏、飞溅。根据数值模拟结果并结合理论分析,铸件中没有缩孔、缩松等缺陷,铸造工艺方案和浇注工艺参数的设计合理。 关键词:低压铸造;铸造工艺;实验浇注;充型过程;数值模拟

Abstract In this paper, anti-gravity casting technology, low pressure casting technology was used to complete the design of the casting of an aluminum alloy casting wheel, which include choice of Sub-surface and casting position, determining all of the parameters of the casting process, and the design of the casting system. For the complex shape of the casting, when conducting experiments was designed to use two runners and one ingate for casting in one time, and at the same time, surge and gravity casting was used to make it easier to compare. For sand shell moulding, the mode of same time freezing was generally used. Build the Three-dimensional model of the casting, then simulate and calculate the filling process of casting. Form the results, it was saw that the process was steady without apparent phase fluctuations or splash. From the result we can see that there was no defect such as shrinkage, so the design was perfect. Keywords:Low pressure die casting; casting process; experimental cast; filling process; numerical simulation.

年产40000吨苯酐的车间工艺设计_毕业设计

第一章文献综述 1.1苯酐简述 苯酐,全称为邻苯二甲酸酐(Phthalic Anhydride),常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。苯酐能引起人们呼吸器官的过敏性症状,苯酐的粉尘或蒸汽对皮肤、眼睛及呼吸道有刺激作用,特别对潮湿的组织刺激更大。苯酐主要用于生产PVC 增塑剂、不饱和聚酯、醇酸树脂以及染料、涂料、农药、医药和仪器添加剂、食用糖精等,是一种重要的有机化工原料。在PVC 生产中,增塑剂最大用量已超过50%,随着塑料工业的快速发展,使苯酐的需求随之增长,推动了国内外苯酐生产的快速发展。 最早的苯酐生产始于1872 年,当时德国BASF 公司以萘为原料,铬酸氧化生产苯酐,后又改用发烟硫酸氧化生产苯酐,但收率极低,仅有15%。自1917 年世界开始以氧化钒为催化剂,用萘生产苯酐后,苯酐的生产逐步走向工业化、规模化,并先后形成了萘法、邻法两种比较成熟的工艺[1]。 1.2苯酐的性质[2] 苯酐,常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。 分子式C8H4O3,相对密度1.527(4.0℃),熔点131.6℃,沸点295℃(升华),闪点(开杯)151.7℃,燃点584℃。 微溶于热水和乙醚,溶于乙醇、苯和吡啶。 1.3苯酐的合成方法比较及选取 1.3.1合成苯酐的主要工艺路线 1.3.1.1 萘法[1] 1.3.1.1.1反应原理 萘与空气在催化剂作用下气相氧化生成苯酐。

+O O O 2 V 2O 5 CO 2O H 29/2++2 2 1.3.1.1.2 工艺流程 空气经净化、压缩预热后进入流化床反应器底部,喷入液体萘,萘汽化后与空气混合,通过流化状态的催化剂层,发生放热反应生成苯酐。反应器内装有列管冷却器,用水为热载体移出反应热。反应气体经三级旋风分离器,把气体携带的催化剂分离下来后,进入液体冷凝器,有40%-60%的粗苯酐以液态冷凝下来,气体再进入切换冷凝器( 又称热融箱)进一步分离粗苯酐,粗苯酐经预分解后进行精馏得到苯酐成品。尾气经洗涤后排放,洗涤液用水稀释后排放或送去进行催化焚烧。 1.3.1.2邻法 1.3.1.2.1 反应原理[1] 邻二甲苯与空气在催化剂作用下气相氧化生成苯酐。 CH 3 CH 3 +3O 2 3O O O H 225 + 1.3.1. 2.2 工艺流程 过滤、净化后的空气经过压缩,预热后与汽化的邻二甲苯混合进入固定床反应器进行放热反应,反应管外用循环的熔盐移出反应热并维持反应温度,熔盐所

机械制造装备设计第三章习题答案(关慧贞)..

第三章典型部件设计 1.主轴部件应满足那些基本要求? 答:主轴部件应满足的基本要求有旋转精度、刚度、抗振性、温升热变形和精度保持性等。主轴的旋转精度是指装配后,在无载荷、低速转动条件下,在安装工件或刀具的主轴部位的径向和轴向跳动。旋转精度取决于主轴、轴承、箱体孔等的制造、装配和调整精度。主轴部件的刚度是指其在外加载荷作用下抵抗变形的能力,通常以主轴前端产生单位位移的弹性变形时,在位移方向上所施加的作用力来定义,主轴部件的刚度是综合刚度,它是主轴、轴承等刚度的综合反映。主轴部件的抗振性是指抵抗受迫振动和自激振动的能力。主轴部件的振动会直接影响工件的表面加工质量,刀具的使用寿命,产生噪声。主轴部件的精度保持性是指长期地保持其原始制造精度的能力,必须提高其耐磨性。 2.主轴轴向定位方式有那几种?各有什麽特点?适用场合 答:(1)前端配置两个方向的推力轴承都分布在前支撑处;特点:在前支撑处轴承较多,发热大,升温高;但主轴承受热后向后伸,不影响轴向精度;适用场合:用于轴向精度和刚度要求较高的高精度机床或数控机床。 (2)后端配置两个方向的推力轴承都布置在后支撑处;特点:发热小、温度低,主轴受热后向前伸长,影响轴向精度;适用范围:用于普通精度机床、立铣、多刀车床。 (3)两端配置两个方向的推力轴承分别布置在前后两个支撑处;特点:这类配置方案当主轴受热伸长后,影响轴承的轴向间隙,为避免松动,可用弹簧消除间隙和补偿热膨胀;适用范围:用于短主轴,如组合机床。 (4)中间配置两个方向的推力轴承配置在前支撑后侧;特点:此方案可减少主轴的悬伸量,使主轴热膨胀后向后伸长,但前支撑结构复杂,温升可能较高。3.试述主轴静压轴承的工作原理 答:主轴静压轴承一般都是使用液体静压轴承,液体静压轴承系统由一套专用供油系统、节流器和轴承三部分组成。静压轴承由供油系统供给一定压力油,输进轴和轴承间隙中,利用油的静压压力支撑载荷、轴颈始终浮在压力油中。所以,轴承油膜压强与主轴转速无关,承载能力不随转速而变化。静压轴承与动压轴承相比有如下优点:承载能力高;旋转精度高;油膜有均化误差的作用,可提高加工精度;抗振性好;运转平稳;既能在极低转速下工作,也能在极高转速下工作;摩擦小,轴承寿命长。

工艺设计的基本原则和程序

工艺设计的基本原则和程序 一、工艺设计的基本原则 水泥厂工艺设计的基本原则可归纳如下: (1)根据计划任务书规定的产品品种、质量、产量要求进行设计。 计划任务书规定的产品产量往往有一定范围,设计产量在该范围之内或略超出该范围,都应认为是合适的;但如限于设备选型,设计达到的产量略低干该范围,则应提出报告,说明原因,取得上级同意后,按此继续设计。 对于产品品种,如果设计考虑认为计划任务书的规定在技术上和经济上有不适当之处,也应提出报告,阐明理由,建议调整,并取得上级的同意。例如,某大型水泥厂计划任务书要求生产少量特种水泥,设计单位经过论证,认为大型窑改变生产品种,在技术上和经济上均不合理,建议将少量特种水泥安排给某中小型水泥厂生产,经上级批准后,改变了要求的品种。 窑、磨等主机的产量,除了参考设备说明和经验公式计算以外,还应根据国内同类型主机的生产数据并参考国内外近似规格的主机产量进行标定。在工厂建成后的较短时期内,主机应能达到标定的产量;同时,标定的主机产量应符合优质、高产、低消耗和设备长期安全运转的要求,既要发挥设备能力,但又不能过分追求强化操作。 (2)选择技术先进、经济合理的工艺流程和设备。 工厂的工艺流程和主要设备确定以后,整个工厂设计可谓大局已定。工厂建成后,再想改变其工艺流程和主要设备,将是十分困难的。例如,要把湿法厂改为干法厂,固然困难;要把旧干法厂改为新型干法厂,也非易事。例如,为了利用窑尾废气余热来烘干原料,生料磨系统也得迁移,输送设备等也得重新建设,诸如此类的情况,在某些条件下就不一定可行。 在选择生产工艺流程和设备时,应尽量考虑节省能源,采用国内较成熟的先进经验和先进技术;

管状三通铸件铸造工艺的CAE毕业设计

管状三通铸件铸造工艺的CAE毕业设计 第1章绪论 1.1铸造工艺和CAE的发展概况 随着我国经济的快速发展,管道连接件的需要日益增多,而且管件的种类也越来越多。由于采用锻造-切削加工的制造工艺不仅材料利用率低、模具寿命短而且后续加工切断了金属流线,影响其性能。改为铸造方法,并利用CAE进行数值模拟,不仅可以减少工序,而且材料的利用率也可以大大提高,其经济效益和社会效益更为可观。 铸造技术正向着精确化、轻量化、节能化和绿色化的方向发展。在传统的铸件工艺设计过程中,一直采用试错法来得到生产工艺,其工艺的定型是通过多次的浇注和修改, 反复摸索,直到得到能够满足设计要求的工艺方案,这就不可避免地带来了铸件工艺定型周期长、生产质量不稳定、作业成本高等许多不利因素,尤其是对于一些大型铸件和中小型企业的小批次铸件的工艺设计,更加增加了设计难度。因此,就铸件的生产准备而言,迫切需要一种新的方法来解决这些问题。计算机数值模拟技术在铸造中的应用,为解决这一问题提供了有效的手段。利用计算机虚拟制造技术,可以在制造铸造工艺装备及浇注铸件之前,综合评价各种工艺方案与铸件质量的关系,并在计算机上模拟整个成型过程,预测铸造缺陷。这样,铸造工艺人员就能够根据模拟结果及时修改工艺设计,省去了大量用于生产试验和摸索可行性铸造工艺而消耗的宝贵时间和费用。将CAE 技术应用到铸造工艺的设计中是现代铸造工艺设计发展的方向。 1.1.1发展现状 模具作为工业生产中的基础工艺装备, 是一种高附加值的高技术密集型产品, 也是高新技术产业化的重要领域, 尤其在汽车、电子、仪表、家电和通讯行业中应用广泛。研究和发展模具技术, 对于促进国民经济的发展具有特别重要的意义, 模具技术的水平及科技含量高低, 直接影响到模具工业产品的发展, 在很大程度上决定了产品的质量, 新产品的开发能力、企业的经济效益, 是衡量一个国家制造业水平的重要标志。由于制造业产品信息相当复杂, 要实现企业生产自动化,在分离的CAD、CAE、CAM 之间还需要大量的人工工作, 这给企业自动化生产带来了极大地障碍, 且模具设计与制造周期可进一步缩短的空间较大, 模具CAD/CAE/ CAM 技术的使用, 极大地提高了产品质量, 加速了产品的开发, 缩短了从设计到生产的周期, 缩短了产品的上市周期, 实现了产品设计的自动化, 使设计人员从繁琐的绘图中解放出来, 集中精力进行创造性的劳动, 模具CAD/ CAE/ CAM 技术是模具工业发展的必然趋势。 尽管近年来我国铸造行业取得迅速的发展,但仍然存在许多问题。第一,专业化程度不高,生产规模小。我国每年每厂的平均生产量是815t,远远低于美国的4606t和日本的4878t。第二,技术含量及附加值低。我国高精度、高性能铸件比例比日本低约20个百分点。第三,产学研结合不够紧密、铸造技术基础薄弱。第四,管理水平不高,有些企业尽管引进了国外的先进的设备和技术,但却无法生产出高质量铸件,究其原因就是管理水平较低。第五,材料损耗及能耗高污染严重。中国铸铁件能耗比美国、日本高70%~120%。第六,研发投入低、企业技术自主创新体系尚未形成。 发达国家总体上铸造技术先进、产品质量好、生产效率高、环境污染少、原辅材料已形成商品化系列化供应,如在欧洲已建立跨国服务系统。生产普遍实现机械化、自动化、智能化(计算机控制、机器人操作)。

年产20万吨硫酸生产车间工艺设计

年产20万吨硫酸生产车间工艺设计 摘要 硫酸是最重要的基础化工原料之一,主要用于制造磷肥及无机化工原料,其次作为化工原料广泛应用于有色金属的冶炼、石油炼制和石油化工、橡胶工业以及农药、医药、印染、皮革、钢铁工业的酸洗等。本设计以硫磺为原料生产硫酸,因为以硫磺为原料生产硫酸不需净化,大大简化了工艺过程,节省投资费用,且产品质量高。 本设计完成了年产20万吨硫酸生产车间工艺设计,介绍了硫酸生产的主要方法和成熟的工艺流程。主要内容包括原料熔硫工段、焚硫转化工段、干吸工段及主要设备的选择、环保措施等。完成了化工设计的各个设计环节,达到了设计目标。经分析,设计技术可靠,经济合理。在设计过程中,还重点对废水处理进行了分析。 关键词:硫酸;硫磺制酸;焚烧炉;转化塔

The Production Process Design of the Workshop for Sulfuric acid with an Annual Output of 200,000 Tons Abstract Sulfuric acid is one of the most important basic chemical raw materials, mainly used in the manufacture of phosphate fertilizer and inorganic chemical raw materials, as a chemical raw material, it is widely used in non-ferrous metal smelting, petroleum refining and petroleum chemical industry, rubber industry, as well as pesticides, pharmaceuticals, printing and dyeing, leather pickling of iron and steel industry. This design is used sulfuric acid as raw material to product sulfur, thus it products sulfur without purification, the process is greatly simplified to save investment costs and gain high product quality. It is an annual output of 200,000 tons of sulfuric acid production plant process design, introduces the main methods of sulfuric acid production and mature process. The main contents include the raw material sulfur melting section, and burning sulfur conversion section, drying and absorption section and the major equipments selection, environmental protection measures. It completes various links of the chemical engineering design, and achieves the design objectives. Through the analysis of the design, design technology is reliable, and the design is economical and reasonable. In the design process, it is also focusing on wastewater treatment.

年产2000吨环氧树脂车间工艺设计毕业设计(论文)

目录 第1章绪论 (8) 1.1产品介绍 (8) 1.2、生产工艺 (8) 1.2.1一步法工艺 (11) 1.2.2二步法工艺 (11) 1.3、主要原材料 (12) 第2章初步工艺流程设计 (12) 2.1 工艺流程框图: (13) 2.2工艺流程: (14) 第3章物料衡算 (14) 3.1 计算条件与数据理: (15) 3.2 原料用量计算: (15) 3.3 缩合工段物料衡算: (16) 3.3.1 一次反应: (16) 3.3.3回收过量环氧氯丙烷: (18) 4.3.4 环氧树脂收集: (19) 第4章热量衡算 (19) 4.1对溶解釜进行热量衡算:............................ 错误!未定义书签。 4.2对反应釜进行热量衡算:............................ 错误!未定义书签。 4.2.1冷却阶段:.................................. 错误!未定义书签。 4.2.2反应阶段:.................................. 错误!未定义书签。 4.2.3.回流脱水阶段:.............................. 错误!未定义书签。 4.3对蒸发器进行热量衡算:........................ 错误!未定义书签。 4.3.1脱苯所需热量衡算:.......................... 错误!未定义书签。 4.3.2脱苯用冷凝器冷却水用量计算:................ 错误!未定义书签。 5.3 其它设备的选型................................... 错误!未定义书签。第5章设备选型....................................... 错误!未定义书签。 5.1溶解釜的设计...................................... 错误!未定义书签。 5.1.1选材:...................................... 错误!未定义书签。 5.1.2 确定参数:.................................. 错误!未定义书签。 5.1.3计算筒体厚度:.............................. 错误!未定义书签。 5.1.4计算封头厚度:.............................. 错误!未定义书签。 5.1.5校核筒体和封头的水压试验强度:.............. 错误!未定义书签。 5.1.6夹套的设计:................................ 错误!未定义书签。 5.1.7搅拌器的设计:.............................. 错误!未定义书签。 5.2反应釜的设计:................................ 错误!未定义书签。 5.2.1选材:...................................... 错误!未定义书签。 5.2.2确定参数:.................................. 错误!未定义书签。 5.2.3计算筒体厚度:.............................. 错误!未定义书签。

永冠杯 铸造工艺设计大赛 参赛作品

“永冠杯”第二届中国大学生铸造工艺设计大赛 参赛作品 铸件名称:B-十字头 自编代码:AB1990ZP 方案编号:[单击此处键入方案编号]

目录 1零件概述 (1) 1.1零件信息................................................................................... (1) 1.2技术要求 (1) 2铸造工艺方案拟定 (1) 2.1 铸造方法选择............................................................... . (1) 2.2 分型面选择 (1) 2.3浇注位置选择 (2) 3铸造主要参数 (3) 4 浇注系统设计计算 (3) 5 冒口设计 (4) 5.1模数与补缩分析 (4) 5.2冒口尺寸设计 (5) 6模拟与优化 (6) 6.1Procast主要参数设定 (6) 6.2整体思路 (7) 6.3模拟结果及分析 (8)

6.3.1表面状况 (8) 6.3.2内部缩孔情况 (9) 6.4加冒口模拟 (10) 6.5加冷铁模拟 (11) 7砂芯设计 (13) 8模板 (14) 总结 (14) 参考文献............................................................................................ (14) 附图 (14)

1零件概述 1.1零件信息 名称:十字头 材料: QT450-12 外形尺寸:1140×605×256mm 体积: 41.878×103 cm 3 质量: 302kg 生产批量:中小批量生产(自定) 零件三维图如图1.1所示,具体尺寸件附件1。 1.2技术要求 (1)铸件加工后,加工面不得有任何的铸造缺陷,非加工表面不得有明显的夹渣、凹陷, 上下型错模不得大于1mm 。 (2)保证该件受力较大的工作部分的力学性能。 2铸造工艺方案拟定 2.1 铸造方法选择 基于铸件的生产批量、铸件材料、尺寸、精度及技术要求等综合考虑,采用木模,自硬树脂砂,手工造型。 图1.1 零件三维图

壳体铸造工艺设计

壳体铸造工艺设计 DesignofCastingTechnologyforTransmissionHousing

目录 一简介----------------------------------------------------------------------3 1.1设计(或研究)的依据与意义 1.2中国古代铸造技术发展 1.3中国铸造技术发展现状 1.4发达国家铸造技术发展现状 1.5我国铸造未来发展趋势 二生产条件-----------------------------------------------------------------4 三工艺分析-----------------------------------------------------------------5 四浇注系统设计、工艺参数计算及措施-----------9 4.1工艺参数的计算 4.2工艺参数的校核 4.3工艺措施 五模具设计要点--------------------------------------------------------10 六冷铁设计-----------------------------------------------------------------13七结束语----------------------------------------------------------------------13 八参考文献------------------------------------------------------------------16

固体制剂车间工艺设计毕业论文

固体制剂车间工艺设计毕业论文 1设计依据及设计围 1.1设计依据 1.1.1设计任务 课题名称:布洛芬剂车间工艺设计 生产规模:年产片剂(奥美沙坦酯)6.5亿片 1.1.2设计规和标准 1.药品生产质量管理规(2010年修订,国家食品药品监督管理局颁发) 2.药品生产质量管理规实施指南(2010年版,中国化学制药工业协会) 3.医药工业厂房洁净设计规,GB50457-2008 4.洁净厂房设计规,GB 50073-2001 5.建筑设计防火规,GB/T50016-2006(2006年版) 6.设计规和标准建筑设计防火规,GB/T50016-2006(2006年版) 7.爆炸和火灾危险环境电力装置设计规,GB50058-1992 8.工业企业设计卫生标准,GBZ 1-2010 1.2设计围 本设计参照《医药建筑项目初步设计容及深度的规定》、《车间装置设计》;及校本科生毕业小设计总体要求。 此次设计的围限于片剂车间围的工艺设计及对辅助设施、公用工程等提出设计条件,包括相关的生产设备、车间布置设计、带控制点的工艺流程设计,同时对空调通风、

照明、洁净设施、生产制度、生产方式、土建、环保等在的一些非工艺工程提出要求。

2设计原则及指导思想 2.1设计原则 2.1.1医药工业洁净厂房设计规 1.工艺布局应按生产流程的要求,做到布置合理,紧凑,有利生产操作,并能保证对生产过程进行有效的管理。 2.工艺布局要防止人流、物流之间的混杂和交叉污染,并符合下列基本要求: a分别设置人员和物料进出生产区的通道,极易造成污染的物料(如部分原辅料,生产中废弃物等),必要时可设置专用入口,洁净厂房的物料传递路线尽量要短。 b人员和物料进入洁净生产区应有各自的净化用室和设施。净化用室的设置要求与生产区的空气洁净度级别相适应。 c生产操作区应只设置必要的工艺设备和设施。用于生产、贮存的区域不得用作非本区域工作人员的通道。 3.在满足工艺条件的前提下,为了提高净化效果,节约能源,有空气洁净度要求按下列要求布置: a空气洁净度高的房间或区域宜布置在人员最少达到的地方,并宜靠近空调机房。 b不同空气洁净度级别的房间或区域宜按空气洁净度级别高低有及外布置。 c空气洁净度相同的房间或区域宜相对集中。 d不同空气洁净度房间之间相互联系应有防止污染措施,如气闸室或传递窗(柜)等。 4.洁净厂房应设置与生产规模相适应的原辅材料、半成品、成品存放区域,且尽可能靠近与其相联系的生产区域,减少运输过程中的混杂与污染。存放区域应安排试验区,

#《机械制造装备设计》考试复习

机械制造装备设计 第一章、 机械制造及装备设计方法 第一节、概述 机械制造装备的发展趋势 1、向高效、高速、高精度方向发展 2、多功能复合化、柔性自动化 3、绿色制造和可持续发展 4、智能制造技术和智能化装备 第二节 机械制造装备应具备的主要功能 机械制造装备应具备的主要功能需满足以下几方面要求: 1、 一般的功能要求 2、 柔性化 3、 精密化 4、 自动化 一般的功能要求包括 (1)加工精度方面的要求 (2)强度、刚度和抗振性方面的要求 (3)加工稳定性方面的要求 (4)耐用性方面的要求 (5)技术经济方面的要求 第三节 机械制造装备的分类 机械制造装备的分类 1、加工装备(机床或工作母机) 2、工艺装备 3、 储运装备 4、辅助装备 加工装备包括:金属加工机床、特种加工机床、锻压机床、 冲压机床、注塑机、焊接设 备、铸造设备等。 金属切削机床可按如下特征进行分类: 1、按机床的加工原理分为:车床、钻床、镗床、纹加工机床、铣床、刨(插) 床、拉床、

切断机床和其它机床等。 2、按机床的使用范围分为: 通用机床:通用的金属切削机床可加工多种尺寸和形状的工件的多种加工面 专用机床:用于特定工件的特定表面、特定尺寸和特定工序加工的机床 专门化机床:用于对形状相似尺寸不同的工件的特定表面,按特定的工序进行加工3、机床按其通用特征可分为高精度精密、自动、半自动、数控、仿形、自动换刀、轻型、万能和简式机床等 第四节机械制造装备设计的类型 机械制造装备设计可分为创新设计、变型设计和模块化设计等三大类 第五节机械制造装备设计的方法 机械制造装备设计的典型步骤 (一)产品规划阶段(二)方案设计阶段 (三)技术设计阶段(四)施工设计阶段 第二章金属切削机床设计 第一节概述 机床设计应满足的基本要求 (1)工艺范围(2)柔性(3)和物流系统的可亲性(4)刚度(5)精度(6)噪声 (7)成产率和自动化(8)成本(9)生产周期 (10)可靠性(11)造型和色彩 机床设计步骤 1、确定结构原理方案 2、总体设计 3、结构设计 4、工艺设计 5、机床整机综合评价 6、定型设计 第二节金属切削机床设计的基本理论 机床的运动学原理 金属切削机床工作原理是通过刀具和工件之间的相对运动,由刀具切除工件加工表面多余的金属材料,形成工件加工表面的几何形状、尺寸,并达到其精度要求。 工件表面的形成方法和机床运动

毕业设计锻造工艺分析与模具设计

锻造模具设计 摘要 模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。随着我国汽车工业的迅猛发展,汽车性能不断提高,汽车零部件中对高精度、形状复杂锻件的需求量越来越大,锻造新工艺、省材、节能工艺等技术的开发对于新型汽车零件的生产尤为重要。我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,差距仍很大,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。 本文主要是以轴类锻件的生产,加工工艺等,设计制造了,一些模具,包括,堕轮锻件的镦粗,终锻等后期加工模具。 首先介绍了,模具的一些简单情况,模具的分类,发展现状和趋势等,其次介绍了,零件的工艺性,毛坯的制定,镦粗,终锻模膛的设计,包括飞边槽的设计。 关键词:模具,终锻模膛,飞边槽,钳口,镦粗

An inert wheel forging the design specification Abstract Mold is mechanical manufacturing technology advanced, profoundly important technical equipment,High production efficiency, material with high efficiency and good quality, technology parts good adaptability etc. Characteristics.Widely used in motor vehicles, machinery, aerospace, aviation, light industry, electronics, electric appliances, instruments and other industries.With the rapid development of China's automobile industry,The car's performance to improve, Auto parts of high precision, complicated shape of forging an increasing demand for,Forging new craft, material, energy saving technology province technology development for new type of car parts production is especially important.Our country stamping die in the number no matter, or in quality, technology and ability are already has great development,But with the national economy needs and the advanced world level, compared to a gap still, Some large, sophisticated, complex, the long life of high-grade die every year in the importation of large still, Especially in high-grade car covering mould, at present still mainly rely on imports. The paper is an inert round of forging production, Processing techniques, Design and manufacturing, some mould, including, fall round of forgings upsetting, eventually forging, and trimming punching production processing mould. Firstly introduces, die some simple case, the classification of mould, development situation and trends,Secondly introduces, the technology of parts, blank the formulation, the upsetting, and the design of the chamber forging die,Including flash slots of design, Introduced again, trimming punching the design of the composite film. Key words:Mould,Finally bore, Flash tank,Clamp mouth,Upsetting,Trimming, punching

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

相关主题
文本预览
相关文档 最新文档