当前位置:文档之家› 典型结构件的振动疲劳分析

典型结构件的振动疲劳分析

典型结构件的振动疲劳分析
典型结构件的振动疲劳分析

利用ANSYS随机振动分析功能实现随机疲劳分析.

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响 应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构 的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、 阻尼、恒定阻尼比和频率相关阻 尼比;

3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二 次谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原 理 在工程界,疲劳计算广泛采用名义应力法,即以S-N 曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这里仅介绍一种比较简单的方法,即Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时 间 -1σ ~+1σ68.3%的时间 -2σ ~+2σ27.1%的时间

弹塑性条件下的振动疲劳寿命估计

弹塑性条件下的振动疲劳寿命估计 孙炜袁杰红陈循 国防科技大学机电工程与自动化学院

弹塑性条件下的振动疲劳寿命估计The Vibration Fatigue Life Estimation under Elastic-plastic Condition 孙炜袁杰红陈循 (国防科技大学机电工程与自动化学院) 摘要:描述了当系统存在弹塑性应力应变时,工程中常用的几种疲劳寿命估计方法。这些方法都是在获得时域内的弹塑性应力应变基础上进行的。对于随机振动条件下载荷谱不易以时域形式表示的场合,这些方法难以实现。为了能在频域内估计疲劳寿命,本文提出了将塑性等效为阻尼来估计频域内的弹塑性应力应变的方法。再在此基础上利用MSC.Fatigue 中的振动疲劳模块估计疲劳寿命。 关键词:有限元阻尼系数弹塑性疲劳 Abstract: This paper summarizes some fatigue life estimation methods in engineering, when elastic-plastic stress-strain exists in the system. These methods go in time domain. And it is difficult to apply them when the load can’t be expressed in time domain easily. To estimate fatigue life in frequency domain, this paper brings forward a method that plasticity is equivalent to damp to compute the elastic-plastic stress-strain in frequency domain. Then the fatigue life can be estimated by present vibration fatigue module in MSC.Fatigue. Key words: FEM, damp coefficient, elastic-plastic, fatigue 1 引言 在作振动疲劳寿命估计时,如果仅仅是弹性动力学问题,其解决办法日臻完善。但对于弹塑性动力学问题,需要计算构件的弹塑性应力应变,然后再进行疲劳寿命估计。由于计算复杂,工程上还没有十分理想的方法。目前工程上常用的解决办法有: (1)利用弹塑性有限元进行分析 这是一种最为直接的办法,即利用弹塑性有限元进行分析。该方法要求动载荷以时域信号表示,再将载荷以增量形式逐步施加到有限元模型上,通过弹塑性有限元计算获得系统的弹塑性应力应变响应。由于是非线性计算,计算量太大,目前在工程上只能针对比较简单的模型进行计算。在得到该应力应变响应之后,即可选择合适的疲劳理论估计疲劳寿命。 (2)对弹性响应作近似修正 这是一种在工程上常用的简便方法。该方法是和裂纹萌生疲劳理论联合使用的。先在时域内计算构件的弹性应力应变响应,然后用近似修正法,如Neuber方法,将弹性响应修正

结构振动疲劳研究的总结报告

结构振动疲劳研究的总结报告 南京航空航天大学振动工程研究所刘文光 (一)研究现状 疲劳作为结构失效的主要形式,它是指材料、零件和构件在交变载荷作用下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、并使裂纹进一步扩展直到完全断裂的现象。早在19世纪中叶,随着蒸汽机的发明和铁路建设的发展,研究人员发现机车车轮结构在远小于其静强度极限载荷时发生交变应力破坏现象,由此提出并发展了不同于结构静强度破坏的结构疲劳破坏问题。由于工业、交通和国防技术的发展,结构疲劳失效问题遍布在航空、航天、能源、交通、建筑、化工等诸多领域,促使抗疲劳设计得到深入的发展和广泛的应用。另外,我们很容易发现在结构疲劳破坏问题中包含了一类重要的现象,那就是当交变载荷的频率与结构的某一阶(甚至某几阶)固有频率一致或比较接近时,结构将会发生共振,这时一定的激励将会产生更大的响应,使结构更加易于产生破坏。这类振动疲劳问题,说明结构的疲劳失效与结构的振动响应密切相关。为了揭示结构的疲劳失效与结构振动响应之间的内在规律,需要利用结构动力学的理论加以研究。 在工程实际中,结构受到外部激励总会产生不同的振动响应,因此,绝大部分结构的疲劳失效都与振动有关,实际上可以归结为振动疲劳问题。振动疲劳的研究是科学技术发展的必然要求,同时也是结构疲劳失效理论与结构动力学理论相结合的必然结果。迄今为止,很少有人系统地研究过振动疲劳问题。有关文献中即使提到振动疲劳一词,不同的学者也给出了不同的定义。文献[1]作者认为“振动疲劳是结构所受动态交变载荷(如振动、冲击、噪声载荷等)的频率分布与结构固有频率分布具有交集或相接近,从而使结构产生共振所导致的疲劳破坏现象,也可以直接说成是结构受到重复载荷作用激起结构共振所导致的疲劳破坏。所以只有结构在共振带宽内或其附近受到激励导致的共振破坏才属于振动疲劳破坏,否则都属于静态疲劳问题。”文献[2]作者认为:“当振动频率与结构模态频率相当时,即可视为振动疲劳问题;如果频率远小于结构模态频率时(频率在几或十几),就是普通疲劳问题;当振动频率远大于结构模态频率,以至于与声波频率相当时,即可视为声疲劳进行处理。”文献[3]作者在其博士论文中也提到振动疲劳一词,它指出振动疲劳与噪声和频率有关,但没有揭示振动疲劳的内在本质。上述每一种定义,它都指出了振动疲劳与结构的固有频率、交变载荷的变化频率有关。为了进一步明确振动疲劳的含义,本文将振动疲劳定义为:“振动疲劳是指结构的疲劳破坏与结构的振动响应(包括结构固有频率、交变载荷变化频率、振动幅值、振动相位和结构的振型等模态)密切相关的失效现象,其破坏机理与静态疲劳破坏一致,它包括低频振动疲劳、共振振动疲劳和高频振动疲劳。” 上世纪60年代,S.H.Crandall[4]首先提出了振动疲劳的定义,它指出:“振动疲劳是指振动载荷作用下产生的具有不可逆且累积性的结构损伤或破坏。”这一定义对传统的疲劳理论,它并没有带来显著的改变,也没有涉及振动疲劳现象的动力学本质。之后,国内外陆续有部分学者展开了一些相关方面的研究。例如,文献[6]作者将高频振动实验方法引入非金属类桩基材料的疲劳损伤力学研究领域,对花岗岩、C30混凝土等非金属材料进行高频振动疲劳试验,描述该类材料在稳定状态下的循环应力应变特性,通过实验研究载荷幅值与振动频率对材料特性的影响,研究平均载荷与振幅比值对材料疲劳曲线的影响;文献[7]作者研究了装备中的小口径管道的振动疲劳问题;文献[8]作者利用有限元法,基于功率谱密度函数,在频域内分析了随机振动载荷作用下的疲劳破坏;文献[9]作者对国内外几十年来形成的主要的振动疲劳分析方法进行了归纳整理,为飞机设计和维修提供振动疲劳的设计与分析技术支持文献。还有很多研究人员[10~15]分别从不同的角度研究了振动疲劳问题。

飞机结构振动疲劳问题

飞机结构振动疲劳问题 摘要:本文简要阐明了飞机结构的动态即噪声和振动疲劳问题,并介绍美国军用规范关于动态疲劳的规定,对我国开展飞机结构振动疲劳问题的研究提出看法和建议. 关键词:飞机结构;动态疲劳;噪声;振动 1.飞机结构的疲劳与动态疲劳 众所周知,飞机在使用中会受到由于滑跑、突风、机动、着陆撞击以及坐舱增压等所造成的重复载荷的作用。出于这些重复载荷的作用,飞机结构的一些部位特别是局部高应力区,如局部应力集中区,有缺陷区等部位就会产生由于交变应力引起的疲劳裂纹,交变应力的继续作用,使疲劳裂纹不断扩展而导致疲劳破坏。这就是通常所说的飞机结构的疲劳。应该指出,在地面操作以及空中飞行中,飞机上的某些部位还始终处在于噪声环境之中,如推进系统噪声源包括:喷气噪声、螺旋桨噪声等,空气动力噪声源包括:边界源噪声、空腔噪声。冲击波噪声、气流分离噪声等都对飞机结构产生噪声激励,而产生振动应力,靠近噪声源的结构,这种振动应力尤其严重。对于某些典型结构,如舵面、平尾、垂尾、腹鳍以及外挂架等由于受到扰流的作用而产生随机振动激励,引起随机振动动力响应;从而在这些结构上的一些部位产生疲劳裂纹。这种由噪声、振动的激励而导致结构产生的疲劳现象可称之为动态疲劳(D ynamic Fatigue)以区别于前面的由突风、机动载荷等引起的飞机结构的疲劳现象。根据以上所述,动态疲劳又可分成两个部分:—是噪声疲劳,二是振动疲劳。 关于噪声疲劳问题,国内有关单位已经认识到其重要性,并从六五后期就开始投资研究,几年的研究已经取得进展,特别是军机结构声疲劳研究,如声疲劳试验技术研究、声疲劳计算方法研究及软件编制,歼x进气道声疲劳定寿研究都取得了一定成果,为今后进—步研究打下了坚实的基础。 对于振动疲劳国内已服役的机种中,也已经出现了这种问题。如歼x飞机的腹鳍、方向舵在飞行了一时间(如200—300飞行小时)后,经常出现裂纹,经初步分析已经确认为是由于随机扰流作用引起的振动疲劳问题.国营一二四厂也发现某机导弹挂架由于振动而发生螺栓的疲劳断裂。另外,直升机的振动疲劳也是急待解决的问题。 八五期间,振动疲劳强度的研究已列入“飞机动强度与动力环境研究”计划之内,并开始了初步研究。要搞好该研究,除现有成员团结协作以外,有关领导也应足够重视。在设备、经费等方面给以必要的支持是必不可少的. 2.美国军用规范关于动态疲劳的规定 美国海军飞机对动态疲劳强度方面的要求,反映在如下的四个规范中: MIL-A-8866B (AS) MIL-A-8868C (AS) MIL-A-8868B (AS) MIL-A-8870 MIL-A-8866B有关气动噪声和振动(Acroacoustic and Vibration)一节中指出:在飞机使用期内,对消除由于振动、气动噪声和其它振动载荷引起的骨架结构或部件的疲劳裂纹形成或分层或任何其它疲劳破坏的要求与MIL-A-8870的规定—致。 MIL-A-8867C是关于地面试验的规定,其中动态疲劳试验的要求包括三项试验: 1)声疲劳构件试验; 2)尾翼动态度劳试验; 3)动态疲劳构件发展试验。 关于后两项的规定指出:除了对机动载荷的疲劳试验以外,在大纲中应尽早地在尾翼上进行

电池组随机振动疲劳分析

电池组随机振动疲劳分析 本例展示基于功率谱密度曲线(PSD)的电池组疲劳分析,即针对随机振动的疲劳寿命分析。 1 问题设定 一块电池组,尺寸为70mm x 175mm x 400mm。该电池组的两端共有6个端点,分别受到垂直于电池组平面的激励作用,且激励的加速度功率谱密度曲线(ASD)相同。 由于在随机振动基于线性动力学原理,因此电池,PC材料等采用实体建模,其他钣金采用壳单元建模,设定相关的fastener点焊单元,coupling耦合单元和tie约束,建立零件和零件之间相应的连接关系。

两端所对应的PSD谱线如下图。请注意该曲线的频率截断在200Hz处。 本案例用到的附件包括: battery_SSD.cae 提取前10阶固有模态和扫频分析 plate.psd PSD曲线 2 分析过程 一般来说,针对随机振动的疲劳分析包含两大步。第一步是在Abaqus中完成固有模态和扫频两个计算;第二步是把这两个计算结果与PSD曲线一起输入fe-safe,运行若干设置后完成疲劳分析,得到相关结果。 2.1 有限元计算 需要强调的是,在有限元计算部分,不采用随机振动分析方法,而是采用模态提取和扫频方法。

2.1.1 固有模态分析 附件中的battery_SSD.cae第一个step分析步是用于提取固有模态的Abaqus计算文件。其中的关键设置如下: a) 两端固定 b) 提取1~200HZ内的固有模态 c) 指定位移U和应力S作为场输出变量 2.1.2 扫频分析 第二个step分析步是用于扫频分析的Abaqus计算文件。 由于PSD曲线上的最高频率是200Hz,故而扫频分析的最大频率也截断在200Hz。同时,设定各阶频率对应的阻尼均为2%。 定义单位加速度的base motion激励载荷,用于扫频分析: 在输出设定上,对两个扫频分析Step,设定对广义位移GU和GPU的历程输出。

基于加速度信号的振动疲劳分析方法研究

基于加速度信号的振动疲劳分析方法研究 作者:王宗乐房芳 摘要:本论文首先介绍了结构静态疲劳和振动疲劳的区别和基本原理,以及利用加速度信号进行振动疲劳分析的流程和方法。阐述了振动疲劳计算的理论和公式,说明汽车结构振动疲劳寿命预测的工作流程,文中最后对某支架的振动疲劳寿命进行了仿真。 主题字:随机振动;频响函数,振动疲劳 引言 疲劳耐久是汽车产品开发的一项重要指标,同时也是影响产品品牌价值和产品顾客感知的重要依据。疲劳耐久性指标的设计和开发又是一件既费时又耗钱的工作,传统意义上的耐久性开发工作主要包括三个过程:设计-验证-改进-再验证-批准。这种开发方法就是一种试错(trial error)的方法,即使取得好的效果,也会浪费产品开发时间,降低产品的市场竞争力。 计算机辅助工程(CAE)最大的优势就是提供了一种全新的思路和工具,可以在产品物理样机之前进行汽车产品疲劳耐久性的性能设计和分析,从而减少耐久性性能开发的时间和成本。通常来说,利用计算机辅助工程进行耐久性性能开发有两种方法:一种是时域方法,另一种是频域方法。所谓时域方法就是利用测试仪器,通常是应变片获取结构随着时间变化的载荷数据,然后利用线性叠加的方法获取确定的应力时间历程,根据结构模型的特征和材料的疲劳特性,利用miner 法则计算结构的时域疲劳寿命和分布。时域方法的优点是计算简单,方法成熟,能够在大结构疲劳问题上取得满意的结果;同时时域方法的最大缺点就是提前假设载荷信号是确定性、周期性的,并且忽略了结构对外界载荷的动态响应。频域方法对载荷信号的要求比较简单,只要获取相应的加速度信号,并且载荷和响应都是以功率谱密度(PSD)信号形式给出。与时域信号相比,信号容量更少,计算效率明显提高;频域方法同时考虑了路面作用于汽车结构的载荷随机性,并且兼顾了结构对外界载荷的动态响应,这也是频率方法计算汽车结构疲劳寿命优于时域方法的重要方面。 文章对频域内的疲劳耐久性分析方法进行了研究,通过分析频域疲劳方法的基本原理和基本方法,形成了针对汽车结构疲劳寿命研究的固定流程。进行频域疲劳耐久性分析目前在汽车行业应用较少,本文的作为一种尝试,共同研究探索适合汽车产品耐久性开发方法和思路。 1 基于加速度信号的振动疲劳分析流程和思路

IR图谱分析方法

IR图谱分析方法 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔 2200~2100 cm^-1 烯 1680~1640 cm^-1 芳环 1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! …………………………………………………………………………………………………… ………

振动疲劳—ansys

随机振动疲劳分析

随机振动疲劳分析流程图 随机振动疲劳分析将第一步频率响应分析得到的结果文件作为输入,并在疲劳软件中输入振动过程中的PSD曲线,经计算得到零件的振动疲劳寿命。

故随机振动疲劳分析可分为如下步骤: 1.频率响应分析结果输入 2.功率谱密度PSD输入 3.材料疲劳特性设置 4.各工况与PSD关联设置 5.振动疲劳求解器参数设置 6.输出设置 7.分析结果处理

频率响应分析 结果输入 功率谱密度PSD输入 振动疲劳求解器 Ncode云图显示 输出设置 Ncode随机振动疲劳分析流程图

1.频率响应分析结果输入 频率响应分析应与PSD 的单位相对应,比如PSD 单位为g^2/Hz ,则进行频率响应分析时可输入1g 的加速度激励来分析。(如采取单位制ton-mm-s-N ,此时1g 的加速度激励为9800mm/s^2,应在分析中输入9800大小的加速度激励) 1.1单位问题 1.2频率响应分析结果输出设置 为了避免输出结果过大,可以在输出中设置需要进行疲劳分析的部件,以set 形式输出,同时可设置输出频次Frequency=n ,只输出频响分析应力结果即可。*OUTPUT, FIELD, Frequency=5 *ELEMENT OUTPUT, ELSET = ele_set S, 以Abaqus 进行频响分析为例,输出设置如下: 每5步输出一次只输出单元集合名为ele_set 的应力结果

2.功率谱密度PSD输入 PSD可以用以下2种方式输入: 1.通过MultiColumnInput读入定义好的CSV 文件输入2.通过VibrationGenerator生成PSD 曲线CSV文件格式如下: (可在帮助文档中找一个PSD的CSV 文件作为模板)

相关主题
文本预览
相关文档 最新文档