当前位置:文档之家› (完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解
(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明:

()()12121217

51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法:

证明:①n =1时,左边31311=?=,右边3

1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:

()()12121217

51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有:

()()()()32121121217

51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ?

?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-=

k k k ()1

121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.

由①、②可知,对一切自然数n 等式成立.

评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.

正确方法是:当n =k +1时.

()()()()32121121217

51531311++++-++?+?+?k k k k Λ ()()

3212112++++=k k k k ()()()()()()

321211232121322++++=++++=k k k k k k k k

()1

121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,

例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:

a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)

都成立,并证明你的结论.

分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.

?????=++=+=603224

26321

211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.

故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.

下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式

a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.

因为起始值已证,可证第二步骤.

假设n =k 时,等式成立,即

a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)

那么当n =k +1时,

a 1+2a 2+3a 3+…+ka k +(k +1)a k +1

= k (k +1)(k +2)+ (k +1)[3(k +1)+3]

=(k +1)(k 2+2k +3k +6)

=(k +1)(k +2)(k +3)

=(k +1)[(k +1)+1][(k +1)+2]

这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.

例3.证明不等式n n 21

31

21

1<++++Λ (n ∈N).

证明:①当n =1时,左边=1,右边=2.

左边<右边,不等式成立.

②假设n =k 时,不等式成立,即k k 21

31

21

1<++++Λ.

那么当n =k +1时,

11

1

31

21

1++++++k k Λ

1

1

1211

2+++=++

1211211

1+=++=++++

这就是说,当n =k +1时,不等式成立.

由①、②可知,原不等式对任意自然数n 都成立.

说明:这里要注意,当n =k +1时,要证的目标是

121113

1

21

1+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .

认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.

例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .

求证:数列{a n }的第4m +1项(m ∈N )能被3整除.

分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.

①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.

②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,

a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3

=a 4k +3+a 4k +2+a 4k +2+a 4k +1

=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1

=3a 4k +2+2a 4k +1

由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.

因此,当m =k +1时,a 4(k +1)+1也能被3整除.

由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.

例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?

分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.

当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.

当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.

由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.

由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.

用数学归纳法证明如下:

①当n=2时,上面已证.

②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)

=k2+2k+1=(k+1)2

∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.

由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.

说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

初一下册数学经典题型

1. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x =- 的解为3x= ,不等式组205x x ->????-??-+<-? , 的关联方程是 ;(填序号) (2)若不等式组1144275 x x x ? -?? ?++?<, >-的一个关联方程的根是整数,则这个关联方程可以是 ;(写 出一个即可) (3)若方程21+2x x -=, 1322x x ? ?+=+ ???都是关于x 的不等式组22x x m x m -?? -?<,≤的关联方程,求m 的取值范围.

2. 对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC的面积为点A的 等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B 为点A的等距点,此时点A的等距面积为9 2. (1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A的等距点为. (2)点A的坐标是(-3,1),点A的等距点B在第三象限, ①若点B的坐标是 ? ? ? ? ? 2 1 2 9 ,- - ,求此时点A的等距面积; ② ②若点A的等距面积不小于9 8,求此时点B的横坐标t的取值范围. 备用图

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

(完整版)中考数学必考经典题型

中考数学必考经典题型 题型一 先化简再求值 命题趋势 由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。 例:先化简,再求值:,1 2)1111( 22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。 题型二 阴影部分面积的相关计算 命题趋势 近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。 例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有S 1=2312n n -,S 2=23 4 2n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( ) (A)23 (B)12 (C)13 (D)14 分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为 A(1,0),与y 轴的交点为8(0,1). 设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示 抛物线上,则 222OM x y =+

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

(word完整版)初一数学经典题型解析

初一数学经典题型解析 1、如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°, 那么∠2的度数是() A。95°B。85°C。75°D。65° 考点:平行线的性质;三角形的外角性质. 专题:计算题. 分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平 行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形 EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到 ∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数. 解答:已知:AB∥CD,∠1=115°,∠E=30°, 求:∠2的度数? 解:∵AB∥CD(已知),且∠1=115°, ∴∠3=∠1=115°(两直线平行,同位角相等), 又∠3为△EFG的外角,且∠E=30°, ∴∠3=∠2+∠E, 则∠2=∠3﹣∠E=115°﹣30°=85°. 故选B. 点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键. 2、如图,AB∥CD,DE交AB于点F,且CF⊥DE于点F,若∠EFB=125°, 则∠C=35°. 考点:平行线的性质. 专题:计算题 分析:根据对顶角相等,得出∠AFD=∠EFB,由∠EFB的度数求出∠AFD的 度数,再根据垂直的定义得到∠CFD=90°,利用∠AFD﹣∠CFD得出∠AFC的度数,最后由两直线平行内错角相等,即可得到所求的角的度数. 解答: 解:∵∠EFB=125°(已知), ∴∠AFD=∠EFB=125°(对顶角相等), 又∵CF⊥DE(已知), ∴∠CFD=90°(垂直定义), ∴∠AFC=∠AFD﹣∠CFD=125°﹣90°=35°, ∵AB∥CD(已知), ∴∠C=∠AFC=35°(两直线平行内错角相等). 故答案为:35

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 令狐采学 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点:两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n=1时,左边31311=?= ,右边3 1121=+=,左边=右边,等式成立. ②假设n=k 时,等式成立,即: ()()1212121751531311+=+-++?+?+?k k k k . 当n=k+1时. 这就说明,当n=k+1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n=1时,左边=1,右边=2.

左边<右边,不等式成立. ②假设n=k 时,不等式成立,即 k k 21 31 21 1<++++ . 那么当n=k+1时, 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n=k+1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是 要证明: 1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n ≥2,n ∈N*). (1)当n =5时,求a0+a1+a2+a3+a4+a5的值. (2)设bn =a2 2n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法 证明:当n ≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时, 原等式变为(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+

数学归纳法经典例题及答案

数学归纳法(2016421) 、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2), 注意:数学归纳法使用要点: 两步骤,一结论 、题型归纳: 题型1.证明代数恒等式 用数学归纳法证明: 当n=k+1时. k 1 2k 3 由①、②可知,对一切自然数 n 等式成立. 证明:①n=1时,左边 ②假设n =k 时, 2n 1 1 2n 1 n 2n 1 1 3 等式成立,即: -,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k 2k 1 2k 1 2k 1 2k 1 2k 3 2k 1 2k 1 2k 3 2k 2 2k 1 3k 1 2k 3 2k 1 k 1 2k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,

题型2.证明不等式 11 1 _ 例2 ?证明不等式1 2打(n € N ). V 2 <3 V n 证明:①当n=1时,左边=1,右边=2. 左边 <右边,不等式成立. 那么当n=k+1时, 2 .k 2k 1 2.k 1 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数 n 都成立. 说明:这里要注意,当 n=k+1时,要证的目标是 1 1 1 1 ---------------------------------------- 1 — — — ------------ 2 \ k 1,当代入归纟纳假设后,就是要证明: ■. 2 3 . k 、k 1 2、、k 1— 2 k 1 . -k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *). (1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值. a 2 十 ⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1) 3 . 解:(1) 当 n = 5 时, 原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1 .3 1 . 2 1 ■- 3

相关主题
文本预览
相关文档 最新文档