当前位置:文档之家› 经纬仪原理

经纬仪原理

经纬仪原理
经纬仪原理

水平角观测(经纬仪原理)

一、水平角测角原理

如图3—9所示,A、B、C为地面三点,高程不相等。将这三点沿铅垂线方向投影到PQ水平面上,在水平面上得到A1、B1、C1三点,则水平成B1A1与B l C1夹角β定义为地面上直线BA和BC间的水平角。由此可见,地面任意两直线间的水平角度,为通过该两直线所作竖直面间的两面角。

为了能测出水平角的大小,可在此两竖直面的交线上任一高度0点水平地放置一刻度盘,通过BA和BC和一竖直面,与刻度盘的交线为0m、0n,在刻度盘上相应的读数为b和a,从而求得水平角。

β=a—b (3—1)

根据以上分析,测量水平角的经纬仪必须具备一个水平度盘,并设有能在刻度盘上进行读数的指标;为了瞄准不同高度的目标,经纬仪的望远镜不仅能在水平面内转动,而且还能在竖直面内旋转。

图3—4水平角测量

二、经纬仪原理

经纬仪有游标经纬仪、光学经纬仪和电子经纬仪三类。游标经纬仪一般为金属度盘、游标读数、锥形轴系,目前已很少使用。电子经纬仪尚未普及,而光学经纬仪具有读数精度高、体积小、重量轻、使用方便和密封性能好等优点被广泛使用,下面对光学经纬仪、电子经纬仪作简要介绍。

1.J6级光学经纬仪

如图3—5是北京光学仪器厂生产的红旗Ⅱ型经纬仪。各部件的名称均标注在图上。理论上,一测回测角中误差为6″,故称为6秒级经纬仪,它属于较低精度的经纬仪,一般用于五等以下的控制测量和其他较低精度的测量工作。

J6经纬仪是由基座水平度盘和照准部三部分组成的。

基座上有三个脚螺旋6用来整平仪器。5是轴座连接螺旋,拧紧它可以将仪器固定在基座上,该螺旋不要松动,以免仪器分离而坠落。

水平度盘外面看不见,它是一个玻璃制成的圆环,盘上按顺时针方向刻有分划,从0°—360°,用来测量水平角。

照准部由望远镜、读数系统、横轴、竖直度盘等几部分组成,通过读数显微镜9可读出观测方向值。一般读到1′估读到10分之1分,即6″的倍数。如图3—6,为带分微尺测微器J6经纬仪读数窗,HZ表示水平度盘,V表示竖直度盘。此处水平度盘读数为214°54′,0,竖直度盘读数为79°06′ .4。图3—7为单板玻璃测微器的J6经纬仪的读数窗。国产红旗Ⅱ型及瑞士T1,型光学经纬仪就属这类读数方法。仪读数窗在读数窗中,下面的窗格为水平度盘的像,中间间格为竖直度盘的象。读数窗格中间的双线为指标线,度盘1°或30′刻一分划,注记的数字是度数,上面的窗口为测微尺的像,窗口中间的单线也是指标线,测微器每隔5′注记数字转动测微轮,使度盘上整度数或整10′的刻划线恰好夹在双线指标中间,即可读数,如图3—7a竖盘读数为92°17'24",图3—7b中水平度盘读数为4°30’+11'48″=4°41′48″。

图3—7 J6经纬仪读数窗

2.J2级光学经纬仪

图3—8是苏州光学仪器厂生产的DJ2型光学经纬仪的外形图。它的各个部件的名称均注在图上。J2仪器读数设备与J6比较有两个特点:一是,J2级光学经纬仪采取度盘对径重合读数取平均值,消除了照准部偏心的影响,提高了读数精度;二是在J2级光学经纬仪读数显微镜中,只能看到水平度盘或竖盘的一种影像,要读另一种时,需转动换像手轮9。

如图3—9为苏光J2光学经纬仪的读数窗图,当照准后,转动测微手轮7,使主像(正字注记)与副像、倒字注记的分划线对合好,提出具备下列三个条件而且注有度数的相对分划线。

经纬仪原理

水平角观测(经纬仪原理) 一、水平角测角原理 如图3—9所示,A、B、C为地面三点,高程不相等。将这三点沿铅垂线方向投影到PQ水平面上,在水平面上得到A1、B1、C1三点,则水平成B1A1与B l C1夹角β定义为地面上直线BA和BC间的水平角。由此可见,地面任意两直线间的水平角度,为通过该两直线所作竖直面间的两面角。 为了能测出水平角的大小,可在此两竖直面的交线上任一高度0点水平地放置一刻度盘,通过BA和BC和一竖直面,与刻度盘的交线为0m、0n,在刻度盘上相应的读数为b和a,从而求得水平角。 β=a—b (3—1) 根据以上分析,测量水平角的经纬仪必须具备一个水平度盘,并设有能在刻度盘上进行读数的指标;为了瞄准不同高度的目标,经纬仪的望远镜不仅能在水平面内转动,而且还能在竖直面内旋转。 图3—4水平角测量 二、经纬仪原理 经纬仪有游标经纬仪、光学经纬仪和电子经纬仪三类。游标经纬仪一般为金属度盘、游标读数、锥形轴系,目前已很少使用。电子经纬仪尚未普及,而光学经纬仪具有读数精度高、体积小、重量轻、使用方便和密封性能好等优点被广泛使用,下面对光学经纬仪、电子经纬仪作简要介绍。 1.J6级光学经纬仪 如图3—5是北京光学仪器厂生产的红旗Ⅱ型经纬仪。各部件的名称均标注在图上。理论上,一测回测角中误差为6″,故称为6秒级经纬仪,它属于较低精度的经纬仪,一般用于五等以下的控制测量和其他较低精度的测量工作。 J6经纬仪是由基座水平度盘和照准部三部分组成的。 基座上有三个脚螺旋6用来整平仪器。5是轴座连接螺旋,拧紧它可以将仪器固定在基座上,该螺旋不要松动,以免仪器分离而坠落。 水平度盘外面看不见,它是一个玻璃制成的圆环,盘上按顺时针方向刻有分划,从0°—360°,用来测量水平角。

经纬仪的使用方法(免费)

第三节经纬仪的使用 一、安臵仪器 安臵仪器是将经纬仪安臵在测站点上,包括对中和整平两项内容。对中的目的是使仪器中心与测站点标志中心位于同一铅垂线上;整平的目的是使仪器竖轴处于铅垂位臵,水平度盘处于水平位臵。 1.初步对中整平 (1)用锤球对中,其操作方法如下: 1)将三脚架调整到合适高度,张开三脚架安臵在测站点上方,在脚架的连接螺旋上挂上锤球,如果锤球尖离标志中心太远,可固定一脚移动另外两脚,或将三脚架整体平移,使锤球尖大致对准测站点标志中心,并注意使架头大致水平,然后将三脚架的脚尖踩入土中。 2)将经纬仪从箱中取出,用连接螺旋将经纬仪安装在三脚架上。调整脚螺旋,使圆水准器气泡居中。 3)此时,如果锤球尖偏离测站点标志中心,可旋松连接螺旋,在架头上移动经纬仪,使锤球尖精确对中测站点标志中心,然后旋紧连接螺旋。 (2)用光学对中器对中时,其操作方法如下: 1)使架头大致对中和水平,连接经纬仪;调节光学对中器的目镜和物镜对光螺旋,使光学对中器的分划板小圆圈和测站点标志的影像清晰。 2)转动脚螺旋,使光学对中器对准测站标志中心,此时圆水准器气泡偏离,伸缩三脚架架腿,使圆水准器气泡居中,注意脚架尖位臵不得移动。 2.精确对中和整平

(1)整平 先转动照准部,使水准管平行于任意一对脚螺旋的连线,如图3-7a 所示,两手同时向内或向外转动这两个脚螺旋,使气泡居中,注意气泡移动方向始终与左手大拇指移动方向一致;然后将照准部转动90°,如图3-7b 所示,转动第三个脚螺旋,使水准管气泡居中。再将照准部转回原位臵,检查气泡是否居中,若不居中,按上述步骤反复进行,直到水准管在任何位臵,气泡偏离零点不超过一格为止。 (2)对中 先旋松连接螺旋,在架头上轻轻移动经纬仪,使锤球尖精确对中测站点标志中心,或使对中器分划板的刻划中心与测站点标志影像重合;然后旋紧连接螺旋。锤球对中误差一般可控制在3mm 以内,光学对中器对中误差一般可控制在1mm 以内。 对中和整平,一般都需要经过几次“整平—对中—整平”的循环过程,直至整平和对中均符合要求。 二、瞄准目标 (1)松开望远镜制动螺旋和照准部制动螺旋,将望远镜朝向明亮背景,调节目镜对光螺旋,使十字丝清晰。 (2)利用望远镜上的照门和准星粗略对准目标,拧紧照准部及望远镜制动螺旋;调节物镜对光螺旋,使目标影像清晰,并注意消除图3-7 经纬仪的整平

经纬仪认识与使用实验报告

姓名: 班级:地球物理1701班学号:0110170 实验一经纬仪认识与使用 一、实验名称:经纬仪认识与使用 二、实验目的与要求: 1、了解光学经纬仪的基本构造,各部件的名称和作用。 2、掌握经纬仪对中、整平、瞄准和读数的基本方法。 三、实验仪器: 经纬仪1台,三脚架1个。 四、实验内容: 1、熟悉经纬仪的构造,熟悉各部件功能及使用; 2、掌握经纬仪对中整平方法; 3、熟悉经纬仪测角的流程; 4、掌握经纬仪测水平角、垂直角的瞄准方法; 5、按物理实验报告格式,独立编写并提交一份实验报告。 五、实验原理与方法: 1、经纬仪的构造及各部件功能及使用方法 DJ6 经纬仪由三部分组成:照准部、水平度盘、基座组成。各部件名称如图1 所示。 图 1 经纬仪各部件名称 1)各部件功能及使用各种旋钮的作用与经纬仪基本一致,在实验过程中进一步加深认识。

水平制动螺旋:粗瞄后制动,照准部则不能转动;水平微动螺旋:水平 制动螺旋制动后,水平微动螺旋可以小范围微动, 用于精确照准目标;竖直制动螺旋: 粗瞄后制动,望远镜则不能转动; 竖直微动螺旋:竖直制动螺旋制动后,竖直微动螺旋可以小范围微动, 用于精确照准目标; 脚螺旋:用于对中和整平仪器; 物镜调焦螺旋:旋转该螺旋,进行物镜调焦,看清目标成像。目 镜调焦螺旋:旋转该螺旋,进行目镜调焦,看清十字丝成像。指 标水准管调节螺旋:调节该螺旋,使指标水准管气泡居中。反光 镜:360 度转动反光镜,是读数窗的亮度最大。 光学对点器:用于仪器对中。 2、经纬仪使用方法 使用经纬仪进行角度测量,按以下流程进行:安置仪器—仪器对中整平—瞄准——读数。如果是垂直角测量,在读数前应使指标水准管气泡居中。 1)对中整平 (1)安置仪器 将三脚架成正三角形打开,测站点在三角形中心,架头大致水平,拧紧固定螺旋将仪器安置在架头上。 (2)精确对中如果测站点位未出现在光学对点器视野中,可两手各握住一个脚架架腿移动脚架,使测站点位大致位于对点器标识圆圈附近,最后用脚螺旋精确对中。 (3)粗略整平 33

经纬仪原理及角度测量方法解析

经纬仪原理及角度测量方法 内容:理解水平角、竖直角测量的基本原理;掌握光学经纬仪的基本构造、操作与读数方法;水平角测量的测回法和方向观测法;掌握竖盘的基本构造及竖直角的观测、计算方法;掌握光学经纬仪的检验与校正方法;了解水平角测量误差来源及其减弱措施及电子经纬仪的测角原理及操作方法。 重点:光学经纬仪的使用方法;水平角测回法测量方法;竖直角测量方法; 难点:光学经纬仪的检验与校正。 § 3.1 角度测量原理 角度测量(angular observation) 包括水平角(horizontal angle) 测量和竖直角(vertical angle) 测量。 一、水平角定义 从一点出发的两空间直线在水平面上投影的夹角即二面角,称为水平角。其范围:顺时针0°~360°。 二、竖直角定义 在同一竖直面内,目标视线与水平线的夹角,称为竖直角。其范围在0°~±90°之间。如图当视线位于水平线之上,竖直角为正,称为仰角;反之当视线位于水平线之下,竖直角为负,称为俯角。

§ 3.2 光学经纬仪(optical theodolite ) 经纬仪是测量角度的仪器。按其精度分,有DJ6 、DJ2 两种。表示一测回方向观测中误差分别为6"、2"。 一、DJ6 光学经纬仪的构造 DJ6 光学经纬仪图 1、照准部(alidade) 2、水平度盘(horizontal circle) 3、基座(tribrach) 二、J6的读数方法 1、J6 经纬仪采用“分微尺测微器读数法”,分微尺的分划值为1ˊ,估读到获0.1ˊ( 即:6") 。如图,水平度盘读数为:73°04ˊ24"。 2、“ H ”——水平度盘读数,“ V ”——竖直度盘读数。 三、J2 光学经纬仪的构造

经纬仪的使用方法

第三节经纬仪的使用 一、安置仪器 安置仪器是将经纬仪安置在测站点上,包括对中和整平两项内容。对中的目的是使仪器中心与测站点标志中心位于同一铅垂线上;整平的目的是使仪器竖轴处于铅垂位置,水平度盘处于水平位置。 1.初步对中整平 (1)用锤球对中,其操作方法如下: 1)将三脚架调整到合适高度,张开三脚架安置在测站点上方,在脚架的连接螺旋上挂上锤球,如果锤球尖离标志中心太远,可固定一脚移动另外两脚,或将三脚架整体平移,使锤球尖大致对准测站点标志中心,并注意使架头大致水平,然后将三脚架的脚尖踩入土中。 2)将经纬仪从箱中取出,用连接螺旋将经纬仪安装在三脚架上。调整脚螺旋,使圆水准器气泡居中。 3)此时,如果锤球尖偏离测站点标志中心,可旋松连接螺旋,在架头上移动经纬仪,使锤球尖精确对中测站点标志中心,然后旋紧连接螺旋。 (2)用光学对中器对中时,其操作方法如下: 1)使架头大致对中和水平,连接经纬仪;调节光学对中器的目镜和物镜对光螺旋,使光学对中器的分划板小圆圈和测站点标志的影像清晰。 2)转动脚螺旋,使光学对中器对准测站标志中心,此时圆水准器气泡偏离,伸缩三脚架架腿,使圆水准器气泡居中,注意脚架尖位置不得移动。 2.精确对中和整平

(1)整平 先转动照准部,使水准管平行于任意一对脚螺旋的连线,如图3-7a 所示,两手同时向内或向外转动这两个脚螺旋,使气泡居中,注意气泡移动方向始终与左手大拇指移动方向一致;然后将照准部转动90°,如图3-7b 所示,转动第三个脚螺旋,使水准管气泡居中。再将照准部转回原位置,检查气泡是否居中,若不居中,按上述步骤反复进行,直到水准管在任何位置,气泡偏离零点不超过一格为止。 (2)对中 先旋松连接螺旋,在架头上轻轻移动经纬仪,使锤球尖精确对中测站点标志中心,或使对中器分划板的刻划中心与测站点标志影像重合;然后旋紧连接螺旋。锤球对中误差一般可控制在3mm 以内,光学对中器对中误差一般可控制在1mm 以内。 对中和整平,一般都需要经过几次“整平—对中—整平”的循环过程,直至整平和对中均符合要求。 二、瞄准目标 (1)松开望远镜制动螺旋和照准部制动螺旋,将望远镜朝向明亮背景,调节目镜对光螺旋,使十字丝清晰。 (2)利用望远镜上的照门和准星粗略对准目标,拧紧照准部及望远镜制动螺旋;调节物镜对光螺旋,使目标影像清晰,并注意消除图3-7 经纬仪的整平

光学测距原理

光学测距原理 1.利用红外线测距或激光测距的原理是什么? 测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c = 299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000 需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。 建筑行业有一种手持式的测距仪,用于房屋测量,其工作原理与此相同。 2.被测物体平面必须与光线垂直么? 通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。 3.若被测物体平面为漫反射是否可以? 通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。 4.若以超声波测距代替是否可以让物体延一墙壁运动并测出与对面墙的距离? 此问题搞不懂你的意图,超声波测距精度比较低,现在很少使用。 激光测距(即电磁波,其速度为30万公里/秒),是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。相位测距技术的测距精度高,但作用距离有限,主要用于高精度大地测量。众所周知,光在给定介质的传播速度是一定的,因此,通过测量光在参考点和被测点之间的往返传播时间,即可给出目标和参考点之间的距离。 相位测距法是通过强度调制的连续光波在往返传播过程中的相位变化来测量光束的往返传播时间,其计算公式如下: t=Φ/2πf 式中,t为光波往返传播时间(s);Φ为调制光波的相位变化量(rad); f为调制频率(Hz)。 光的往返传播时间得到后,目标至参考点的距离可由下式求得 R=(c/2)×(Φ/2πf)=(λ/2)×(Φ/2π) 式中,R为目标至参考点距离(m);c为光波传播速度(m/s);λ为调制光波波长(m)。 相位位移是以2π为周期变化的,因此有 Φ=(N+△n).2π 式中,N为相位变化整周期数;△n为相位变化非整周期数。

经纬仪的认识与使用实验报告

经纬仪的认识与使用实验报告 篇一:实验二经纬仪的认识与使用 实验二经纬仪的认识与使用 1.目的 (1)了解DJ6光学经纬仪的基本结构及主要部件的名称和作用。(2)掌握经纬仪基本操作和读数方法。2.组织 每组8一10人。每组每位同学完成经纬仪的整平、对中、瞄准、读数工作 各一次。3.学时 课内2学时4.仪器及用具 每组DJ6光学经纬仪1台、花杆2个。5.实验步骤提要 整平、对中经纬仪——瞄准测钎——读水平度盘。 5)学会DJ6光学经纬仪的读数方法。读数记录于“读数记录表”中。 6)练习配置水平度盘的方法。

7.实验记录及上交资料: 每人交1份实验报告。 实验三测回观测法测水平角 1.目的 1)掌握水平角观测原理,经纬仪的 构造及度盘读数。2)掌握测回法测水平角的方法。2.组织 每组4-5人,每人用测回法完成一个水平角的观测任务。3.学时课内2学时4.仪器及用具: 每组DJ6光学经纬仪1台、花杆2个、记录板1个。5.实验步骤提要1)度盘配置:设共测n(n=4或5)个测回,则第i个测回的度盘位置为略大于(i-1)×180°/n。2)一测回观测:(1)盘左:瞄准左目标A,进行读数记a1;顺时针方向转动照准部,瞄准 右目标B,进行读数记b1;计算上半测回角值β  左= b1- a1。 (2)盘右:瞄准右目标B,进行读数记b2;逆时针方向转动照准部,瞄准

左目标A,进行读数记a2;计算下半测回角值β  右= b2- a2。 左-β右)/2。 (3)检查上、下半测回角值互差是 否超限。计算一测回角值β=(β  3)测站观测完毕后,当即检查各测 回角值互差是否超限,计算平均角值。6.注意事项 1) 瞄准目标时,尽可能瞄准其底部,以减少目标倾斜引起的误差。2) 同一测回观测时,切勿转动度盘变换手轮,以免发生错误。3)观测过程中若发现气泡偏移超过一格时,应重新整平重测 该测回。4)计算半测回角值时,当左 目标读数a大于右目标读数b时,则应加360°。 5)限差要求为:对中误差小于3㎜;上、下半测回角值互差不超过±40”,超限重测该测回;各测回角值互差不超过 ±24”,超限重测该测站。7.上交实验记录

精密光学经纬仪的构造及使用方法

§3.2 精密光学经纬仪的构造及使用法 控制测量中,需用经纬仪进行大量的水平角和垂直角观测。使用经纬仪进行角度观测,最重要的环节是:仪器整平、照准和读数。我们围绕这三个环节,对光学经纬仪的构造和使用法作如下介绍。 3.2.1 水准器 由前节可知,测角时必须使经纬仪的垂 直轴与测站铅垂线一致。这样,在仪器结 构正确的条件下,才能正确测定所需的角 度。要满足这一要求,必须借助于安装在 仪器照准部上的水准器,即照准部水准器。 照准部水准器一般采用管状水准器。管水 准器是用质量较好的玻璃管制成,将玻璃 管的壁打磨成光滑的曲面,管注入冰点低, 流动性强,附着力较小的液体,并 图3-3 水准轴与水准器轴 留有空隙形成气泡,将管两端封闭,就成 为带有气泡的水准器,如图3-3所示。 1. 水准轴与水准器轴 为了便于观察水准器的倾斜量,在水准管的外壁上刻有若干个分划,分划间隔一般为2mm,其中间点称为零点。 水准器安置在一个金属框架,并安装在经纬仪照准部支架上,所以把这种管状水准器称为照准部水准器。照准部水准器框架的一端有水准器校正螺旋,通过校正螺旋,使照准部水准器的水准器轴与仪器垂直轴正交。 所谓水准器轴,就是过水准器零点O,水准管壁圆弧的切线,如图3-3所示。另外, O 由于水准管的液体比空气重,当液体静止时,管气泡永远居于管最高位置,如图3-3中的' O作圆弧的切线,此切线总是水平的,我们称此切线为水准轴由此可知,位置。显然,过' O与水准器分划中心O重合,这时经纬仪的使其水准轴与水准器轴相重合,即气泡最高点' 垂直轴与测站铅垂线重合,这个过程称为整置仪器水平。 2. 水准器格值 我们知道,当水准器倾斜时,水准 管的气泡便会随之移动。不同的水准器, 虽然倾斜的角度完全相同,各自的气泡 移动量不会完全相同。这是因为不同的 水准器,它们的灵敏度不同。灵敏度以 水准器格值表示。所谓水准器格值,就 是当水准气泡移动一格时,水准器轴所 变动的角度,也就是水准管上的一格所 对应的圆心角。

经纬仪及其使用要求

第4章经纬仪及其使用 本章提要本章将介绍光学经纬仪的种类,重点介绍J6级光学经纬仪的构造和使用方法。学习水平角,竖直角的测量原理和使用经纬仪测量的方法,经纬仪的检验与校正方法,使用经纬仪测量角时应注意的事项,学习用经纬仪进行视距测量的方法。 第一节光学经纬仪的构造 光学经纬仪具有精度高、体积小、重量轻、密封性好和使用方便等优点,并采用玻璃度盘和光学测微装置,故有读数准确和使用方便等优点,已普遍取代了精度低、使用金属度盘及游标读数的游标经纬仪。 光学经纬仪有很多类型,按精度系列可分为J 07、J 1 、J 2 、J 6 、J 15 、J 60 等6个等级,“J” 是经纬仪的代号,下标数字为该仪器一测回方向中误差,单位为秒。下面着重介绍适用于地形测量和一般工程测量中常用的J 6 级经纬仪。 一、J 6 级光学经纬仪的构造 主要由照准部、水平度盘和基座三部分组成,如图4-1为杭州红旗光学仪器厂生产的 图4-1 CJH-1型J 6 级经纬仪 1.读数显微镜 2..瞄准架 3.望远镜 4.度盘离合扳钮 5.脚螺旋 6、三角座 7.水平度盘水准器 8.反光镜 9.竖盘指标水准管 10.长反光镜 11.望 远镜制动板钮 12.望远镜微动螺旋 13.照准部微动螺旋 14.轴座固定螺旋 15.水 平度盘 16.竖盘指标水准管微动螺旋 17.竖轴 18.中轴套 19.照准部制动扳钮 CJH-1型J 6 级经纬仪。 (一)照准部 为经纬仪上部可转动的部分,由望远镜3、横轴、竖盘、支架、竖轴17、水平度盘水准器7以及光学读数系统等组成。 望远镜在支架上可绕横轴作仰俯转动,并由望远镜制动板钮11和微动螺旋12控制。竖

红外线测距仪测量原理

红外线测距仪测量原理 测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测量的仪器。 红外测距仪的分类有激光红外,红外和超声波三种,目前测距仪主要是指的激光红外测距仪,红外测距仪和超声波测距仪由于测量距离有限,测量精度很低目前已经被淘汰。激光红外测距仪是利用激光对目标的距离进行准确测定的仪器。激光红外测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 测距仪有测量距离和测量精度,同时又是电子设备,所以品牌的选择非常重要,国际知名品牌的测距仪,在性能上会远优于杂牌的激光红外测距仪。 一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。 目前市面上主流的都是激光测距仪,手持式激光测距仪全球前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。 望远镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上各有特点,2013年,美国激光技术杂志公布的数据,2013年全球单品销售冠军是图雅得SP1500,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪

精密光学经纬仪的构造及使用方法

§3.2 精密光学经纬仪的构造及使用方法 控制测量中,需用经纬仪进行大量的水平角和垂直角观测。使用经纬仪进行角度观测,最重要的环节是:仪器整平、照准和读数。我们围绕这三个环节,对光学经纬仪的构造和使用方法作如下介绍。 3.2.1 水准器 由前节可知,测角时必须使经纬仪的垂 直轴与测站铅垂线一致。这样,在仪器结 构正确的条件下,才能正确测定所需的角 度。要满足这一要求,必须借助于安装在 仪器照准部上的水准器,即照准部水准器。 照准部水准器一般采用管状水准器。管水 准器是用质量较好的玻璃管制成,将玻璃 管的内壁打磨成光滑的曲面,管内注入冰 点低,流动性强,附着力较小的液体,并 留有空隙形成气泡,将管两端封闭,就成 为带有气泡的水准器,如图3-3所示。 1. 水准轴与水准器轴 为了便于观察水准器的倾斜量,在水准管的外壁上刻有若干个分划,分划间隔一般为2mm ,其中间点称为零点。 水准器安置在一个金属框架内,并安装在经纬仪照准部支架上,所以把这种管状水准器称为照准部水准器。照准部水准器框架的一端有水准器校正螺旋,通过校正螺旋,使照准部水准器的水准器轴与仪器垂直轴正交。 所谓水准器轴,就是过水准器零点O ,水准管内壁圆弧的切线,如图3-3所示。另外,由于水准管内的液体比空气重,当液体静止时,管内气泡永远居于管内最高位置,如图3-3中的'O 位置。显然,过'O 作圆弧的切线,此切线总是水平的,我们称此切线为水准轴由此可知,使其水准轴与水准器轴相重合,即气泡最高点'O 与水准器分划中心O 重合,这时经纬仪的垂直轴与测站铅垂线重合,这个过程称为整置仪器水平。 2. 水准器格值 我们知道,当水准器倾斜时,水准 管内的气泡便会随之移动。不同的水准 器,虽然倾斜的角度完全相同,各自的 气泡移动量不会完全相同。这是因为不 同的水准器,它们的灵敏度不同。灵敏 度以水准器格值表示。所谓水准器格值, 就是当水准气泡移动一格时,水准器轴 所变动的角度,也就是水准管上的一格 所对应的圆心角。 如前所述,水准管的内壁是一圆弧,圆弧的曲率半径愈大,水准管上一格所对应的圆图3-3 水准轴与水准器轴

测距仪的原理及分类

文章简介测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来 测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测 量的仪器文章详细内容 那什么是测距仪呢?原理是什么?市面上有哪些测距仪,下文将详细进行介绍。一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在 工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时 器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持 式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。目前市面上主流的都是激光测距仪,手持式激光测距仪全球 前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。望远 镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光 测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上 各有特点,2011年,美国激光技术杂志公布的数据,2011年全球单品销售冠军是图雅得YP900,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声 波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和 接收到回波的时间差T,然后求出距离。超声波测距仪,由于超声波受 周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范 围不是很广阔,但价格比较低,一般几百元左右。 3. 红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红 外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长 距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测 距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受 到的时间及红外线的传播速度就可以算出距离

经纬仪的原理与使用

经纬仪的原理与使用 一.角度测量的原理及相关基本概念 角度测量包括水平角测量和竖直角测量,其中水平角测量是用于测量地面点的位置,竖直角测量是用于间接测定地面点的高程。 (一)水平角的测量原理 水平角概念:从一点到两目标的方向线垂直投影在水平面上所成的角,β。如书图3-1。 为了测定水平角β,那么可设想在过角顶B点上方安置一个水平度盘,水平度盘上面带有顺时针刻划、注记。我们可以在BA方向读一个数n,在BC方向读一个数m,那水平角β就等于m减n,用公式表示为 β=右目标读数m-左目标读数n 水平角值为0~360°。 (二)竖直角的测量原理 竖直角概念:测站点到目标点的视线与水平线间的夹角,用α表示。如书图3-2:α为AB方向线的竖直角。其值从水平线算起,向上为正,称为仰角,范围是0°~90°;向下为负,称为俯角,范围为0°~-90°。 天顶距概念:视线与测站点天顶方向之间的夹角,图3-2中以Z 表示,其数值为0°~180°,均为正值。与竖直角的关系: α=90°-Z 为了测定天顶角或竖直角,那我们同测水平角类似,在A点安置一个竖直度盘,同样是带有刻划和注记。这个竖直度盘随着望远镜上下转动,瞄准目标后则有一个读数,那此读数就为竖直角。 根据上述角度测量原理,研制出的能同时完成水平角和竖直角测量的仪器称为经纬仪。经纬仪按不同测角精度又分成多种等级,如DJ1、DJ2、DJ6、DJ10等。D、J为“大地测量”和“经纬仪”的汉语拼音第一个字母,数字表示该仪器测量精度。DJ6表示一测回方向观测中误差不超过±6″。工程中常用的精度有2″、6″和10″。 二.DJ6型光学经纬仪 (一)基本构造:照准部,水平度盘,基座 (二)读数方法:最常见的读数方法有分微尺法、单平板玻璃测微器法和对径符合读法。下面分别说明其构造原理及读数方法。 1.分微尺法 分微尺法也称带尺显微镜法,多用于DJ6级仪器。由于这种方法操作简单,不含隙动差,其应用日广。如国产的TDJ6,Leica T16等

经纬仪使用教程讲解

经纬仪及角度测量 第一节 角度测量原理 角度测量包括水平角测量和竖直角测量,是测量的三项基本工作之一。角度测量最常用的仪器是经纬仪。水平角测量用于计算点的平面位置,竖直角测量用于测定高差或将倾斜距离改算成水平距离。 一、水平角测量原理 水平角是地面上一点到两目标的方向线投影到水平面上的夹角,也就是过这两方向线所作两竖直面间的二面角。用β表示,角值范围0o~360 o。如图3-1所示,设A 、B 、C 是任意三个位于地面上不同高程的点,B 1A 1、B 1C 1为空间直线BA 、BC 在水平面上的投影,B 1A 1与B 1C 1的夹角β就是为地面上BA 、BC 两方向之间的水平角。 为了测出水平角的大小,可以设想在B 点的上方水平地安置一个带有顺时针刻画、注记的圆盘,并使其圆心O 在过B 点的铅垂线上,有一刻度盘和在刻度盘上读数的指标。观测水平角时,刻度盘中心应安放在过测站点的铅垂线上,直线BA 、BC 在水平圆盘上的投影是om 、on ,此时如果能读出om 、on 在水平圆盘上的读数m 和n ,那么水平角β就等于m 减去n ,即n m -=β。 因此,用于测量水平角的仪器必须有一个能读数的度盘,并能使之水平。为了瞄准不同方向,该度盘应能沿水平方向转动,也能高低俯仰。当度盘高低俯仰时,其视准独应划出一竖直面,这样才能使得在同一竖直面内高低不同的目标有相同的水平度盘读数。 经纬仪就是根据上述要求设计制造的一种测角仪器。 图3-1 水平角测量原理 图3-2 竖直角测量原理 二、竖直角测量原理 竖直角是同一竖直面内视线与水平线间的夹角。角值范围为-90°~+ 90°。视线向上倾斜,竖直角为仰角,符号为正。视线向下倾斜,竖直角为俯角,符号为负。 竖直角与水平角一样,其角值也是度盘上两个方向读数之差。不同的是竖直角的两个方向中必有一个是水平方向。任何类型的经纬仪,制作上都要求当竖直指标水准管气泡居中,望远镜视准轴水平时,其竖盘读数是一个固定值。因此,在观测竖直角时,只要观测目标点一个方向并读取竖盘读数便可算得该目标点的竖直角,而不必观测水平方向。

光电测距仪测距误差分析

光电测距仪测距误差分析 武汉大学电子信息学院湖北武汉 摘要:本文指出了光电测距仪测距误差的主要来源,对测距误差及其影响进 行了分析,并给出精度评定的方法。 关键词:光电测距仪测距误差精度评定 一、引言 光电测距仪自问世以来,以其操作方便、快捷、高效、精密、自动化、智能化等特点,被广泛应用于工程测量、控制测量、地形测量、地籍与房产测量、施工放样、工业测量及近海定位等领域。数字地球的建设,也以其为基本的数字采集设备之一。作为一种被多种领域频繁使用的长度计量仪器,光电测距仪测距误差的分析与测距精度的定期评定始终是用户和承包方关心的问题。因为仪器能否在要求的精度下可靠地工作,是测量工作能否保质保量完成的前提条件。 国家技术监督局对光电仪器(全站仪、测距仪)测距系统的检定目的、项目和方法作了具的规范要求,本文就光电仪器的测距误差及精度评定进行分析。 测距精度是光电测距仪的重要技术指标之一,其测距精度不但与仪器的性能有关,同时也取决于使用方法和实测时外界因素的影响。分析测距误差的来源和影响程度,找出消除或减弱误差的措施和方法,对于正确、合理地使用仪器和维护仪器,以便测出精度较好的距离成果和分析测距成果质量等都是很有必要的。按照规范要求,对仪器进行检定,客观地评定仪器测距的实际综合精度,对了解仪器性能指标,验收新购和修理后的仪器以及合理使用仪器尤为重要。 欲达到系统客观地评定一台光电测距仪的测距精度这一目的,一方面应严格地按照规范要求对仪器进行检定,另一方面还需具备有关测距原理及相关的误差理论知识,以便找出测距误差的主要来源,再进行测距误差分析,作为综合评定仪器精度的依据。 二、光电测距原理 1.光电测距仪按仪器测程分类: 短程光电测距仪:测程在3Km以内,测距精度一般在1cm左右。 中程光电测距仪:测程在3~15Km左右,适用于二、三、四等控制网的边长控制, 精度一般可达±(10mm+6- ?)。 10 远程激光测距仪:测程在15Km以上的测距仪,精度一般可达±(5mm+16- ?), 10 满足国家一、二等控制网的边长控制。 2.测尺频率的选择: 直接测尺频率方式:直接使用各测尺频率的测量结果组合成待测距离的方式。

第7章 经纬仪及水平角观测复习过程

第7章经纬仪及水 平角观测

第七章经纬仪及水平角观测 一、选择题 1、光学经纬仪基本结构由 C 。 A.照准部、度盘、辅助部件三大部分构成 B.度盘、辅助部件、基座三大部分构成 C.照准部、度盘、基座三大部分构成 2、测站上经纬仪对中是使经纬仪中心与__ ① C ,整平目的是使经纬仪__② C 。 ①A. 地面点重合 B. 三脚架中孔一致 C.地面点垂线重合。 ②A. 圆水准器气泡居中 B. 基座水平 C.水平度盘水平。 3、经纬仪对中和整平操作的关系是( A )。 A. 互相影响,应反复进行 B. 先对中,后整平,不能反复进行C.相互独立进行,没有影响D.先整平,后对中,不能反复进行 4、经纬仪安置的步骤应是 B 。 A.经纬仪对中、三脚架对中、三脚架整平、精确整平 B.三脚架对中、经纬仪对中、三脚架整平、精确整平 C.三脚架整平、经纬仪对中、三脚架对中、精确整平 5、经纬仪不能直接用于测量( A )。 A.点的坐标 B.水平角 C.垂直角 D.视距 6、水准仪与经纬仪应用脚螺旋的不同是 A 。 A. 经纬仪脚螺旋应用于对中、精确整平,水准仪脚螺旋应用于粗略整平 B. 经纬仪脚螺旋应用于粗略整平、精确整平,水准仪脚螺旋应用于粗略整平 C.经纬仪脚螺旋应用于对中,水准仪脚螺旋应用于粗略整平

7、经纬仪测量水平角时,正倒镜瞄准同一方向所读的水平方向值理论上应相差 ( A )。 A .180° B .0° C .90° D .270° 8、下面测量读数的做法正确的是( C ) A.用经纬仪测水平角,用横丝照准目标读数 B.用水准仪测高差,用竖丝切准水准尺读数 C.水准测量时,每次读数前都要使水准管气泡居中 D.经纬仪测竖直角时,尽量照准目标的底部 9、用经纬仪测水平角和竖直角,一般采用正倒镜方法,下面哪个仪器误差不能 用正倒镜法消除( D ) A . 视准轴不垂直于横轴 B . 盘指标差 C . 横轴不水平 D . 不竖直 10、用经纬仪测竖直角,盘左读数为81o12′18",盘右读数为278o45′54"。则该 仪器的指标差为( B ) A .54" B.-54" C.6" D.-6" 11、下面哪个算式是表示视线倾斜时视距测量所得出的水平距离( C )。 A .KS B.αcos KS C.α2cos KS D.α2sin 2 1KS

经纬仪的认识与使用.

J6光学经纬仪 经纬仪是一种主要用于精确测量水平角和垂直角的仪器。根据测角精度不同,经纬仪分为J07型、J1型、J2型、J6型和J15型。其脚符07、1、2、6等表示该类仪器的精度等级,其含义为一测回的 测角中误差分别为0.60.20.17.0''''±''±''±和、、等。经纬仪的国内外生产厂商很多,我国主要有北京 光学仪器厂、常州大地光学仪器厂、苏州一光仪器厂、南京测绘仪器厂等,国外主要有德国蔡司厂、瑞士威特(WILD)厂等。 地形测量中最常用的是J2型和J6型经纬仪。J2型经纬仪主要用于控制测量,J6型则主要用于图根控制测量和碎部测量。两种经纬仪的结构大体相同,本书主要介绍J6型经纬仪结构原理和使用方法,对于J2型经纬仪则着重介绍其使用方法。 1.J 6经纬仪的基本结构 图4-3所示是由德国蔡司厂生产的Theo 020经纬仪外观。 经纬仪的种类虽然很多,但其基本构造都主要由脚架、基座和照准部组成,如图4-4所示。脚架用于架设仪器;基座支撑着照准部并连接脚架;照准部是经纬仪的主体,它由如下组件构成: 竖轴 仪器照准部旋转所围绕的几何轴线,亦称“垂直轴”或“纵轴”。它由主轴和轴套组成,两者密合而又旋转灵活,其旋转的稳定程度是衡量仪器质量优劣的重要标志。测角时,它应位于铅垂线方向,并通过下部悬挂的垂球对准地面标志点,以保证照准部绕地面点的铅垂线水平旋转。 水平度盘 经纬仪上度量水平角的量器。为金属或光学玻璃制成的圆盘。盘面与竖轴正交,度盘中心由竖轴穿过,保证由指标读取的角为该点的水平角。 横轴 测量仪器上望远镜绕其俯仰纵转的几何轴线,亦称“水平轴”。它被支架撑起在水平度盘上方,与水平度盘平行而与竖轴垂直。 垂直度盘 经纬仪上度量垂直角的量器,亦称“竖盘”。安装在横轴的一端,盘面与横轴正交,度盘中心由横轴穿过,一般可随望远镜一同俯仰转动。 照准轴 望远镜物镜中心与十字丝交点的连线,它是照准目标的基准方向线,也称“视准轴”。它应与横轴正交并过横轴与竖轴的交点,以保证望远镜的俯仰面为过测站的铅垂面。 水准器 是安置平面或轴线处于水平或垂直位置的一种装有液体(通常为有较好流动性的液体,如乙醚,液体未装满,留有真空气泡)的玻璃器皿。通过调整三个基座螺丝的高度,同时观察水准器气泡的移动变化,使气泡到达正确的位置,可使竖轴铅垂,水平度盘水平,从而满足正确的测角状态。 竖轴、横轴和照准轴,俗称三轴。能否严格保持三轴之间的正交关系,是保证正确测角的关键。

经纬仪测角实验报告

一、实验目的与要求 1、认识DJ6、DJ2光学经纬仪的基本结构及主要部件的名称和作用。 2、掌握DJ6、DJ2光学经纬仪的基本操作和读数方法。 3、掌握用DJ6、DJ2光学经纬仪按方向观测法(全圆方向观测法)测水角的方法及记录、计算方法,了解各项限差要求及检核。 4、掌握用DJ6光学经纬仪观测垂直角的方法(中丝法)。 二、实验原理与方案 1、人员组织: 第10实验小组由7人组成,每轮实验设置:观测员1人、记录员1人,机动人员5人。 2、仪器设备: DJ6、苏一光DJ2经纬仪各l台、记录板1块、测伞1把、记录手簿1本(附记录板)、木桩1根、水泥钉1枚、2B铅笔2、粉笔1支。 3、实验原理: (1)水平角观测原理如图3-1所示。空间两直线OA和OB相交于点O,将点A、O、B沿铅垂线方向投影到水平面上,得相应投影点A′O′B′,水平线O′A′和O′B′夹角β即是过两方向线所做铅垂面夹角—水平角。经纬仪水平度盘上的读数a和b,则水平角β为两读数之差: β=b-a 图3-1 (2)全圆方向观测法原理如图3-2所示。方向观测法是在一测回内把测站上所有观测方向,先盘左位置依次观测,再盘右位置依次观测,取盘左盘右平均值作为各方向的观测值。如图测站点O周围有待测目标A、B、C,选A作为起始方向。用盘左顺时针旋转照准部,依次照准A、B、C、A,读取观测值,称为上半测回;然后纵转望远镜,改用右盘逆时针旋转照准部,依次照准A、C、B、A并读数,称为下半测回。上、下半测回合起来称为一个测回。

图3-2 (3)垂直角观测原理如图3-3所示。垂直角是在同一铅垂面内某目标方向的视线与水平线的夹角a,其范围为0°~±90°,图中Z A、Z A为A、B方向的天顶距读数。用经纬仪望远镜找准目标A、B,由垂直度盘读数减去水平线在度盘上的度数,即可得到垂直角。 如图3-3 三、实验内容与步骤 (一)安置仪器 1、对中整平(锤球对中) (1)将三脚架调整到合适高度,张开三脚架安置在测站点O上方,在脚架的连接螺旋上挂上锤球,如果锤球尖离标志中心太远,可固定一脚移动另外两脚,或将三脚架整体平移,使锤球尖大致对准测站点标志中心,并注意使架头大致水平,然后将三脚架的脚尖踩入土中。 (2)将经纬仪从箱中取出,用连接螺旋将经纬仪安装在三脚架上。调整脚螺旋,使圆水准器气泡居中。 (3)若锤球尖偏离测站点标志中心,可旋松连接螺旋,在架头上移动经纬仪,使锤球尖精确对中测站点标志中心,然后旋紧连接螺旋。 2、精确整平对中 (1)转动照准部,使水准管平行于任意一对脚螺旋的连线,两手同时向内或向外转动这两个脚螺旋,使气泡居中,注意气泡移动方向始终与左手大拇指移动方向一致; (2)将照准部转动90°,转动第三个脚螺旋,使水准管气泡居中。

陀螺经纬仪原理

陀螺经纬仪工作原理与应用 【2007-4-28来源:中翰仪器网】 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止时可加以应用。

2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反射镜、陀螺马达、刻度线、目镜)。 陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。

追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动) (图5:指针与刻度盘刻度线/0点/指针)

经纬仪的使用方法

一、经纬仪的使用方法 应用经纬仪测量角度之前,必须在测点(标桩中心)上安置经纬仪,安置经纬仪包括对中、整平两部分,在观测角度时,还要用望远镜瞄准目标。 对准、整平和瞄准是使用经纬仪的主要操作过程,必须熟练掌握,下面分三步进行描述: 1、对准:对准的目的是度盘中心与测点(标桩中心)在 同一个垂直线上,对准的步骤如下: 1)松开三角架的伸长螺栓,张开三角架,架设在测点上(标桩中心) 2)根据使用人的高度调整三角架的高度,使其高低度合适, 3)三角架顶部尽量水平,三角架安装平稳后,用线坠初步对中,然后仪器放在三角架上,用中心螺栓固定。 4)观测线坠尖端是否对准测点(标桩中心)如果相差不大,可以轻微移动一下仪器或者用脚踩一下三角架是 其对中,如果相差太大就要移动三角架,重新进行调 整。 2、整平: 整平就是把经纬仪的水平度盘安置成水平位置,使仪器的竖轴处于铅垂位置,调整仪器的基座螺栓,使游标度盘上的水准管气泡居中,水平度盘便处于水平位置。

3、瞄准: 经纬仪经过对中、整平以后,就可以开始观测了,在观测目标时,首先把望远镜对向空中,转动镜筒使十字线清晰,然后放松望远镜和度盘制动螺栓,使目标在望远镜内,尽量使目标在十字线交叉点附近,此时旋紧度盘与望远镜制动螺栓,然后转动度盘与望远镜微调螺栓,精确的瞄准目标,同时再进一步对光,并清除十字线视差,便可以读取度盘读数了。 说明: 1、经纬仪使用前必须经过校验合格 2、经纬仪在使用前还应在现场进行实地校核,测一闭合 回路看是否满足要求。 3、经纬仪架设应平稳,防止应震动产生误差。 4、经纬仪要设专人保管,在使用和搬运过程中要轻拿轻 放,防止震动。 二、水平仪的使用:

相位式光电测距仪的工作原理

§4.2 相位式光电测距仪的工作原理 相位式光电测距仪的种类较多,但其基本的工作原理是相同的。本节将讨论相位式光电测距仪的工作原理,并着重介绍它的几个主要部件的工作原理。 4.2.1 相位式光电测距仪的工作原理 相位式光电测距仪的工作原理可按图4-4所示的方框图来说明。 图4-4 由光源所发出的光波(红外光或激光),进入调制器后,被来自主控振荡器(简称主振)的高频测距信号1f 所调制,成为调幅波。这种调幅波经外光路进入接收器,会 聚在光电器件上,光信号立即转化为电信号。这个电信号就是调幅波往返于测线后经过解调的高颇测距信号,它的相位已延迟了Φ。 ?Φ+?=ΦN π2 这个高频测距信号与来自本机振荡器(简称本振)的高频信号1f '经测距信号混频器进行光电混频,经过选频放大后得到一个低频(11f f f '-=?)测距信号,用D e 表示。D e 仍保留了高频测距信号原有的相位延迟?Φ+?=ΦN π2。为了进行比相,主振高频测距信号1f 的一部分称为参考信号与本振高频信号1f '同时送入参考信号混频器,经过选频放大后,得到可作为比相基准的低频(11f f f '-=?)参考信号,0e 表示,由于0e 没有经过往返测线的路程,所以0e 不存在象D e 中产生的那一相位延迟Φ。因此,D e 和0e 同时送人相位器采用数字测相技术进行相位比较,在显示器上将显示出测距信号往返于测线的相位延迟结果。

当采用一个测尺频率1f 时,显示器上就只有不足一周的相位差?Φ所相应的测距尾数,超过一周的整周数N 所相应的测距整尺数就无法知道,为此,相位式测距仪的主振和本振二个部件中还包含一组粗测尺的振荡频率,即主振频率 32,f f 和本振频率 32,f f ''。如前所述,若用粗测尺频率进行同样的测量,把精测尺与一组粗测尺的结果组合起来,就能得到整个待测距离的数值了。 4.2.2 相位式光电测距仪各主要部件的工作原理 1.光源 相位式测距仪的光源,主要有砷化镓(GaAs )二极管和氦-氖(He-Ne )气体激光器。前者一般用于短程测距仪中,后者用于中远程测距仪中。下面对这二种光源作一介绍。 (1)砷化镓(GaAs )二极管 砷化镓(GaAs )二极管是一种晶体二极管,与普通二极管一样,内部也有一个PN 结,如图4-5所示。它的正向电阻很小,反向电阻较大。当正向注入强电流时,在PN 结里就会有波长为0.72~0.94μm 之间红外光出射,而且出射的光强会随着注入电流的大小而变化,因此可以简单地通过改变馈电电流对光强的输出进行调制,即所谓“电流直接调制”。这对测距仪用作光源十分有意义,因为能直接调制光强,无需再配备结构复杂、功耗较大的调制器。此外,砷化镓二极管光源与其他光源比较,还有体积小重量轻,结构牢固和不怕震动等优点,有利于使测距仪小型化,轻便化。 图4-5 图4-6 GaAs 二极管有两种工作状态,一种是发射激光,称为GaAs 激光器;另一种是发射红外荧光,称为发光二极管。两者的区别,主要是注入电流强度的不同。由于GaAs 发光管,发射连续的红外光频带较宽(100~500o A ),波长不够稳定,功率较小(约3mW )和发散角大(达50o ),故采用这种光源的测距仪的测程都不远,一般在3km 以内。红外光的波长,因GaAs 掺杂的差异和馈电电流等不同而异。如国产HGC-1红外测距仪的=λ0.93μm ;瑞士DI3和DI3S 的λ分别为0.875μm 和0.885μm ;瑞典AGA-116的

相关主题
文本预览
相关文档 最新文档