当前位置:文档之家› 燃料与炉膛负压控制

燃料与炉膛负压控制

燃料与炉膛负压控制
燃料与炉膛负压控制

课程实验总结报告

实验名称:炉膛负压与氧量校正控制

课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 引言 (2)

1.1 炉膛负压概述 (2)

2 控制逻辑 (2)

2.1 炉膛压力控制 (2)

2.1.1 相关图纸 (2)

2.1.2 控制原理 (2)

2.1.3 控制逻辑 (3)

2.2 氧量校正 (3)

2.2.1 相关图纸 (3)

2.2.2 控制原理 (3)

2.2.3 控制结构 (4)

2.2.4 氧量校正控制逻辑 (4)

2.2.5 二次风控制逻辑 (5)

3 被控对象特性 (6)

3.1 静态特性 (6)

3.2 动态特性 (8)

3.2.1 炉膛压力 (8)

3.2.2 含氧量 (8)

4 PID整定 (9)

4.1 炉膛负压控制器 (9)

4.2 氧量校正 (11)

5 总结 (12)

1 引言

1.1 炉膛负压概述

炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。

炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。

炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压 -40 ~ -60Pa 。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。

2 控制逻辑

2.1 炉膛压力控制

2.1.1 相关图纸

SPCS-3000 控制策略管理5号站132~133页。

2.1.2 控制原理

炉膛压力调节系统通过调节两台引风机的静叶来调节炉膛压力。当引风机入口静叶开度开大,引风作用加强,炉膛压力减小;开度减小,引风作用减弱,炉膛压力增大。因此该控制系统为负对象。

被控量:炉膛压力

被控对象:引风机入口静叶

控制量:引风机入口静叶开度

图2-1 炉膛负压控制框图

2.1.3 控制逻辑

图2-2 炉膛压力控制

炉膛压力的定值,由运行人员在操作画面上设定。送风量指令经过F(x)计算后作为前馈信号送给炉膛压力调节器,同时送风量指令还经过一个F(x)计算后直接叠加给引风机静叶开度指令,这两路调节信号对送风量指令形成一快一慢,相互配合,迅速调节炉膛压力。炉膛压力调节器的输出分别送到A、B引风机静叶M/A站。为平衡A、B引风机出力,在A侧、B侧引风机静叶M/A站上,均设有静叶指令偏置。PID的输出加偏置,为B静叶的自动指令;PID的输出减偏置,为A静叶的自动指令。

当A、B静叶均自动时,运行人员可以通过静叶指令偏置,分别调整A、B 引风机的出力。当A、B引风机静叶均手动时,炉膛压力调节系统手动。调节器输出跟踪A、B调节静叶手操器输出平均值。炉膛压力定值自动跟踪实际炉膛压力。当A(或B)M/A站手动时,静叶偏置自动反向计算,跟踪B(或A)手操器输出与PID调节器输出的偏差。因此,炉膛压力调节系统,通过PID调节器跟踪、M/A站偏置跟踪、定值跟踪手段,实现了A、B M/A站手自动无扰切换。

调节系统还接受来自SCS和FSSS的指令,控制A、B引风机调节静叶开度。发生MFT时,强制关小引风机静叶,以防止内爆,强制关闭幅度是MFT动作前机组负荷的函数,幅值及时间长度由试验确定。

2.2 氧量校正

2.2.1 相关图纸

SPCS-3000 控制策略管理5号站135~138页。

2.2.2 控制原理

锅炉燃烧过程的重要任务之一是维持炉内过剩空气稳定,以保证经济燃烧。

炉内过剩空气稳定,对燃煤锅炉来说,一般是通过保证一定的风煤比来实现的,这种情况只有在煤质稳定时,才能较好地保持炉内过剩空气稳定,而当煤质变化,就不能保持炉内过剩空气稳定,不能保持经济燃烧。要随时保持经济燃烧,就必须经常检测炉内过剩空气系数或氧量,并根据氧量的多少来适当调整风量,以保持最佳风煤比,维持最佳的过剩空气系数或氧量。

在这里我们可将送风调节系统直接看成是氧量调节的过程,送风控制系统一个带有氧量校正的串级回路控制系统,即采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵电动门,从而对主被控变量具有更好的控制效果。

2.2.3 控制结构

送风调节系统常采用氧量校正信号。控制系统的控制结构为带氧量校正的串级PID 控制,在副回路中,控制对象送风机,执行机构是送风机动叶调节执行机构,调节量是风量;在主回路中,调节量是空预器入口烟气含氧量。自动控制系统框图及控制逻辑图如下:

定值图2-3 二次风控制系统串级控制结构框图

2.2.4 氧量校正控制逻辑

图2-4 氧量校正回路逻辑

1. 信号处理

① 质检:采样值A 、B 侧空预器入口烟气含氧量分别经过DPQC 模块检验信号质量好坏,若A 、B 侧氧量测量品质都坏,则M/A 站切手动。

② 二取中:采样值A 、B 侧空预器入口烟气含氧量相加取平均值作为采样值;

③ 滤波:使用一阶惯性环节的超前滞后模块,起滤波作用,滤波器传递函数为S

1211 。空预器入口烟气含氧量经过滤波器后送到控制器PV 端。 ④ 分段线性拟合:锅炉主控指令经过分段线性功能块拟合成氧量设定值。

2. 控制器手动设定值跟踪与无扰切换

在自动状态下,ASET 模块输出控制员在操作面板上给定的设定偏置与拟合后的氧量设定值求和输入控制器SP 端,在PID 控制下自动达到设定的要求,即SP=ASET+锅炉主控指令拟合氧量信号

在手动状态下,PID 控制器在跟踪状态。ASET 模块DI 输入为1,输出端AO 输出AI 端的空预器入口烟气含氧量偏差值(空预器入口烟气含氧量实际值-拟合氧量设定值),再与拟合的氧量设定值相加,得到的值即为实际的烟气含氧量,然后送入PID 控制器作为设定值。

SP =(PV -锅炉主控指令拟合氧量信号)+锅炉主控指令拟合氧量信号= PV 设定值=过程量,这样就实现了手动状态下的控制器设定值跟踪;在手动切换自动时,直接计算得到实际氧量作为设定值,设定值等于实际值,即实现了控制器手自动的无扰切换。

3. 切手动逻辑

① 若A 、B 侧氧量测量品质都坏,则M/A 站切手动;

② 若氧量调节控制器DO 输出调节器入口偏差大信号,则M/A 站切手动; ③ 当送风机A 、B 均控制手动,则发出指令送风机控制全部手动,则M/A 站切手动。

4. 限幅

氧量控制指令在发送到二次风系统前经过限幅模块。限幅模块上下限的设定是通过M/A 站手自动状态来确定的。

● 自动状态下,氧量控制指令范围0.85-1.15,

● 手动状态下,氧量控制指令为1,即不进行氧量校正。

2.2.5 二次风控制逻辑

图2-5 二次风压控制逻辑

1. 总风量滤波 在这里使用一阶惯性环节的超前滞后模块,起滤波作用,滤波器传递函数为S

611+。采集到得总风量现场实际数据滤波处理后再送入PID 控制器的PV 端。 2. 风量指令

该指令通过锅炉主控指令和总燃料量得到,锅炉主控指令和总燃料量先经过MAX1取大值,然后分两路,上路不处理,下路经两次滞后处理,滞后传递函数为2S)

121(1+。然后上下路信号再经过取大值功能块MAX2取大。MAX2输出再经过分段线性功能块将总燃料量信号拟合成风压信号。

拟合后的风压信号乘以氧量控制信号进行氧量校正,自动状态下,氧量控制指令范围0.85-1.15,手动状态下,氧量控制指令为1,即不进行氧量校正。校正后的信号参与SP 设定值计算逻辑。

3. 氧量校正

氧量校正回路根据实际氧量与定值的偏差进行调节,输出值在0.85~1.15之间变化,用该值对风量指令进行修正,使风量调节器的输入偏差发生变化。

4. 其余部分与一次风压控制系统逻辑基本一样,所以不在重复。

3 被控对象特性

3.1 静态特性

在手动条件下进行扰动试验来获取对象静态特性。

1.炉膛压力:机组启动后,运行一段时间之后待系统达到稳定,改变引风机挡板开度,开度自46.77%降为44.77%。继续运行一段时间之后,可以观察到

系统重新达到稳定,静态特性曲线如下。

图3-1 炉膛负压静态特性曲线

分析:由上图可见,随着引风机挡板开度减小,炉膛负压升高,这是因为挡板开度减小,引风机引风作用加强,而送风机不变,送风量不变,从而导致负压升高。同时可以看到系统在运行一段时间之后重新达到稳定,说明该对象为有自平衡对象。

2.含氧量:机组启动后,运行一段时间之后待系统达到稳定,改变A送风机挡板开度,开度自48%升为50%。继续运行一段时间之后,可以观察到系统重新达到稳定,静态特性曲线如下。

图3-2 含氧量静态特性曲线

分析:由上图可见,随着送风机挡板开度增大,含氧量升高,这是因为挡板开度增大,送风机送风量增加,含氧量增加。同时可以看到系统在运行一段时间之后重新达到稳定,说明该对象为有自平衡对象。

3.2 动态特性

3.2.1 炉膛压力

将引风机控制切换为自动控制状态,将系统投入运行,运行一段时间之后系统达到稳定之后,做给定值扰动,改变炉膛负压设定值,从-90升至-80,特性曲线如下:

图3-3 炉膛负压动态特性

分析:炉膛负压的动态特性是引风量发生阶跃变化时,炉膛负压随时间变化的特性。当送风量或引风量单独改变时,炉膛负压变化的惯性很小,故可将炉膛负压对象近似看成是一个时间常数很小的一阶惯性环节。随着炉膛负压设定值增大,系统经过一段时间后能够达到一个新的稳定,但是调节时间较长,且稳定值为-83.97,即静态误差较大,需要重新整定参数。

3.2.2 含氧量

送风调节系统直接看成是氧量调节的过程,送风控制系统一个带有氧量校正的串级回路控制系统。

在副回路中,控制对象送风机,执行机构是送风机动叶调节执行机构,调节量是风量,内环的动态特性是送风量阶跃变化时,含氧量随时间变化的特性,炉膛负压的控制对象是引风机挡板所控制的引风量。将送风机控制切换为自动控制状态,将系统投入运行并达到稳定之后,改变总风量设定值,从170降至130。内环动态特性曲线如下:

图3-4 内环动态特性曲线

在主回路中,调节量是空预器入口烟气含氧量,外环的动态特性是给煤量阶跃变化时,含氧量随时间变化的特性。待系统投入运行并达到稳定之后,给定含氧量扰动,从1变为2,特性曲线如下:

图3-4 外环动态特性曲线

分析:在内回路中随着总风量的改变,系统逐渐开始振荡并呈现发散状态,控制品质差需要重新整定内环参数。;而在外回路,当出现含氧量扰动时,系统并没有过多的动作,即对此扰动没有进行控制,故也需要重新整定外环参数。

4 PID整定

4.1 炉膛负压控制器

采用试凑法整定PID,调整后的PID参数如下:

比例带180

积分时间125

改变炉膛负压设定值,仍从-90升至-80,检测新PID参数的控制效果:

图4-1 新PID控制效果

分析:由图可见,系统在出现扰动后,能够快速达到稳定状态,对比原始参数可以看到其稳态时间都明显减少,超调量也比以前有所下降,当然同样存在静差,但比之前较小,控制品质较好。

炉膛负压的前馈扰动为送风量的扰动。调整PID参数以后,我们进行了风量扰动测试,进一步检测了新PID参数控制效果。在系统稳定运行后,对系统添加前馈扰动,即改变送风量,送风机的挡板开度从48%降为45%,扰动曲线如下:

图4-2 新PID扰动测试

分析:由图可见,当减小引风机动叶开度系统送风量减小时,即出现前馈扰动,炉膛负压出现扰动,运行一段时间后能够恢复稳定,说明控制器能够有效消除扰动,控制效果较好。

4.2 氧量校正

氧量校正回路是串级控制,我们采用先整定内环在外环的方法,同样采用试凑法整定参数,整定后的PID参数如下:

内环:比例带380,积分时间480,微分时间0;

外环:比例带200,积分时间5000,微分时间0;

内环给定值扰动实验:

改变总风量设定值,仍从170降至130,可以看到系统很快达到新的设定值并稳定下来,衰减率几乎为0,控制效果非常理想。

图4-3 送风量扰动

图4-3 氧量扰动

外环氧量扰动:改变含氧量,从1.3变为2.3。由图可见,当含氧量出现扰动时,虽然系统会有一段时间的振荡,经过一段时间后,系统重新达到稳定。控制效果比原来的参数好,但依然需要改善。由于时间限制,不再进一步整定。

5 总结

通过本次实验,加深我们对燃烧控制系统的理解,对氧量校正回路的串级PID 控制有了更急深入的理解,再次验证了串级控制内环可以有效地消除内扰,改善系统的动态特性。唯一的不足是由于时间限制没有对控制器进行进一步的优化整定,但总体来说也基本达到了预期效果。

燃料与炉膛负压控制

课程实验总结报告 实验名称:炉膛负压与氧量校正控制 课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 引言 (2) 1.1 炉膛负压概述 (2) 2 控制逻辑 (2) 2.1 炉膛压力控制 (2) 2.1.1 相关图纸 (2) 2.1.2 控制原理 (2) 2.1.3 控制逻辑 (3) 2.2 氧量校正 (3) 2.2.1 相关图纸 (3) 2.2.2 控制原理 (3) 2.2.3 控制结构 (4) 2.2.4 氧量校正控制逻辑 (4) 2.2.5 二次风控制逻辑 (5) 3 被控对象特性 (6) 3.1 静态特性 (6) 3.2 动态特性 (8) 3.2.1 炉膛压力 (8) 3.2.2 含氧量 (8) 4 PID整定 (9) 4.1 炉膛负压控制器 (9) 4.2 氧量校正 (11) 5 总结 (12)

1 引言 1.1 炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。 炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。 炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压 -40 ~ -60Pa 。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。 2 控制逻辑 2.1 炉膛压力控制 2.1.1 相关图纸 SPCS-3000 控制策略管理5号站132~133页。 2.1.2 控制原理 炉膛压力调节系统通过调节两台引风机的静叶来调节炉膛压力。当引风机入口静叶开度开大,引风作用加强,炉膛压力减小;开度减小,引风作用减弱,炉膛压力增大。因此该控制系统为负对象。 被控量:炉膛压力 被控对象:引风机入口静叶 控制量:引风机入口静叶开度 图2-1 炉膛负压控制框图

锅炉炉膛负压异常原因及处理

. '. 炉膛压力异常分析和调整 对于负压燃烧锅炉,如果炉膛正压运行,则炉烟往外冒出,既 浪费能源又影响设备和工作人员的安全;反之,如果炉膛负压太大,又会使大量的冷空气漏入炉膛内,降低炉膛温度,增大了引风机负荷和排烟带走的热量损失。所以保持炉膛压力在合适范围内运行是非常重要的,引起炉膛压力波动的原因很多,下面进行详细分析。 1、锅炉脱硫系统故障,脱硫烟气挡板脱落造成炉膛正压。 处理:1)如果炉膛负压自动调节跟踪不好,应解除送引风机自动,手动调节。 2)如果经调整后,炉膛正压仍上升迅速并达到保护动作值,锅炉灭火保护应动作,如果没有正确动作应手动MFT,防止炉 膛正压损坏设备。 3)如果炉膛正压未达到保护动作值,应立即解除锅炉燃料自动停运一台磨煤机,此时机组会在机跟炉方式运行,随锅炉燃 料量的减少机组负荷将相应下降,视汽包水位及炉膛压力上 升情况投入油枪后可每隔10秒停运一台磨煤机,直至炉膛负 压达到微负压为止,期间注意调整一次风压,防止一次风机 喘振。 4)在停运磨煤机降负荷时,注意监视汽包水位自动跟踪情况,如果水位变化较大,降负荷速度就要缓慢,防止汽包水位高

低保护动作 5)如果在此期间发生引风机喘振,应解除引风机自动逐渐关小引风机静叶直到引风机喘振消失 6)机组降负荷的过程中,机组长根据负荷情况及时将锅炉给水调节切旁路调节,以维持其前后压差满足减温水要求,防止 造成主、再热汽温度异常 7)待炉膛负压恢复后,立即对锅炉本体进行全面检查,特别注意对锅炉各油层及炉底水封进行详细检查,防止因高温烟 气造成着火,如果已造成着火的立即进行紧急灭火并通知 消防队。 2、锅炉冷态点火爆燃造成炉膛压力突然变正。 预防措施:1)下层磨煤机尽量上好煤,保证高挥发分。 2)等离子拉弧正常。 3)等离子磨煤机暖风器运行正常。 4)保证空预器出口热一二次风温大于150-200度。 5)等离子磨煤机无油点火启动后180秒没有火检,且就地看火燃烧状况不良,立即停运等离子磨煤机,投入油枪点火,待条件满足后重新启动等离子磨煤机。 6)若无油点火,严格按照锅炉启动第一台磨的措施,待炉膛温度达到一定温度后再投入制粉系统。 7)点火前炉膛进行充分吹扫,彻底将可燃物吹出炉膛。

控制装置及仪表炉膛压力设计资料

科技学院 课程设计报告 ( 2013-- 2014年度第一学期) 名称:控制装置与仪表 题目:炉膛压力系统死区控制系统设计院系:科技学院 班级:自动化 学号: 学生姓名: 指导教师:平玉环 设计周数:一周 成绩: 日期:2014年7 月3 日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二题目分析设计: 系统整体控制方案(燃煤锅炉) 1,炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,

炉膛压力控制系统

内蒙古科技大学 过程控制课程设计论文 题目:锅炉炉膛负压控制系统 学生姓名:严合 学号:0867112335 专业:测控技术与仪器 班级:测控2008-3 指导教师:左鸿飞 2011 年08 月31 日

目录 一、概述 (Ⅲ) 二系统要求及组成 (Ⅴ) 2.1系统的要求 (Ⅴ) 2.2炉膛负压的动态特性 (Ⅴ) 2.3引风控制系统的工况 (Ⅴ) 2.4系统的组成 (Ⅵ) 三应注意的问题 (Ⅷ) 3.1抗积分饱和及外反馈法 (Ⅷ) 3.2 采用死区非线性环节 (Ⅸ) 3.3 引风机1和2的双速调节 (Ⅸ) 3.4 炉膛压力的测量 (Ⅹ) 3.5 内爆保护 (Ⅹ) 四、仪表选型及参数整定 (Ⅺ) 4.1 前馈-反馈控制系统 (Ⅺ) 4.3 传感器的选择 (Ⅺ) 4.4 选择控制系统设计 (Ⅺ) 五课程设计体会 (Ⅻ) 六参考文献 (ⅩⅢ)

一概述 锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数(2.45Mpa- 27MPa ,400℃-570℃),并对外输出热能的特种设备。锅炉控制的主要目的是调节锅炉出口的蒸汽压力、流量和温度,使其达到所希望的数值。为此,需要对燃料、空气和水三者的量进行调节。锅炉是一个复杂的系统,对锅炉工况造成影响的因素之一是来自外部和内部的扰动,如燃料发热量的变化或热力系统工况的变化等。控制器或控制系统根据锅炉出口蒸汽参数实际值偏离其设定值的大小和方向,调节燃料量、空气量和水量,使锅炉出口参数与其所希望的值相一致。 锅炉除配有相应的仪表系统外,主要有以下控制系统:汽包液位控制系统;燃料控制系统;过热器和再热器出口蒸汽温度的控制系统;燃烧器程序控制系统等等。不同类型的锅炉,尽管其控制系统不尽相同,但是它们的工作原理大体是相同的。 而其中最重要的系统是燃烧控制系统。其主要功能是控制炉膛的燃料的空气的输入量,或控制燃烧率,以适应锅炉负荷的变化。对锅炉运行和控制系统来说,锅炉出口蒸汽压力的变化经常作为燃料量的输入和蒸汽量的输出之间不平衡的一个标志。引起蒸汽压力变化的因素很多,其中主要的扰动量是燃料量(内扰)和蒸汽量的变化(外扰)。燃烧控制系统的基本要求是:迅速适应外界负荷需求的变化;及时消除锅炉燃料侧的自发扰动;维持调节过程中各被调量在允许的范围内;保证锅炉运行的安全性和经济性。燃料控制系统一般包括燃料控制、引风控制和鼓风控制三个子系统。 燃料控制子系统中,蒸汽压力的实际值相对于其设定值的偏差输入到蒸汽压力控制器,经控制运算后输出调整锅炉燃烧率的指令信号;燃烧控制器根据锅炉燃烧率的指令信号的变化调整入炉燃料量。 同时,锅炉燃烧率的指令信号也加入到鼓风控制子系统中,对鼓风量进行调整。为保证燃烧的过程的经济性,即保证燃烧过程合适的燃料和风量的比值,常采用具有烟气氧量校正调节的鼓风控制系统,形成有燃料量前馈调节的串级控制系统,在保证送风量与燃料量基本成比例的粗调的基础上,进一步通过氧量校

锅炉系统控制

1锅炉系统控制要求1.1主要监测参数

1.2控制部分 根据锅炉出口热水温度、热水流量、热水压力、炉膛压力、烟气含氧量自动调节锅炉给煤量、鼓/引风机风量,以保证锅炉处于最佳的燃烧状态,最佳热效率,控制调节系统采用西门子PCS7控制系统,并备有手动和自动操作模式。 1.3联锁控制部分 此项目涉及到锅炉电机起停保护,原则为启动电机顺序一次是引

风机、一次风机、二次风机、炉排电机、给煤机。停止电机顺序一次是炉排电机、给煤机、一次风机、二次风机、引风机。如果引风机停,必须停一次风机和二次风机,如果一次风机停,必须停二次风机和炉排电机和给煤机。 当锅炉运行中出现下列情况时,设置自动切断鼓、引风机的装置: ●锅炉压力降低至0.4MPa时; ●锅炉水温升高至140℃时; ●锅炉出口流量低于420t/h; ●循环水泵突然停止运行时; 锅炉的引风机与鼓风机之间设置联锁: ●启动:引风机-鼓风机-炉排 ●停止:炉排-鼓风机-引风机 锅炉的炉排与除渣机之间设置联锁: ●启动:除渣机-炉排 停止:炉排-除渣机 2锅炉自动控制特点 锅炉的燃烧控制主要解决的是锅炉的热平衡问题。当外网的负荷变化时,相应的一、二次风量分配也会变化。因此,锅炉的燃烧控制即要控制给煤量,也要控制一、二次风的给风量。也就是要根据外网的负荷变化情况来控制锅炉的给煤量。根据锅炉燃料的供给速度来控制锅炉的一、二次风量,再根据锅炉的出口的烟气的含氧量对风/煤

比进行自动调整。 锅炉自动控制系统将整个锅炉控制分成如下几个部分:燃烧过程控制、给水母管压力控制,除氧器控制。燃烧过程控制又可以分成送风控制、炉排转速控制、炉膛负压控制,此三部分相互关联。 燃烧系统自动调节的第一个任务是维持锅炉出口热水温度保持稳定,克服自身燃料方面的扰动,保证负荷与出力的协调;第二个任务是使燃料量与空气量相协调(风煤比),保证燃烧的经济性;第三个任务是使引风量与送风量相适应,维持炉膛压在一定范围内。 由于锅炉在运行过程中负荷经常发生变化,这样必须随负荷变化及时调整燃料量,锅炉中,进出热量的平衡体现在锅炉出口热水温度,负荷调节即温度调节,温度调节通过燃料量的调节即炉排转速的改变来实现。因此在具体的控制设计中基本上应根据负荷来设定炉排转速——粗调,根据锅炉出口热水流量来细调炉排转速;根据炉排转速来设定送风——粗调,由烟气含氧量来细调送风量,再根据送风来调整引风以维持负压。 细调过程在规则控制中实现,粗调在大的负荷变动中采用。粗调要求有比较准确的炉排转速与负荷的对应表、鼓风与引风的对应表。细调要求有准确的专家经验。对应表及规则表可写入程序并可在界面中修改。

锅炉炉膛安全监控系统(FSSS)

第四章锅炉炉膛安全监控系统(FSSS) 第一节FSSS概述 随着锅炉容量的不断增大,需要控制的燃烧设备数量也随之增多,如点火装置、油燃烧器、煤粉燃烧器、一次风档板、二次风档板等等。燃烧设备的操作过程也趋于复杂化,如点火油枪的投运操作包括:点火油枪的推入、雾化蒸汽阀开启、进油阀开启、电点火器的投入与断开等。煤粉燃烧器的投运操作包括:一次风档板和二次风档板的开启、煤粉挡板的开启、给粉机启动等。点火油枪的解列操作包括:进油阀关闭、油枪吹扫入油枪退出等。煤粉燃烧器的停运操作包括:停给粉机、煤粉挡板的关闭、二次风挡板的关闭等。在锅炉启停工况和事故工况时,燃烧器的操作更加繁琐,由于操作不当很容易造成事故。 当锅炉炉膛内压力增高到一定值时,因炉膛面积较大,可能发生损坏水冷壁管的事故,严重时甚至会使锅炉炉墙、支架损坏,致使锅炉报废。 国内锅炉过去缺少燃烧安全控制系统,每年较大型锅炉发生炉膛爆燃事故几十起,损失巨大。目前,国内外大、中型发电机组都装有炉膛安全监控系统。炉膛安全监控系统的英文名称为Furnace Safeguard Supervisory System(简称为FSSS),也可称作燃烧器管理系统(Burner Management System,简称BMS)。炉膛安全监控系统是现代大型机组自动化

不可缺少的组成部分,它对炉膛的正常燃烧,锅炉的安全运行起着决定性的作用。 炉膛安全监控系统有两项重要作用,分别是锅炉安全保护作用和锅炉安全操作管理作用,分别由燃料安全系统(Fuel Safeguard System,简称FSS)和燃烧器控制系统(Burner Control System,简称BCS)完成。 锅炉安全保护作用主要包括在锅炉运行的各个阶段,对参数、状态进行连续地监视;不断地按照安全规定的顺序对它们进行判断、逻辑运算;遇到危险工况,能自动地启动有关设备进行紧急跳闸,切断燃料,使锅炉紧急停炉,保护主、辅设备不受损坏或处理未遂性事故。 锅炉安全操作管理作用主要包括制粉系统和燃烧器的管理即控制点火器和油枪,提供给粉(煤)机的自启动和停止,提供制粉系统监视和远方操作,防止危险情况发生和人为操作的误判断,误操作。分别监视油层、煤层和全炉膛火焰。当吹扫、燃烧器点火和带负荷运行时,决定风箱挡板位置,以便获得所需要的炉膛空气分布。同时还供状态信号到协调控制系统、全厂监测计算机系统及全厂报警系统等。 FSSS不仅能自动地完成各种操作和保护动作,还能避免运行人员在手动操作时的误动作,并能执行手动来不及的快动作。 FSSS和CCS(协调控制系统)是保障锅炉运行的两大支柱,FSSS和CCS相互有一定关系和制约,而FSSS的安全联锁功能是最高等级的。 本章主要介绍炉膛爆燃的原因及防止;压力特性及检测;FSSS的组成及功能等。 第二节FSSS系统功能

炉膛负压控制系统

炉膛负压控制系统总结 炉膛负压一般采用两台引风机静叶或动叶、或者液偶执行机构来控制。控制方案采用单回路、平衡算法控制。引风控制看似简单,实际需要注意很多方面,具体如下: 1、信号处理 1)炉膛负压控制被调量一般采用三取中选择块,需要注意的是测点的选择必须包含炉膛两侧,不能取在同一侧;另外三取中选择块设置需要注意坏点、偏差大、变化速率设置等切除情况。 2)最后是由于炉膛负压本身具有小幅波动特点,所以为了保证系统稳定性和执行机构的使用,一般我们对三取中后的信号进行滤波处理,并对SP和PV 偏差量增加调节死区功能,需要注意的是滤波时间不能太长,死区不能太大,因为太长会影响事故工况调节反应时间。最好根据炉膛燃烧特点来确定。 2、参数设置 1)对于运行人员手动设定的SP需要加上下限来防止操作失误问题。 2)由于炉膛燃烧特性决定PID参数设置不能太强,在作定值扰动时达到模拟量验收规程中要求即可,不能片面的追求定值扰动曲线的调节时间、衰减率等。 3)执行机构动作速率,以及上限设置需要根据锅炉单侧辅机出力试验确定,防止引风机出现过流保护。 3、前馈、超迟、闭锁 1)负压控制前馈可以根据对其影响因素来设置,除了常规的送风机执行机构前馈外,可增加一次风机执行机构输出、启停磨影响、RB影响等。 2)事故工况下超迟主要包括:RB、MFT。RB尤其是一次风RB对于炉膛负压影响尤为明显,所以一般采取一次风RB触发时,引风机执行机构超迟关一定量,防止负压过低引起保护动作;MFT发生时炉膛负压肯定大幅下降,所以有必要超迟关一定量,即防内爆功能。 3)引风控制增加闭锁功能很有必要,直接用负压高低来闭锁减加引风执行机构,保证升降负荷以及事故工况下机组避免超更危险的方向发展。一般我们也用负压高低报警闭锁送风机加减。

炉膛负压单回路控制系统

目录 1系统整体控制方案 (1) 1.1炉膛负压概述 (1) 1.2控制过程简述 (1) 1.3控制系统选择 (2) 1.4 系统流程图 (3) 2 仪表的选型 (3) 2.1 压力计选型 (3) 2.2 引风机选型 (4) 2.3 炉膛压力测量 (4) 3 系统方框图 (5) 4 被控对象特性 (5) 4.1 炉膛动态特性 (5) 4.2 控制算法的选择 (5) 5 系统仿真 (6) 5.1 各环节传递函数 (6) 5.2 matlab仿真 (7) 课程设计总结 (8) 参考文献 (8)

(燃煤锅炉)炉膛负压单回路控制系统 一,系统整体控制方案(燃煤锅炉) 1,炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。 炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。 炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压-40 ~ -60Pa。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。 2,控制过程简述 使用压力表检测出炉内压力,把压力信号转换为电流4-20 mA信号,用转换来的电信号控制引风机变频器的频率.通过频率的改变使引风机的引风量得到控制。 炉膛负压是一个快过程,只要PI参数整定合适,一般采用单回路闭环负反馈,控制量为引风机的变频器即可达到目的。 炉膛负压的控制对象是引风机挡板所控制的引风量,炉膛负压的动态特性是引风量阶跃变化时,炉膛负压随时间变化的特性,如下图1所示。由于炉膛负压反应很快,可做比例特性来处理。

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

锅炉压力控制系统

1 绪论 1.1 锅炉控制系统发展概述和国内外研究现状 21世纪到来,人类将进入一个以知识经济为特征的信息时代,检测技术、计算机技术和通讯技术一起构成现代信息的三大基础。 有的专家认为:在计算机和自动化领域,80年代的热点是个人计算机,90年代是算机,而21世纪第一个10年的热点必将是传感、执行与检测。锅炉自动化控制系统作为传感、执行与检测技术的一个应用方面也必将跨入数字化、网络化利智能化时代。 锅炉控制系统的发展过程与其它事物一样,也经历由简单到复杂、由机械到电子的过程。在我国,锅炉的控制大致经历四个阶段,叫手工控制阶段、专用仪表控制阶段、电动单元组合控制阶段和机算机控制阶段。 纵观国内外,总的来说,60年代,锅炉的控制还只是实行人工操作,锅炉的燃烧完全是凭司炉人的经验,几乎谈不到动控制。到了70—80年代,尤其是1972年能源危机之前,对锅炉的运行控制人多是注重安全性和可靠性。在越来越重视节约能源和环境保护的今天,人们则更注重于实现最佳燃烧控制,即把燃烧过程的热损失控制在最小,使热效率最高,且对环境污染最小的所谓最佳燃烧状态,因此,国内外相继对燃煤锅炉实行自动控制。逐步出现了由常规检测仪表和调节仪表构成的模拟控制系统,它具有可靠性高,成本低,易于操作利维护等优点,在大、中、小工业企业中得到了厂泛应用,解决了不少自动化方面的问题。 但是,随着生产向连续化、大型化发展,对自动化技术的要求越来越高,模拟自动控制系统越来越表现出它的局限性。主要表现在:(l)难以实现复杂的、多变量控制规律,如最优控制、自适应控制、模糊控制以及实时控制等;(2)控制参数一旦确定后就难以修改,要改变控制方案比较困难;(3)一组仪表只能控制一条回路,难以实现密集的监视、管理和操作;(4)一次性投资较大;(5)各个系统间不便进行通讯联系,难以实现多级控制。 到了 90年代,出现了以计算机作为自动化的过程控制技术,计算机控制系统运算速度快,控制精度高,并且具有分时操作功能,一台计算机可代替多台常规

锅炉炉膛负压控制系统课程设计

目录 一、概述 (Ⅲ) 二系统要求及组成 (Ⅴ) 2.1系统的要求 (Ⅴ) 2.2炉膛负压的动态特性 (Ⅴ) 2.3引风控制系统的工况 (Ⅴ) 2.4系统的组成 (Ⅵ) 三应注意的问题 (Ⅷ) 3.1抗积分饱和及外反馈法 (Ⅷ) 3.2 采用死区非线性环节 (Ⅸ) 3.3 引风机1和2的双速调节 (Ⅸ) 3.4 炉膛压力的测量 (Ⅹ) 3.5 内爆保护 (Ⅹ) 四、仪表选型及参数整定 (Ⅺ) 4.1 前馈-反馈控制系统 (Ⅺ) 4.3 传感器的选择 (Ⅺ) 4.4 选择控制系统设计 (Ⅺ) 五课程设计体会 (Ⅻ) 六参考文献 (ⅩⅢ)

一概述 锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数(2.45Mpa- 27MPa ,400℃-570℃),并对外输出热能的特种设备。锅炉控制的主要目的是调节锅炉出口的蒸汽压力、流量和温度,使其达到所希望的数值。为此,需要对燃料、空气和水三者的量进行调节。锅炉是一个复杂的系统,对锅炉工况造成影响的因素之一是来自外部和内部的扰动,如燃料发热量的变化或热力系统工况的变化等。控制器或控制系统根据锅炉出口蒸汽参数实际值偏离其设定值的大小和方向,调节燃料量、空气量和水量,使锅炉出口参数与其所希望的值相一致。 锅炉除配有相应的仪表系统外,主要有以下控制系统:汽包液位控制系统;燃料控制系统;过热器和再热器出口蒸汽温度的控制系统;燃烧器程序控制系统等等。不同类型的锅炉,尽管其控制系统不尽相同,但是它们的工作原理大体是相同的。 而其中最重要的系统是燃烧控制系统。其主要功能是控制炉膛的燃料的空气的输入量,或控制燃烧率,以适应锅炉负荷的变化。对锅炉运行和控制系统来说,锅炉出口蒸汽压力的变化经常作为燃料量的输入和蒸汽量的输出之间不平衡的一个标志。引起蒸汽压力变化的因素很多,其中主要的扰动量是燃料量(内扰)和蒸汽量的变化(外扰)。燃烧控制系统的基本要求是:迅速适应外界负荷需求的变化;及时消除锅炉燃料侧的自发扰动;维持调节过程中各被调量在允许的范围内;保证锅炉运行的安全性和经济性。燃料控制系统一般包括燃料控制、引风控制和鼓风控制三个子系统。 燃料控制子系统中,蒸汽压力的实际值相对于其设定值的偏差输入到蒸汽压力控制器,经控制运算后输出调整锅炉燃烧率的指令信号;燃烧控制器根据锅炉燃烧率的指令信号的变化调整入炉燃料量。 同时,锅炉燃烧率的指令信号也加入到鼓风控制子系统中,对鼓风量进行调整。为保证燃烧的过程的经济性,即保证燃烧过程合适的燃料和风量的比值,常采用具有烟气氧量校正调节的鼓风控制系统,形成有燃料量前馈调节的串级控制系统,在保证送风量与燃料量基本成比例的粗调的基础上,进一步通过氧量校正

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉fsss功能逻辑图

锅炉 FSSS功能逻辑图 1 引言 炉膛安全监控系统(Furnace Safeguard Supervisory System,简称FSSS),也称燃烧器管理系统(Burner Management System,简称BMS),是现代大型火力发电机组锅炉必须具备的一种监控系统。它能在锅炉正常工作和启动等各种运行方式下,连续密切地监视燃烧系统的大量参数与状态,不断进行逻辑判断和运算,通过各种联锁装置使燃烧设备严格按照既定的合理程序完成必要的操作,防止爆炸性的燃料和空气混合物在锅炉的任何部分积聚,以保证操作人员和锅炉燃烧系统的安全。设计FSSS,应保证其组成和功能的完整性、逻辑的合理性。 2 FSSS的设计组成 FSSS的设计组成如图1所示。 图1 FSSS设计组成框图

1)主控柜:包括逻辑控制主机、附件及电源系统。工作时,监视FSSS各设备参数与状态,进行逻辑判断,发出运作指令。 2)火检柜:安装火焰检测器信号放大处理部分元件。 3)就地点火控制柜:是实现对锅炉点火设备进行顺序动作的逻辑控制部分。通过远程/就地操作方式的切换,可实现控制点火设备的自动点火,也可实现对点火设备的单步操作。它主要控制的就地点火设备包括高能点火装置、组合燃烧装置及油角快速关断阀等。 4)冷却风机控制柜:安装一用一备冷却风机的电气控制元件,火检冷却风机的控制由其完成。 5)炉膛压力开关柜:安装炉膛压力开关,向主控柜发出压力高低报警信号。6)CRT终端显示系统:计算机、CRT触摸屏、通讯接口和电缆。 3 FSSS的基本功能 FSSS的基本功能如图2所示。 图2 FSSS基本功能图

其基本功能分燃烧器控制系统和燃料安全系统两大部分,前者包括锅炉点火、油层投入和风粉系统设备启停;后者包括炉膛吹扫、炉膛火焰检测及主燃料跳闸。 各子功能说明如下: 锅炉点火 目前中大容量锅炉点火方式大致有以下三种,设计时应根据各燃烧器特点采取不同控制方案。 1)采用高能点火装置直接点燃轻油燃烧器,以轻油作为低负荷时的助燃燃料。每一只轻油燃烧器配置一只高能点火装置,煤粉燃烧器依靠轻油燃烧着火。 2)将具有高能点火装置的轻油点火器设置在每一只重油燃烧器和煤粉燃烧器的侧面,轻油点火器由高能点火装置来点燃,其火焰以一定角度与主燃烧器喷射轴线相交,以保证可靠地点燃主燃料(重油、煤粉)。 3)采用高能点火装置点燃轻油点火器,再由轻油点火器点燃其相应的重油燃烧器,重油燃烧器点燃相邻的燃烧器中煤粉,即煤粉着火能量是由重油燃烧器提供。 油层投入 油层投入即油燃烧器的控制是燃烧控制系统中的基本功能,设计时应保证油燃烧器具有以下几个功能: 1)锅炉启动到机组带20%~30%额定负荷的全过程提供必要的燃料。 2)在锅炉主要辅机发生故障、机组减负荷运行、机组发生甩负荷停机不停炉、电网故障、主开关跳闸及机组带厂用电运行时,油燃烧器起稳定燃烧、维持低负荷运行作用。 3)点燃煤粉燃烧器。煤粉着火需要一定的能量,投用一定数量的油燃烧器,使锅炉达到20%额定负荷以上,可以保证煤粉稳定着火燃烧。 风粉系统设备启停

风量与炉膛压力控制系统设计 马平

科技学院 课程设计报告 (2014--2015年度第1学期) 名称:过程控制课程设计 题目:风量与炉膛压力控制系统设计 院系: 专业: 设计周数: 姓名学号分工成绩成员 日期:2015 年1 月14 日

《过程控制》课程设计 任务书 一、目的与要求 “过程控制课程设计”是《过程控制》课程的一个重要组成部分。通过实际工业 过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计 说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本 技能训练。 二、主要内容 1.根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图; 2.根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID 图); 3.根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包 括系统功能图和系统逻辑图); 4.对所设计的系统进行仿真试验并进行系统整定; 5.编写设计说明书。 三、进度计划 四、设计(实验)成果要求 1.绘制所设计热工控制系统的的SAMA图; 2.根据已给对象,用MATABL进行控制系统仿真整定,并打印整定效果曲线; 3.撰写设计报告 五、考核方式 提交设计报告及答辩 学生姓名: 指导教师:马平 2015年1 月11 日

一、课程设计的目的与要求 “过程控制课程设计”是“过程控制”课程的一个重要组成部分。通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。 二、设计正文 1.基本任务和要求: 任务:1.保持烟气中的含氧量最佳值。 2.维持炉膛负压一定。 要求:1.了解实现风量与炉膛压力控制的关键技术; 2. 能够进行风量与炉膛压力控制系统的设计、仿真与工程实现(画出SAMA图)。 2.风量与炉膛压力控制系统对象的动态特性: ①送风控制系统的动态特性: 1.送风控制系统动态特性分析: 炉燃烧控制系统是火力发电机组主要的控制系统之一,而送风调节系统的调节作用是这一系统能顺利工作的前提。送风调节系统的任务是通过调节送风机入口挡板,使烟气中的含氧量保持最佳值,从而保证锅炉燃烧系统配置最佳定燃比,使锅炉达到最高热效率。恰使燃料完全燃烧所需的空气量标为理论空气量,实际上按理论空气量无法达到完全燃烧的目的,一般总要使送风量比理论空气量多一些。 为了使锅炉适应负荷的变化,必须同时改变送风量和燃料量,送风系统的被控对象为炉膛,它是惯性和迟延都比较小的自衡对象。当空气量不变,燃料量增加时,使空气量与燃料量比值下降,烟气中的含氧量降低,当燃料量不变,空气量增加时,烟气中的含氧量增加,控制系统应使送风量与燃料量协调变化,以保证其经济性。

燃料与炉膛负压控制

燃料与炉膛负压控制

————————————————————————————————作者: ————————————————————————————————日期: ?

课程实验总结报告 实验名称:炉膛负压与氧量校正控制 ?课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1引言.........................................................................................错误!未定义书签。 1.1 炉膛负压概述?2 2 控制逻辑?2 2.1炉膛压力控制?2 2.1.1 相关图纸?2 2.1.2控制原理?错误!未定义书签。 2.1.3控制逻辑............................................................................ 3 2.2 氧量校正?3 2.2.1 相关图纸 (3) 2.2.2 控制原理 (3) 2.2.3控制结构?4 2.2.4 氧量校正控制逻辑 (4) 2.2.5二次风控制逻辑 (5) 3 被控对象特性?6 3.1静态特性?6 3.2动态特性?错误!未定义书签。 3.2.1 炉膛压力?8 3.2.2 含氧量...................................................错误!未定义书签。 4 PID整定?9 4.1炉膛负压控制器 ......................................................错误!未定义书签。 4.2 氧量校正 ............................................................................................... 11 5 总结.............................................................................................错误!未定义书签。

锅炉炉膛安全监控系统(FSSS)调试方案

BALCO EXPANSION PROJECT4×300MW T HERMAL POWER P LANT FURNACE SAFEGUARD SUPERVISORY SYSTEM 印度BALCO扩建4×300MW 燃煤电站工程 锅炉炉膛安全监控系统调试方案 Spe.2009 2009年9月

Complied by: 编写: Checked by: 初审: Revised by: 审核: Approved by: 批准:

目录 C ontents 1.编制目的Compile Purpose 2.调试范围Scope of commissioning 3.调试前必须具备的条件Conditions before commissioning 4.调试步骤Process of commissioning 5.使用工具Tools used for test 6.注意事项Precautions

1.编制目的Compile Purpose 为了指导和规范系统及设备的调试工作,检验系统的性能,发现并消除可能存在的缺陷,检查热工联锁、保护和信号装置,确保其动作可靠。使系统及设备能够安全正常投入运行,制定本方案。 This commissioning procedure is compiled to guide and standardize the practice of testing and adjusting to facilitate proofing of system performance,finding and repairing of possible defects,thus ensuring that the equipment and system can be brought into operation safely and smoothly. 2.调试范围Scope of commissioning 2.1油泄漏试验 Oil leakage test 油母管泄漏试验准备就绪条件 Conditions of oil-line leakage test 油母管泄漏试验过程 Procedure of oil-line leakage test 相关显示及报警 Displays and alarms 2.2炉膛吹扫 Furnace purge 炉膛吹扫条件 Conditions of furnace purge 吹扫过程 Procedure of furnace purge 相关显示及报警 Displays and alarms 2.3炉膛安全管理系统 Furnace safeguard management system 2.3.1主燃料跳闸 Master fuel trip(MFT) MFT跳闸条件 Condition of master fuel trip MFT复位条件 Condition of MFT reset MFT条件发生后的跳闸过程 MFT initiate d tripping sequence

炉膛负压

炉膛负压是反映燃烧工况稳定与否的重要参数,波动大小说明燃烧稳定程度。 炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。大多数锅炉采用平衡通风方式,使炉内烟气压力地与外界大气压力,即炉内烟气负压,炉膛内烟气压力最高的部位是炉堂顶部。所谓炉膛负压:即指炉膛顶部的烟气压力。当炉负压过大时,漏风量增大,吸风机电耗,不完全燃烧损失、排烟热损失均增大。甚至使燃烧不稳定甚至灭火炉负压小甚至变为正压,火焰及飞灰将炉膛不严处冒出,恶化工作燃烧造成危及人身及设备安全。故应保持炉膛负压在正常范围内。 运行中引起炉膛负压波动的重要原因为燃烧工况的变化,在吸、送风机保持不变的情况,由于燃烧工况的变化总有小量的变化,故炉膛负压总是波动的,当燃烧不稳定时炉膛压力将产生强烈波动,炉膛负压即相应作出大幅度的剧烈的波动。当炉膛压力发生剧烈脉动时,往往是灭火的前兆,这时必须加强监视和检查炉内燃烧工况、分析原因,并及时运行调整和处理。同时,烟气流经各对流受热面时,要克服流动阻力,故沿烟气流程烟道各点的负压是逐渐增大的。在不同负荷时,由于烟气量变化,烟道各点负压也相应变化,如负荷升高,烟道各点负压相应增大;反之,相应减小。在正常运行中,烟道各点负压与负荷保持一定的变化规律,当某段受热面发生结渣,积灰和局部堵灰时,由于烟气流通断面减小,烟气流速升高,阻力增大,于是其出入口的压差及出口负压值相应增大,故通过监视烟道各点负压即烟气温度的变化,可及时发现各段受热面的积灰、堵灰、漏泄等缺陷或发生二次燃烧的事故。所以,在正常情况下,炉膛负压和各烟道的负压都有大致相同的变化范围。运行中,如发现数值上有不正常的变化时,应进行全面分析,查明原因,及时处理,避免各种异常及事故生,保证炉的安全运行。

相关主题
文本预览
相关文档 最新文档