当前位置:文档之家› 汽车电子硬件设计

汽车电子硬件设计

汽车电子硬件设计
汽车电子硬件设计

《汽车电子硬件设计》-详细目录发布时间:2011-05-29 22:58:53

我把目录给整理了一下,并且把一部分以图形的方式画了出来,全部画出来以后可以通过图形化的方式把内容给联系起来,这样对我也是一种直观的整理方式。

对《汽车电子硬件设计》的建议

第0章汽车电子和产业概览

汽车电子企业和汽车电子产业链

汽车电子企业的变化

我国的汽车电子产业

第1章汽车电子环境

1.1 气候与化学环境

基本温度实验、模块的外壳防护等级、湿热试验、化学环境和盐雾1.2 机械负荷

振动、冲击和跌落

1.3 电气负荷

过电压与反电压、开路与短路、地偏移和供电的非理想情况1.4 电磁兼容

电源传导干扰、静电

第2章汽车电子开发流程

2.1 质量体系

TS16949、八项基本原则

2.2 电子产品的开发流程

模块的开发流程、V型过程、职责划分、团队构建、Review方法、文件系统、流程化的思考

第3章汽车电子硬件设计方法

3.1 可靠性预测

元器件失效率计算、失效分布、使用的修正和降额设计

3.2 最坏情况分析

基本介绍、极值分析法、均方根分析、蒙特卡罗分析、PSPICE

3.3 DFMEA

故障解决方法、DFMEA的基本内容

3.4 故障树分析

基本介绍、实际应用

3.5 潜在路径分析

熔丝盒问题、潜在电路的分析

3.6 热分析

稳态的散热计算、热特性参数、PCB导线设置

第4章元器件注意事项

4.1 对于元器件的规范要求

ROHS、氧化和湿敏

4.1 电阻

选值、元件工艺、最坏精度、散热分析、防浪涌能力、大封装问题

4.2 电容

数字电路的噪声、旁路电容和去耦电容、MLCC电容、铝电解电容、钽电容、容值偏差4.3 二极管

特性和参数、稳压管的使用、细致的功耗计算

4.4 三极管

饱和的条件、注意事项

4.5 功率MOSFET管

开启关闭特性、直接耦合驱动电路

三章内容联系

第5章汽车电子低压电源设计

5.1电源反接保护

二极管电路、PMOS管电路、NMOS管电路、继电器、开关控制电路的设计5.2 瞬态抑制

静电电容、TVS管的使用、MOV的使用

5.3 电压监测

迟滞门限和状态图、过压与欠压电路、Bulk电容

5.4 低压降稳压器

稳压原理、LDO的热分析、电容ESR引起的震荡

5.5 静态电流的管理

静态电流的限制、静态电流控制策略

第6章汽车电子输入与输出接口

6.1 输入输出的规范化整理

连接器的选型考虑、I/O功能框图

6.2 开关输入设计的基础要求

开关和线束、输入开关状态分析

6.3 低电平和高电平有效电路接口

设计约束、电路的正向设计、从外部到内部的验证、从内部到外部的验证、实际微调6.4 模拟输入接口

组合开关的电路、电流转换电路

6.5 智能功率器件

开关的功耗分析、感性负载保护、反接保护、故障诊断电路与波形、模拟诊断的计算6.6 继电器应用

继电器参数分析、继电器的各种电压、浪涌电压的抑制、触点保护

第7章主控单元与模块设计

7.1 单片机的输入输出口

IO驱动能力、MCU功耗分析、AD转化误差、内置AD的使用、未使用的引脚

7.2 单片机的时钟与复位

复位详解、时钟选择、高速CAN的时钟精度

第8章电子制图设计

8.1 原理图设计

原理图绘制要点、BOM的整理和规范

8.2 地线策略

地线策略设计目标、地线间的连接处理

8.3印刷电路板的设计

布局规则、走线的规则

8.4 DFM设计

可制造性的设计要点、可测试性设计

8.5印刷电路板的加工过程和工艺

第9章汽车电子工程师的成长与杂谈

9.1 汽车电子硬件工程师的成长

9.2 认识汽车产品质量的重要性

9.3 硬件工作内容和重心的转变

9.4 在组织中学习和规范化改进

9.5 汽车电子领域工程师的工作机会和发展机遇

9.6 给毕业生和在校学生的几条建议

《汽车电子硬件设计》-硬件设计方法发布时间:2011-05-29 22:56:56

其实从一个角度而言,整本书都可以不要,但是这个章节确实需要让每一位在汽车电子领域从事硬件设计的工程师去重视。

一个普遍意义上的问题是,当我们了解完需求,把内动定义好,从电路图设计开始到电路图绘制完成,有什么样的一个形式来说明这个设计是可靠的呢?这个问题的提出是在于,如何能够说服自己和说服整个团队,电路的设计是经过精心考虑的,能够在前期的考虑中,就完全考虑了后面可能出现的问题,包括需要通过的设计验证试验、调试中可能出现的问题、装车过程中可能出现的问题和未来潜在的设计更改。

在以上的示意图中,大概归纳出了失效率&寿命估计、故障&原因分析、极端条件下的最坏情况的分析、潜在电路和潜在的模式分析和稳态和暂态的热状态分析这些内容,作为一个模块的强壮性的依据,换句话来说,也就是设计的靠谱程度。这与在各个方面应用较多的强壮性设计方法,并没有冲突,本质上这块内容可以统统划分到容差分析里头,作为校核电路的内部指标(模块内生性的一些参数)和外部指标(根据系统要求的基本输出参数)。

在汽车中,有着太多的零件,而电子模块往往起着控制的作用,要是它趴下了,一个较小的子系统也就趴下了。以车身控制器为例,车门、车窗、雨刮、车灯和门禁系统,哪个功能失效了,消费者可是要求索赔的,车商还得Cover经销商的问题,一旦累计到某个程度,还必须召回这些车辆。所以在要求电子模块里头,质量问题也就成了最基本的要求,设计使用时间和整个模块的故障率都是要求较高的,毕竟没人要求一个MP3或者电风扇使用15年。

以下为目录,我将努力在每个小节的地方写清楚为什么?和之间的相互联系,作为每章理清思路的开始。在补充以后,有不明白的地方可以提出来。

第3章汽车电子硬件设计方法

3.1模块的可靠性预测

如前面所说的那样,模块的无故障使用时间是需要工程师进行评估的。这是从元件的失效率开始计算模块的子功能系统的失效率,最后大致得出整个模块的失效率,这个指标是需要进行控制的。对于元件失效来说,是需要在实际运行中进行统计得出来的,由于汽车电

子的特殊性,它并不具备自己失效数据库(汽车OEM负责调查汽车质量,控制模块仅仅作为一部分,很难单独进行大量的统计)。不像做军工的可以参考MIL-HDBK-217F2,做通信的可以参考Telcordia Issue或者HRD5。

这项工作需要较多的时间,采取可靠性软件已经把完成简化;在自己需要亲手做的情况下,可以选择元件计数法或应力分析法,前者适用于缺乏足够的时间下得出简要结果,后者是设计到了需要确认的阶段清晰化的结果。

3.1.1 MIL-HDBK-217F

美国的军标是一份久经考验的材料,由于其统计的样本较早,IC企业的工艺和可靠性都有着飞速的提升,以它的数值来进行评估,结果是很悲观并且不太切合实际。因此往往根据这份材料来做一个相对结果,然后根据企业自身的数据对数据进行调整。

仔细看这份材料,里头有着我们使用的所有元件的失效率计算公式,也给出了各个参数所对应的数值,可以根据这些材料手头算算。

3.1.2 元件的失效分布

单个元件的损坏,往往会形成不同的结果,这样的不同表现形式的失效也会对模块产生不同的影响。而我们在分析这些结果的时候,也可以得到这种结果是依照一定的概率进行分布的。217F并不给出失效的分布,338B则给出了完整的失效分布。

3.1.3 分布的简化

事实上,338B给出了太多的失效模式,这使得我们的故障原因和错误树分析会非常复杂,而且我们比较关心一些关键性的失效模式,这样我们就需要对某些分布进行合并和简化。这个事情是需要公司进行积累的,比较简单的方法是找元器件的提供商给出其分析的数据,往往可以较为简单的达到目的。

3.1.4 降额设计

元件的失效率是直接与其各种载荷直接相关的,也就是其标称的值,需要采取一定的降额使用才能达到一个较为理想的结果。而在算完一遍失效率以后,再去调整每个元件的额度是较为痛苦的,因此这里可以参考GJBZ3593进行一个前置的处理。然后根据前面的失效率检查,确认结果才进行调整,后续的工作会做得有效些。

3.2 最坏情况分析

PS:做这项工作时间最久,也最有感情。

元件的失效往往不一定在稳定的状态下,有时候是在恶劣的环境下,各种载荷和条件集中在一起的时候,使得模块突然超过了其容忍程度。因此估计在各种最坏条件下,模块中的电路的各种参数和特性是非常有必要的。这里需要保证,模块的各个主要功能符合规定的范

围,实际状态达不到损坏的范围,因此热状态的分析往往是最坏情况分析的一个主要研究对象,这部分内容与热分析有着一定的重叠和交叉。

我们要分析的误差,大概可分为初始偏差、汽车环境变化引起的偏差和退化效应引起的部分。对于数字电路和模拟电路分别有着需要关注的内容,方法一般有三种,极值法、均方根法和蒙特卡洛。

3.2.1 整合复杂的情况

最基础的情况,是需要把每个元件建立起基础的参数文档。一个最为简单的例子,是将电阻的精度,在各种条件下的最坏值给计算出来,我们看到的精度是正常状态下的。

另外一个重要的事情,是得把电路分析的方法找回来,由于计算过程中需要引入大量的模型,构成的回路较多。可能需要在节点电压法和网孔电流法的支持下,使用矩阵进行运算。

3.2.2 极值分析法

相对而言,这是最悲观和最简单的方法,将所有的输入参数分为上限和下限,就可以得到整个电路的上限和下限。至于如何选择,则可以用灵敏度和求导方法求取上下限参数组合。

3.2.3 均方根分析

相对乐观一点,也把某些坏的情况忽略了,将所有的参数的方差整理出来,得出系统的方差,然后选择覆盖模块的概率范围。

3.2.4 蒙特卡罗分析

采用随机抽样的方法是较为简单的,不停的在一个范围内进行随机数代入,得出系统的分布的柱状图,能够精确的知道模块在大量应用的实际情况。这是必不可少的步骤,在计算中需要一些技巧,我做了一个例子。

3.2.5 PSPICE的应用

用软件的方法当然是简单的,但是模型建立也需要费时间,一般作为某些电路分析的必要内容。我其实推荐大家使用Mathcad,可以做得更为精确,特别是熬过初始的建立的那个阶段。

3.3 FMEA失效模式的影响分析

在一个相对复杂的系统中,如果不能从减少潜在故障的角度去考虑问题,将可能收获诸多的问题。在国际汽车质量要求越来越苛刻的条件下,汽车电子模块中进行失效模式的分析是非常有必要的。由于这块内容需要更多经验,我曾经做过的东西好像实在是有些差距,这里只是给出了一些基本的参考材料。

3.3.1 找问题

这里要说的,是我当初在涉及寻找故障中采取的一些标准化方法。当初的某个车在路试的时候,转向灯的驱动电路烧毁,光是寻找这个原因就花费了大量的时间,最后找到的原因是门锁驱动抑制感性没做好。按照当初的看法,如果有一份完整的DFMEA,长时间的无头绪调查和排查型实验毫无价值。

3.3.2 实际内容

这部分整理了一些基础的内容,由于没有太多经验,只能尽力写些基础的材料,篇幅不大。

3.4 故障树分析

故障树在某些故障的分析过程中,是一种非常好用的工具,在分析某些重大的故障和问题的时候,相对给力。

3.4.1 树形结构

篇幅不大,主要介绍一些基础的东西。

3.4.2 实现操作的方法

定性和定量的方法里头,定量的需要建立一个事件的数据库,这里花了一些篇幅介绍一块免费软件的操作。

3.5 潜在路径分析

汽车电气里头有着熔丝盒,在某些地方可能熔断的情况下,或者因为运输需要取下某些熔丝的时候,为了不让不同的输入之间产生“潜入”,这项工作是非常必要的。

3.5.1 “熔丝”问题

当某些模块存在上拉的负载,而本身电源熔丝取下的时候,是重点分析的对象。

3.5.2 意想不到的潜在电路

这里指电源内部不同电源(12V和5V或者其他电压轨),为了保护,可能采取钳位,另一方面就可能会有问题,举了个典型的例子来分析情况。

总体而言,潜入路径是一种系统分析方法,是要把所有的负载和电源,内部电压轨之间进行系统性分析。在某些情况下,可能需要进入IC级别分析,特别是目前IC集成了越来越多的功能,不注意这点,到时候发生问题找不到哭都哭不出来。

3.6 模块热分析

汽车电子模块的环境温度很苛刻,即使是汽车级别的器件,在某些时候散热功率也随着环境变化的,这里需要仔细核算。车身电子好像总体问题不大,EV和HEV的功率电子的应用才是关键,因此我在本文中仅仅是开了个头,这本书里头想要对此深入搞下去肯定是不可能的,以后等这本书顺利出出来,有时候我会努力的整理一些汽车功率电子热分析的材料给大家,这样可能更有意义。

3.6.1 稳态的散热计算方法

介绍各种元件的发热计算方法,和基本概念如热阻等的定义,以及实际的情况。

3.6.2 热效应系数

这里介绍的较为简单,主要是在不同的给出条件下,对前小节的补充。

3.6.3 板上印制线

亲眼见到过PCB上某段线因为过温而导致问题的发生,因此在这里评估在超过一定的电流时候,电路板的宽度设计。在功率电子中,可能采取铜条等方法,这里给出的是一些基础而细致些的分析。

整个章节原文看下来,由于我个人的笔力问题,因此编辑告诉我她硬是看不出来这些方法是汽车电子的设计方法。我想摆在这里,写得好的固然可取,写得不好的,得劳驾同行们自己去寻找更好的方法,共享个人的一些经验。

写到这里,我似乎有些忧郁了,不管最后出得了出不了,肯定是毁誉参半,砸块砖头出来大家别失望。现在是出师未捷……

汽车电子硬件设计

《汽车电子硬件设计》-详细目录发布时间:2011-05-29 22:58:53 我把目录给整理了一下,并且把一部分以图形的方式画了出来,全部画出来以后可以通过图形化的方式把内容给联系起来,这样对我也是一种直观的整理方式。 对《汽车电子硬件设计》的建议 第0章汽车电子和产业概览 汽车电子企业和汽车电子产业链 汽车电子企业的变化 我国的汽车电子产业

第1章汽车电子环境 1.1 气候与化学环境 基本温度实验、模块的外壳防护等级、湿热试验、化学环境和盐雾1.2 机械负荷 振动、冲击和跌落

1.3 电气负荷 过电压与反电压、开路与短路、地偏移和供电的非理想情况1.4 电磁兼容 电源传导干扰、静电 第2章汽车电子开发流程 2.1 质量体系 TS16949、八项基本原则

2.2 电子产品的开发流程 模块的开发流程、V型过程、职责划分、团队构建、Review方法、文件系统、流程化的思考 第3章汽车电子硬件设计方法 3.1 可靠性预测 元器件失效率计算、失效分布、使用的修正和降额设计 3.2 最坏情况分析 基本介绍、极值分析法、均方根分析、蒙特卡罗分析、PSPICE 3.3 DFMEA 故障解决方法、DFMEA的基本内容 3.4 故障树分析 基本介绍、实际应用 3.5 潜在路径分析 熔丝盒问题、潜在电路的分析 3.6 热分析 稳态的散热计算、热特性参数、PCB导线设置

第4章元器件注意事项 4.1 对于元器件的规范要求 ROHS、氧化和湿敏 4.1 电阻 选值、元件工艺、最坏精度、散热分析、防浪涌能力、大封装问题 4.2 电容 数字电路的噪声、旁路电容和去耦电容、MLCC电容、铝电解电容、钽电容、容值偏差4.3 二极管 特性和参数、稳压管的使用、细致的功耗计算 4.4 三极管 饱和的条件、注意事项

分布式汽车电气电子系统设计和实现架构

分布式汽车电气电子系统设计和实现 架构

分布式汽车电气/电子系统设计和实现架构在过去的十几年里,汽车的电气和电子系统已经变得非常的复杂。今天汽车电子/电气系统开发工程师广泛使用基于模型的功能设计与仿真来迎接这一复杂性挑战。新兴标准定义了与低层软件的标准化接口,最重要的是,它还为功能实现工程师引入了一个全新的抽象级。 这提高了软件组件的可重用性,但不幸的是,关于如何将基于模型的功能设计的结果转换成高度环境中的可靠和高效系统实现方面的指导却几乎没有。 另外,论述设计流程物理端的文章也非常少。本文概述了一种推荐的系统级设计方法学,包括、分布在多个ECU中的网络和任务调度、线束设计和规格生成。 为什么需要AUTOSAR? 即使在同一家公司,“架构设计”对不同的人也有不同的含义,这取决于她们站在哪个角度上。物理架构处理系统的有形一面,如布线和连接器,逻辑架构定义无形系统的结构和分配,如软件和通信协议。当前设计物理架构和逻辑架构的语言是独立的,这导致相同一个词的意思能够完全不同,设计团队和流程也是独立的,这也导致了一个非常复杂的设计流程(如图1所示)。

图1:物理和逻辑设计流程。 这种复杂性导致了次优设计结果,整个系统的正确功能是如此的难于实现,以致于几乎没有时间去寻求一种替代方法,它可导致更坚固的、可扩展性更好的和更具成本效益的解决方案。为了实现这样一种解决方案,设计师需要新的方法,它能够将物理和逻辑设计流程紧密相连,并依然允许不同的设计团队做她们的工作。 新兴的AUTOSAR标准为系统级汽车电子/电气设计方法学提供了一个技术上和经济上都可行的选择,尽管它主要针对软件层面,即逻辑系统的设计。不过,大量广泛的AUTOSAR元模型及其丰富的接口定义允许系统级电子/电气架构师以标准的格式表示她的设计思想。从经济上看,AUTOSAR标准打开了一个巨大的、统一的市场,它使得能够创立合适的设计工具。

基于单片机的智能汽车仪表的设计

版本:doc 毕业设计 基于单片机的智能汽车仪表的设计

摘要 汽车仪表是汽车的重要部件之一,能集中、直观、迅速地反映汽车在行驶过程中的各种动态指标,如行驶速度、里程、电系状况、制动、压力、发动机转速、冷却液温度、油量、指示灯状态,它是驾驶员能够直接了解汽车状况的一个窗口,为驾驶员正确使用汽车及安全驾驶提供了保证。随着电子技术的发展,越来越多的新技术在汽车制造业得到了广泛的应用。如微处理器在汽车上的应用,能使得各种数据的处理进一步加快,从而提高了实时性。相对于传统的动磁式和动圈式机芯汽车仪表的体积大、可靠性差、准度低的缺点,用步进电机来驱动指针的汽车仪表具有体积小、重量轻、可靠性高、抗千扰能力强、指示准确、兼容性和通用性强、生产和检测工艺简单等优点,该类仪表已成为当今世界汽车仪表的发展趋势。 在对新型汽车传感器、步进电机的工作原理还有单片机控制技术的了解和分析的基础上,结合传统的汽车仪表工作原理,设计一个由单片机控制步进电机驱动指针的汽车智能数字仪表。该智能数字仪表采用统一的步进电机结构,所有传感器采集的车速、转速、燃油的模拟或数字信号量全部转换成驱动步进电机的数字信号,由单片机处理完后,将驱动量信号输送到各自的步进电机指示仪表。 实验结果表明,基于单片机的步进电机式汽车智能数字仪表有着很好的效果,能准确的显示车速、转速、燃油、机油压力等信息,还增强了仪表的适应性,其可靠性得到了提高。 关键词:汽车仪表,步进电机,单片机。

目录 第1章绪论 (5) 1.1课题提出的背景 (5) 1.2国内外研究现状 (6) 1.3论文研究的主要内容 (7) 第2章汽车智能数字仪表电子技术基础 (8) 2.1电子技术在汽车仪表技术中的应用 (8) 2.2汽车智能数字仪表的基本结构 (9) 2.2.1电子式转速表 (9) 2.2.2 车速表 (9) 2.2.3里程表 (9) 2.2.4燃油表、机油压力表 (10) 2.3基于步进电机的汽车智能数字仪表技术基础 (10) 第3章汽车智能数字仪表的硬件设计 (13) 3.1汽车智能数字仪表的设计目标 (13) 3.2汽车智能数字仪表的设计技术路线 (13) 3.3汽车智能数字仪表中关键器件的选择 (13) 3.3.1微处理器的选择 (13) 3.3.2步进电机的选择 (14) 3.3.3 电源电路设计 (15) 3.3.4时钟电路 (16) 3.3.5复位电路 (17) 3.4汽车智能数字仪表中主要电路的设计 (17) 3.4. 1车速里程表 (17) 3.4.2发动机转速表 (22) 3.4.3燃油表 (24) 3.4.4机油压力表 (27) 3.5汽车智能数字仪表的设计 (29) 3.5.1设计的基本思想 (29) 3.5.2智能数字仪表的设计框图 (29) 3.5.3主要功能 (29) 第四章汽车组合仪表的软件设计 (31) 4.1软件设计思想 (31) 4.1.1语言选择 (31) 4. 1.2程序的模块化设计 (32) 4.2主程序的设计 (34) 4.2. 1初始化模块 (34) 4.2.2主程序模块 (34) 4.2.3中断处理模块 (35) 4.3主要子程序的设计 (35) 4.3. 1指针驱动子程序设计 (35)

分布式汽车电气电子系统设计和实现架构

分布式汽车电气/电子系统设计和实现架构在过去的十几年里,汽车的电气和电子系统已经变得非常的复杂。今天汽车电子/电气系统开发工程师广泛使用基 于模型的功能设计与仿真来迎接这一复杂性挑战。新兴标准定义了与低层软件的标准化接口,最重要的是,它还为功能实现工程师引入了一个全新的抽象级。 这提高了软件组件的可重用性,但不幸的是,关于如何将基于模型的功能设计的结果转换成高度环境中的可靠和 高效系统实现方面的指导却几乎没有。 此外,论述设计流程物理端的文章也非常少。本文概述了一种推荐的系统级设计方法学,包括、分布在多个ECU中的网络和任务调度、线束设计和规格生成。 为什么需要AUTOSAR? 即使在同一家公司,“架构设计”对不同的人也有不同的含义,这取决于他们站在哪个角度上。物理架构处理系统的有形一面,如布线和连接器,逻辑架构定义无形系统的结构和分配,如软件和通信协议。目前设计物理架构和逻辑架构的语言是独立的,这导致相同一个词的意思可以完全不同,

设计团队和流程也是独立的,这也导致了一个非常复杂的设计流程(如图1所示)。 图1:物理和逻辑设计流程。 这种复杂性导致了次优设计结果,整个系统的正确功能是如此的难于实现,以致于几乎没有时间去寻求一种替代方法,它可导致更坚固的、可扩展性更好的和更具成本效益的解决方案。为了实现这样一种解决方案,设计师需要新的方法,它可以将物理和逻辑设计流程紧密相连,并仍然允许不同的设计团队做他们的工作。 新兴的AUTOSAR标准为系统级汽车电子/电气设计方法学提供了一个技术上和经济上都可行的选择,尽管它主要针对软件层面,即逻辑系统的设计。不过,大量广泛的AUTOSAR 元模型及其丰富的接口定义允许系统级电子/电气架构师以标准的格式表达他的设计思想。从经济上看,AUTOSAR标准

汽车电路系统设计规范

汽车电路系统设计规范一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常用符号制定奇瑞公司的电气图形符号库,若有新的器件没有相应的符号可以根据需要经电器部相关设计人员讨论通过后添加到该库里,以不断丰富更新符号库。

TQ4/1. 电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常用的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电路、电器件零部件组成,比如空调需要确定蒸发器结构类型、风门控制机构数量、传感器数量、电子调速器、压缩机类型、冷凝器类型等,并应开始编制初级BOM表; ②电器件的额定电压、工作电压范围、额定功率的确定; ③额定工作电流、最大工作电流(电机阻转状态)、静态耗电电流的确定(≤3mA)。 3.2电路原理图:根据各单元的功能确定需要整车输入的哪些信号,输出哪些信号,信号的类型(触发信号,脉冲频率信号,高电平或者低电平信号),信号参数。控制方面应该考虑继电器

汽车电动助力转向系统(EPS)硬件设计

内容摘要 电动助力转向( Electric Power Steering, 简称EPS) 作为一种新型转向系统, 因其具有节能、环保等优点而受到世界各大汽车公司和企业的青睐, 它将逐步取代传统的液压助力转向系统(Hydraulic Power Steering, 简称HPS) 。 本文以传统的转向柱助力式EPS 为研究对象, 建立EPS系统数学模型,给出了汽车电动助力系统的动力学方程。根据电动助力转向系统的工作原理及控制器可靠设计的关键技术,设计了以P87C591 单片机为主控单元的EPS系统,系统采用闭环电流控制方案, 利用目标电流技术调节电机端电压达到控制电机电流力矩的目的。EPS 控制器采用模块化设计,把信号处理电路和功率驱动电路进行分层设计,以增强系统的抗干扰能力和可靠性。在进行PWM 驱动频率的选择时,考虑开关时电流脉峰对开关管及电动机安全的影响。最后通过研究分析了EPS系统的经济性、系统硬件电路板空间与发热功耗及可靠性合理地选择散热片及其参数,提高了驱动效率和稳定运行能力。 实验表明, 该系统具有良好的电动助力特性, 满足电动助力转向要求,证明了这种系统在实际应用中的有效性。 关键词 电动助力转向; 单片机; H桥驱动; PWM斩波; 控制系统

Hardware Design of the Electric Power Assisted Steering System 050607337 Zhangqiang Instructor:Helinlin Associate professor Abstract Electric power steering is a new power steering technology for vehicles. Merit such as energy conservation , environmental protection that the person has accepts the respectively big automobiles of world company and the enterprise favour , home and abroad developing trend is to use electric power-assistance to change to the hydraulic pressure power-assistance vergence substituting tradition step by step. The mathematic model the main body of a book is established systematically with dyadic EPS of the tradition vergence post power-assistance for the object of study,has given an automobile out electric systematic power-assistance dynamics equation , has combined classics control theory and the optimization algorithm, the parameter carries out validity in applying to reality having studied , testifying this system on systematic power-assistance. This paper presents an elect ricpower steering system controlled by P87C591 microp rocessor. The motor given torque is computed by expertcontrol system. The practical output torque is closed-loop controlled.

汽车电路系统设计要求规范

汽车电路系统设计规范 一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常用符号制定奇瑞公司的电气图形符号库,若有新的器

件没有相应的符号可以根据需要经电器部相关设计人员讨论通过后添加到该库里,以不断丰富更新符号库。

电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常用的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电路、电器件零部件组成, 比如空调需要确定蒸发器结构类型、风门控制机构数量、传感器数 量、电子调速器、压缩机类型、冷凝器类型等,并应开始编制初级 BOM表; ②电器件的额定电压、工作电压范围、额定功率的确定; ③额定工作电流、最大工作电流(电机阻转状态)、静态耗电电流的 确定(≤3mA)。 3.2电路原理图:根据各单元的功能确定需要整车输入的哪些信号,输出哪些信号, 信号的类型(触发信号,脉冲频率信号,高电平或者低电平信号), 信号参数。控制方面应该考虑继电器控制还是集成电路控制,对于 CAN-BUS需确定该单元的控制信息,系统状态实时检测信息,以 及故障检测信息需不需要在CAN上公布等。单元电路的设计输出

整车电气系统设计手册

系统设计篇第一章电路系统设计综述........................................ 1.1整车电路设计的开发流程 ....................................... 1.2各开发阶段简介.......................................... 121整车电路的概念设计.................................. 122产品工程设计阶段..................................... 1.2.3设计验证....................................... 1.2.4产品认可....................................... 第二章电路系统概念设计........................................ 2.1设计输入............................................. 2.1.1产品的开发类型.................................... 2.1.2产品的基本信息.................................... 2.1.3配置表....................................... 2.2数据分析............................................. 2.2.1整车配置分析...................................... 2.2.2电器功能分析:.................................... 2.2.3知识产权分析...................................... 2.2.4重大、典型历史质量风险排除................................ 2.3BENCH MARK测试......................................... 2.3.1整车电器功能测量...................................... 2.3.2拆车过程电器性能测试.................................... 2.33拆车后零部件测试分析..................................... 2.4概念设计........................................... 2.4.1单元电路图初步设计.................................. 2.4.2设计构想书的编制.................................... 2.4.3整车控制策略的编制.................................. 2.4.4FMEA 编制 ..................................... 第三章电路系统工程设计....................................... 3.1整车电路设计........................................... 3.1.1单元电路图设计.................................... 3.1.2电路保护设计........................................ 3.1.3电路负载的分配.................................... 3.1.4电路集成....................................... 3.1.5导线选择....................................... 3.2电源系统设计............................................. 3.2.1蓄电池......................................... 电源管理系统......................................... 3.3电器盒............................................. 系统简要说明......................................... 3.3.2设计构想......................................... 3.4.3设计参数......................................... 3.4.4环境条件.........................................

汽车电子硬件设计

《汽车电子硬件设计》 我把目录给整理了一下,并且把一部分以图形的方式画了出来,全部画出来以后可以通过图形化的方式把内容给联系起来,这样对我也是一种直观的整理方式。 对《汽车电子硬件设计》的建议 第0章汽车电子和产业概览 汽车电子企业和汽车电子产业链 汽车电子企业的变化 我国的汽车电子产业

第1章汽车电子环境 1.1 气候与化学环境 基本温度实验、模块的外壳防护等级、湿热试验、化学环境和盐雾1.2 机械负荷 振动、冲击和跌落

1.3 电气负荷 过电压与反电压、开路与短路、地偏移和供电的非理想情况1.4 电磁兼容 电源传导干扰、静电 第2章汽车电子开发流程 2.1 质量体系 TS16949、八项基本原则

2.2 电子产品的开发流程 模块的开发流程、V型过程、职责划分、团队构建、Review方法、文件系统、流程化的思考 第3章汽车电子硬件设计方法 3.1 可靠性预测 元器件失效率计算、失效分布、使用的修正和降额设计 3.2 最坏情况分析 基本介绍、极值分析法、均方根分析、蒙特卡罗分析、PSPICE 3.3 DFMEA 故障解决方法、DFMEA的基本内容 3.4 故障树分析 基本介绍、实际应用 3.5 潜在路径分析 熔丝盒问题、潜在电路的分析 3.6 热分析 稳态的散热计算、热特性参数、PCB导线设置

第4章元器件注意事项 4.1 对于元器件的规范要求 ROHS、氧化和湿敏 4.1 电阻 选值、元件工艺、最坏精度、散热分析、防浪涌能力、大封装问题 4.2 电容 数字电路的噪声、旁路电容和去耦电容、MLCC电容、铝电解电容、钽电容、容值偏差4.3 二极管 特性和参数、稳压管的使用、细致的功耗计算 4.4 三极管 饱和的条件、注意事项

汽车电器系统布置指南

整车技术部设计指南 100 第 10 章电器系统布置 10.1 概述 随着汽车技术的不断发展,汽车电子在整车性能及舒适性等方面所发挥的作用越来 越重要,而前舱布置了发动机、变速箱等重要系统,是整车各类系统的终端,同时工作 环境恶劣,因此电器系统在前舱中的布置要求很高,下面将详细介绍。 10.2 空调管路及冷凝器 空调是改善车内环境的系统,在前舱中有压缩机、冷凝器、干燥瓶及管路四个部件; 压缩机通过支架固定在发动机上,如图 10.1 图 10.1 图 10.2

整车技术部设计指南101 冷凝器是一个换热设备,一般布置在散热器前方,在车辆行驶时使风能够通过进气 隔栅吹到冷凝器表面;冷凝器的布置没有过多的要求,一般情况下与散热器集成为一个 系统布置在前保横梁后方,有时因前保隔栅通风孔比较大,在车外会透过前保隔栅看到 银色的冷凝器,不是很美观,只需令供应商将其涂成黑色即可;干燥瓶一般布置在冷凝 器附件,为的是减少干燥瓶到冷凝器的管路长度,干燥瓶与冷凝器均固定在车身上,因 此以硬铝管连接,目前应用与S18的过冷式 冷凝器 图10.3 冷凝器已将干燥瓶与冷凝器集成一体,减少了管路,布置时已不需要考虑干燥瓶; 空调的管路由高低压两根管路组成,高压管连接HVAC到干燥瓶,低压管连接HVAC 到压缩机,其中低压管中间部分采用橡胶管来滤除发动机的抖动;在总布置工作中,关 于空调管主要考虑布置后期的加注操作,如下图: 图10.4 空调管路走向的设计建议尽量 贴着钣金走,不要弯折过大的角 度,以免供应商的供货尺寸不精 准

整车技术部设计指南 102 一般的空调加注设备尺寸:R :20mm ,H :120mm ,在管路布置结束后需要校核加 注操作的可行性; 空调管路在前挡板上的接头处需要50mm 折管路,此处需注意管路和发动机的间隙要在以免发动机抖动碰撞到空调管路图 10.5 图 10.6 一般空调高压管全部采用硬管,需要添加两个固定点,低压管橡胶管距离发动机轮 系比较近,在设计时需考虑此处的间隙要大于 30mm ; 10.3 灯具与喇叭 大灯的法规性及安装性方面的校核是由电器专业工程师完成的,总布置方面的工作 主要是检查大灯调节及更换灯泡的便利性: 图 10.7 目前三院开发的小型乘用车因成本较低,采用的灯具均为手调大灯,在汽车出厂前 需要调节配光,如上图所示,在调节时需要保证工具能够伸入到红色的调节机构内,因

大陆汽车电子硬件笔试题

硬件测试题 一、单选题 1. 石英晶体发生串联谐振时,呈现 A.电感性 2. 场效应管是 A.电流 B.纯阻性控制器件。 B.电压负反馈。 C.电流串联。 C.电容性 3. 为稳定输出电压、减小输入电阻,应引入 A.电压串联 B.电压并联 D.电流并联 4. 图示电路,已知 Ui=12V,二极管是理想的,则输出电压 Uo 为 A.-3V B.3V C.12V 。 5. 变压器耦合放大电路能放大 A.直流 B.交流 信号,直接耦合放大电路能放大 C.交、直流 信号。 6. 图示放大电路中,(a) T1、 2 分别是图中 T 接法,(b) T1、 2 分别是图中 T 法。 A.共集-共基 B.共射-共集 C.共射-共基 D.共集-共射 接 (a)图(a)放大电路是 A.阻容 (b)耦合方式。。 耦合方式,图(b)放大电路是 B.变压器 C.直接 7.为了获得输入电压中的低频信号,应选用电路。 A.HPF B.LPF C.BPF D.BEF 8.某滤波电路的传递函数为 Au s)( = A.HPF B.LPF 1 ,请问该滤波电路是 1 + 3s + s 2 C.BPF D.BEF 。 9. 电路如图 1-6 所示,设二极管正向压降为 0.7V。 a、截止的二极管为;

A. B. C. D. D1 D2 D3 D4 b、A、O 两端的电压值为。 A.1.4V B.4.3V C.3.6V D.2.9V 10. 有两个放大倍数相同、输入和输出电阻不同的放大电路 A 和 B,对同一个具有内阻的信。号源电压进行放大。在负载开路的条件下测得 A 的输出电压小。这说明 A 的 A.输入电阻大 B.输入电阻小 C.输出电阻大 D.输出电阻小 11.在图示差分放大电路中,若 uI = 20 mV,则电路的 。 A.差模输入电压为 10 mV,共模输入电压为 10 mV。 B.差模输入电压为 10 mV,共模输入电压为 20 mV。 C.差模输入电压为 20 mV,共模输入电压为 10 mV。 D.差模输入电压为 20 mV,共模输入电压为 20 mV。 12.正弦波振荡器的振荡条件为 A. A F = 1 . 。 C. A F = 0 . B. A F = 1 . D. A F = 1 . 13. 测得图示放大电路中晶体管各电极的直流电位如图所示,由此可知该管为 。 A.Ge,PNP 管 B.Ge,NPN 管 C.Si, PNP 管 D.Si, NPN 管 14.通用型集成运放的输入级采用差动放大电路,这是因为它的 A.输入电阻高 B.输出电阻低 C.共模抑制比大 D.电压放大倍数大 15.RC 桥式正弦波振荡电路由两部分电路组成,即 RC 串并联选频网络和 A.基本共射放大电路 B.基本共集放大电路 C.反相比例运算电路 D.同相比例运算电路 16. 三极管工作在开关状态下,其“关”态和“开态,分别指三极管的 A.截止状态和饱和状态 B.截止状态和放大状态 C.放大状态和饱和状态 D.饱和状态和截止状态 17. DAC 的转换精度决定于 A.分辨率 B.转换误差 C.分辨率和转换误差 18. 欲将不规则的输入波形变换为幅度和宽度都相同的矩形脉冲,应选择。

汽车电路系统设计规范

汽车电路系统设计 规范 1 2020年4月19日

汽车电路系统设计规范 一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常见 2020年4月19日

符号制定奇瑞公司的电气图形符号库,若有新的器件没有相应的符号能够根据需要经电器部相关设计人员讨论经过后添加到该库里,以不断丰富更新符号库。 3 2020年4月19日

1.2 读图的方式见下面说明简图 2020年4月19日

电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常见的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电 路、电器件零部件组成,比如空调需要确 定蒸发器结构类型、风门控制机构数量、 传感器数量、电子调速器、压缩机类型、 冷凝器类型等,并应开始编制初级BOM 表; ②电器件的额定电压、工作电压范围、额定功 率的确定; ③额定工作电流、最大工作电流(电机阻转状 5 2020年4月19日

汽车电气系统设计说明书

电气系统设计说明书 一、设计依据 根据奇瑞MMPV运动型多功能轿车开发目标的要求及其系列配置的要求,参考国内同类型的车型,结合奇瑞公司的生产制造能力进行开发设计。 二、达到目标 该车型的电气设计从按整车的最高配置进行设计,设计过程中把所有的电气选装件都纳入设计范围内,从而满足该车型的从经济型到豪华型的系列配置。 三、设计方案 根据设计任务书的要求,结合电气系统的分类,就整车的电气系统进行以下方案的确定。首先把电气系统按基本配置和选装配置进行分类确定。 (一)、基本配置: 1、电源启动系 电源起动系主要是确定起动机、蓄电池、发电机、电压调节器等电器件的类型和型号型号和规格大小。 (1)起动机的确定 a、起动机类型的确定 首先根据选定的发动机确定启动机(如果发动机未带启动机),起动机按控制装置一般分为: ①接操纵式起动机发动机 ②电磁操纵式起动机 我们选用流行的电磁操纵式起动机。 b、起动机功率的确定 选定后我们可以根据以下的计算公式确定启动机的大小: P=Mn/716.2(马力) (1马力=735W) 起动机的输出功率P可以通过测量电枢轴上的输出转矩M和电枢的转速n来确定。 M是发动机的起动阻力矩,单位Kg.m(1Kg.m=9.8N.m),也可以通过发动机的工作容积V求出,其经验公式为: 汽油发动机:M=(3.5~4)V 但目前的发动机大多直接配带起动机,因此需要选型的较少。

(2)蓄电池的确定 a、蓄电池类型的确定 蓄电池的主要作用是向起动机提供大的起动电流、整车用电器供电和在发电机发电时蓄能。蓄电池分为普通蓄电池和改进型铅(酸)蓄电池。我们根据该车型的特点选用免维护铅蓄电池。 b、蓄电池容量的确定: 现起动机的额定功率为P S k W,根据经验公式 Q20=(500-600)P S/U得知, Q20MAX=500×P S /12×735= (A.h) Q20MIN=600×P S /12×735= (A.h) 根据初步选用的DA465 16M/C1发动机我们可以却动确定起动机功率为0.8k W。蓄电池容量为45A.h (3)发电机的确定 a、发电机类型的确定 发电机是汽车的主要电源,其功用是:在发动机正常工作转速范围内,向汽车的用电设备(起动机除外)供电,当蓄电池的电量不足时向蓄电池供电。目前汽车上的发电机大都采用交流发电机,交流发电机可分为普通型和改进型两大类。改进型的如内装调节器(整体式)、带泵型、永磁型等。根据该类型车的特点及整车电器件的情况我们选用整体式交流发电机(JFZ型)。 b、发电机功率大小的确定 根据整车用电设备功率的大小,为了保证整车的电量平衡,我们需要确定发电的功率大小,此外还要考虑发电机的大小,使发电机能得到合理的利用。 发电机的功率确定主要按以下方式进行: 1)、首先测定所有持久耗电和长期耗电电器在14V时的功率需用量。根

单片机硬件电路设计

单片机应用设计

概述 单片机是一种大规模的具有计算机基本功能的单片 单片机是一种大规模的具有计算机基本功能的单片集成电路。可以与少量外围电路构成一个小而完善的计算机系统。芯片内置和外围的电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机具有体积小、功耗低、控制功能强、扩 单片机具有体积小、功耗低、控制功能强、扩展灵活、使用方便等优点,广泛应用于仪器仪表、家用电器、医用设备、航空航天、通信产品、智能玩具、汽车电子、专用设备的智能化管理及过程控制等领域。 制等领域。

单片机类型 集中指令集(CISC)和精简指令集(RISC)–采用CISC结构的单片机数据线和指令线分时复 用,即所谓冯.诺伊曼结构。它的指令丰富,功 能较强,但取指令和取数据不能同时进行,速度 受限,价格亦高。 –采用RISC结构的单片机,数据线和指令线分离 ,即所谓哈佛结构。这使得取指令和取数据可同 时进行,且由于一般指令线宽于数据线,使其指 令较同类CISC单片机指令包含更多的处理信息 ,执行效率更高,速度亦更快。同时,这种单片 机指令多为单字节,程序存储器的空间利用率大 大提高,有利于实现超小型化。

常用的几个系列单片机 MCS-51及其兼容系列: –英特尔公司的MCS-51系列单片机是目前应 用最广泛的8位单片机之一,并且ATMEL、 PHILIPS、ADI、MAXIM、LG、 SIEMENS等公司都有其兼容型号的芯片。 这个系列的单片机具有运算与寻址能力强, 存储空间大,片内集成外设丰富,功耗低等 优点,其中大部分兼容芯片都含有片内 FLASH程序存储器,价格便宜。适合应用于 仪器仪表、测控系统、嵌入系统等开发。

汽车电子控制器(ECU)的硬件设计流程

汽车电子控制器(ECU)的硬件设计流程 汽车电子控制器(ECU)的开发和任何电子产品的开发流程基本是相同的,需要硬件、软件、测试三方面的工程师去完成。 在设计流程上一般又分为功能样件、测试样件(一般两轮甚至更多)、量产件。不同阶段的样件主要的任务不同,设计和测试关注的重点也会不一样。 如果有硬件开发经验的,可以跳过这一段,直接到最后。 一、硬件设计 1.项目需求分析 项目需求的分析是设计任务开始的第一步,一份完善的项目需求一般包含了控制器的功能、MCU性能要求、外部电气架构、工作环境、安装位置、工作环境、工作电压范围、外部负载参数、诊断需求、目标成本等内容,有了这些内容,开发人员就可以根据自己的内容进行设计工作了,当然项目需求是一个时常会变的东西,这变化也是硬件设计痛苦的来源之一。 2.硬件总体方案设计和器件选型 根据外部的负载和接口需求,基本可以确定出硬件的总体方案:几路ADC、几路数字输入、几路CAN、几路LIN、几路高低边驱动等等。然后根据所需的接口数量进行器件选型,这里要考虑成本、平台成熟度、芯片供应商配合程度、供货周期等因素。在一个成熟的公司,针对不同的应用都会有一些成熟的平台(类似于整车的平台化),比如车身控制器选16位某芯片、车机选32位某芯片。如果项目成本卡的很严,那可能就要发挥硬件工程师的创造力了,用三极管电阻电容做出功能强大的电路。 3.原理图设计、结构设计、PCB设计 器件选型完成,元器件都入库完毕以后就可以开始原理图设计了,根据项目需求和自己的经验去将原理图和芯片的外围电路细化,此时除了考虑功能实现,还需要关注故障诊断、电气性能和电磁兼容相关的问题:防静电、信号完整性、外部负载功率、防反接、防掉电、

电动汽车高压电气系统安全设计

纯电动汽车高压电气系统安全设计摘要:在电动汽车研发安全设计中,纯电动汽车安全设计除与传统燃油车一样考虑乘员的主动安全与被动安全外,还需重点考虑动力电池系统和高压系统安全。为解决纯电动汽车高压电系统的安全问题,文章对高压部件和高压线束防护与标识、预充电回路保护、高压设备过载/短路保护、绝缘电阻检测、动力电池电流电压检测、高压接触器触点状态检测、高压互锁电路检测、充电互锁检测、高压系统余电放电保护以及碰撞安全等高压系统潜在的安全问题提出了相应的解决方案,形成一整套完整的电动汽车高压电气系统的安全设计方案。该方案能确保电动汽车高压系统安全可靠地运行。关键词:纯电动汽车;高压电气系统;高压触点;绝缘电阻;高压互锁;碰撞安全。 现代电动汽车一般分为纯电动汽车、混合动力汽车、燃料电池电动汽车、外接式可充电混合动力汽车及增程式电动汽车。纯电动汽车是指完全由蓄电池提供电力驱动的电动汽车,工作电压高达几百伏,远远高于安全电压。且高压系统工作时放电电流有可能达到数十安,甚至高达上百安[1]。当高压电路发生绝缘、短路及漏电等情况时,会直接对驾乘人员的人身生命财产安全造成危害。 因此,在设计高压系统和对高压系统关键部件进行选型时,不仅要满足整车驱动的要求,还必须确保驾乘人员和汽车运行环境安全。因此,纯电动汽车整车的电气系统安全性已成为评价纯电动汽车安全性的一项重要指标。文章简述了某公司纯电动轿车高压电气系统的安全设计与控制策略。 1纯电动汽车电气系统安全分析 纯电动轿车电气系统主要包括低压电气系统、高压电气系统及CAN通讯信息网络系统。低压电气系统采用12V供电系统,除了为灯光照明系统、娱乐系统及雨刷器等常规低压用电器供电外,还为整车控制器、电池管理系统、电机控制器、DC/DC转换器及电动空调等高压附件设备控制回路供电; 高压电气系统主要包括动力电池组、电驱动系统、DC/DC电压转换器、电动空调、电暖风、车载充电系统、非车载充电系统及高压电安全管理系统等; CAN总线网络系统用来实现整车控制器和电机控制器、以及电池管理系统、高压电安全管理系统、电动空调、车载充电机和非车载充电设备等控制单元之间的相互通信。 纯电动汽车电压和电流等级都比较高,动力电压一般都在300~400V(直流),电流瞬间能够达到几百安。人体能承受的安全电压值的大小取决于人体允许通过的电流和人体的电

汽车电子自动变速箱-硬件触发TriCore++ADC转换的3相补偿PWM应用攻略

介绍1 介绍 这篇应用笔记介绍了3-相补偿脉宽调制(PWM)[1][2]的配置。通常,这些PWM波形驱动一个有着高端和低端的功率晶体的H桥。为了避免该桥的短路,补偿波形之间必须有一个死区。相电流被测量和计算。因此,PWM必须触发2个同步模数转换(ADC)测量。 这篇应用笔记分为五部分,它主要针对TC1796[3],但也可很容易运用在其它AUDO-NG的产品,如TC1766和TC116x系列。第一部分讲解如何在TC1796中,CPU无开销地使用通用定时器阵列(GPTA),产生具有死区插入的3-相补偿PWM。0%和100%占空比的关键设置将被详细描述。 第二部分说明, GPTA如何通过外部请求单元(ERU)触发ADC模块。

介绍 第三部分详细说明了同步双ADC 测量的配置。使用插入法,该部分也将配置扩展到了第三个同步ADC 测量。 第四部分讲解了,如何使用直接存储访问(DMA )控制器将ADC 转换结果传送到双口传输数据存储器(DPRAM )。 第五部分讲解了标定,这是将PWM 调整到ADC 仲裁器所需的。 图1显示了TC1796框图。该实例使用到的模块已标记为红色。 图2中的定时图表达了具有死区的PWM ,来自于GPTA 的ADC 触发,以及ADC 转换通道(采样时间标记为黑色),DMA 传输和TriCore 中断服务程序。 该应用笔记不包括电机控制或要求类似空间矢量PWM 那样技术的控制算法。对于16kHz PWM 的一个控制算法,需要TC1796的CPU 大约5%的工作量,也就是,TC1796具有足够的能力和资源运行6个3-相驱动。 该配置基于英飞凌DAvE[4]。实例代码由Tasking TriCore 编译器提供[5]。 PWM Trg. CH2 CH1 CH0 CH1 CH3 CH2 图2 定时图解

汽车低压电器设计规范

低压电器设计规范 编制: 校对: 审核: 批准: 广东亿纬新能源汽车有限公司 2015年9月

目录 前言 (3) 第一章设计原则及流程 (4) 第二章汽车照明与信号系统电路 (30) 第三章汽车空调系统电路 (41) 第四章汽车防抱死制动系统电路 (48) 第五章汽车安全气囊系统电路 (56) 第六章汽车辅助电器电路 (66) 第七章暖风系统结构及工作原理 (78) 附录一各线束之间对接插接件型号、管脚定义 (81) End

前言 自汽车诞生一百多年以来,为改善汽车的使用性能,其机械结构一直处在不断发展和完善的过程。在经历近半个世纪的发展后,汽车在机械结构方面已经非常完善,靠改变传统的机械结构和有关结构参数来提高汽车的性能已临近极限。 而晶体管无触点电子点火装置的问世,彻底解决了机械触点易磨损烧蚀等固有缺陷,汽油发动机进人无触点电子点火时期。 随后大规模集成电路的出现,满足汽车复杂控制问题所需的模拟电路不仅可做得体积小重量轻,且性能优良可靠性高,首先在发动机燃油喷射系统中应用取得成功。根据发动机的工况,把燃油准时精确计量地喷人汽缸是降低发动机排放、提高发动机工作效率的技术关键,通过传统的机械装置解决这一问题已非常困难,电子控制装置为进一步提高发动机的性能提供了新的途径。 与此同时的另一方面,由于汽车保有量剧增,引发了全球性的能源危机、全球性的环境污染以及全球性的温室效应。迫于能源危机和环境污染的压力,世界许多国家都制定了严格的法规,力图降低汽车发动机的排放和提高燃油经济性。这些来自国家政府机构以及社会各个方面的压力,又反过来加速了电子燃油喷射系统、电子点火系统的迅速发展。 今天,发动机电子控制系统已得到非常广泛的应用。入们对交通工具(汽车)的行驶速度、舒适性、安全性以及功能提出了愈来愈严格的要求。70 年代以后,微型计算机在性能和价格方面进入实用阶段,以微处理器为控制单元的数字式电子控制装置在汽车上找到了广阔的应用前景。其电子应用装置从早期的电子燃油喷射、电子点火控制系统,进一步扩展到汽车底盘控制,汽车主动安全性控制,以及故障诊断显示、娱乐和通信等各个领域。由于计算机在汽车上的应用,它改变了汽车传统的机械装置,并增加了许多新的功能,使汽车的驾驶更为简单方便,乘坐更为舒适安全。

相关主题
文本预览
相关文档 最新文档