当前位置:文档之家› 第二章岩石中的孔隙与水分

第二章岩石中的孔隙与水分

第二章岩石中的孔隙与水分
第二章岩石中的孔隙与水分

第二章岩石中的空隙与水分

一、名词解释

1.岩石的透水性:岩石允许水透过的能力。

2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。

3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。

4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。

5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。

6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。

7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。

8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。

9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。

10.毛细水:受毛细力作用保持在岩石空隙中的水。

11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。

12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。

13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。

14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。

15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。

二、填空

1.岩石空隙是地下水储存场所和运动通道。空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。

2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。

4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,

孔隙度才对岩石的透水性起作用。

5.地下水按岩层的空隙类型可分为:孔隙水、裂隙水、和岩溶水。

6.岩性对给水度的影响主要表现为空隙的大小与多少。

7.通常以容水度、含水量、给水度、持水度和透水性来表征与水分的储容和运移有关的岩石性质。

三、判断题

1.在其它条件相同而只是岩性不同的两个潜水含水层中.在补给期时,给水度大,水位上升大,给水度小,水位上升小。(×)

2.在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。(√)3.松散岩石中颗粒的形状对孔隙度没有影响。(×)

4.两种颗粒直径不同的等粒圆球状岩石,排列方式相同时,孔隙度完全相同。(√)5.松散岩石中颗粒的分选程度对孔隙度的大小有影响。(√)

6.松散岩石中颗粒的排列情况对孔隙度的大小没影响。(×)

7.饱含水的砂层因孔隙水压力下降而压密,待孔隙压力恢复后,砂层仍不能恢复原状。(×)

8.松散岩石中颗粒的排列方式对孔隙大小没影响。(×)

9.裂隙率是裂隙体积与不包括裂隙在内的岩石体积的比值。(×)

10.在松散岩石中,不论孔隙大小如何,孔隙度对岩石的透水性不起作用。(×)11.在饱水带中也存在孔角毛细水。(×)

12.在松散的砂层中,一般来说容水度在数值上与孔隙度相当。(√)

13.在连通性较好的含水层中,岩石的空隙越大,给水度越大。(√)

14.

15.对于颗粒较小的松散岩石,地下水位下降速率较大时,给水度的值也大。(×)16.颗粒较小的松散岩石中,重力释水并非瞬时完成,往往滞后于水位下降,所以给水度与时间有关。(√)

17.松散岩石中孔隙度等于给水度与持水度之和。(√)

18.松散岩石中,孔隙直径愈小,连通性愈差,透水性就愈差。(√)

四、简答题

1.简述影响孔隙大小的因素,并说明如何影响?

影响孔隙大小的因素有:颗粒大小、分选程度、和颗粒排列方式。

当分选性较好时,颗粒愈大、孔隙也愈大。当分选性较差时,由于粗大颗粒形成的孔隙被小颗粒所充填,孔隙大小取决于实际构成孔隙的细小颗粒的直经。排列方式的影响:立方体排列比四面体排列孔隙大。

2.简述影响孔隙度大小的主要因素,并说明如何影响?

影响孔隙度大小的因素有:颗粒排列情况、分选程度、颗粒形状及胶结程度。

排列方式愈规则、分选性愈好、颗粒形状愈不规则、胶结充填愈差时,孔隙度愈大;反之,排列方式愈不规则、分选性愈差、颗粒形状愈规则、胶结充填愈好时,孔隙度愈小。3.地壳岩石中水的存在形式有哪些?

地壳岩石中水的存在形式:

(1) 岩石“骨架”中的水(沸石水、结晶水、结构水)。

(2) 岩石空隙中的水(结合水、液态水、固态水、气态水)。

4.影响给水度的因素有哪些,如何影响?

影响给水度的因素有岩性、初始地下水位埋深、地下水位降速。

岩性主要表现为决定空隙的大小和多少,空隙越大越多,给水度越大;反之,越小。初始地下水位埋藏深度小于最大毛细上升高度时,地下水下降后给水度偏小。地下水位下降速率大时,释水不充分,给水度偏小。

5.影响岩石透水性的因素有哪些,如何影响?

影响因素有:岩性、颗粒的分选性、孔隙度。

岩性越粗、分选性越好、孔隙度越大、透水能力越强;反之,岩性越细、分选性越差、孔隙度越小,透水能力越弱。

五、论述题

1.岩石空隙分为哪几类,各有什么特点?

岩石空隙分为:孔隙、裂隙和溶穴。

孔隙分布于颗粒之间,连通好,分布均匀,在不同方向上孔隙通道的大小和多少都很接近;裂隙具有一定的方向性,连通性较孔隙为差,分布不均匀;溶穴孔隙大小悬殊而且分布极不均匀。

2.为什么说空隙大小和数量不同的岩石,其容纳、保持、释出及透水的能力不同?

岩石容纳、保持、释出及透水的能力与空隙的大小和多少有关。而空隙的大小和多少决

定着地壳岩石中各种形式水所占的比例。空隙越大,结合水所占的比例越小,则容纳、释出及透水能力越强,持水能力越弱;反之,空隙度越小,结合水所占的比例越大,则容纳、释出及透水能力越弱,持水能力越强。所以说空隙大小和数量不同的岩石其容纳、保持、释出及透水的能力不同。

3.地下水位的埋藏深度和下降速率,对松散岩石的给水度产生什么影响?

初始地下水位埋藏深度小于最大毛细上升高度时,地下水位下降,重力水的一部分将转化为支持毛细水而保持于地下水面以上,给水度偏小;在细小颗粒层状相间分布的松散岩石,地下水位下降时,易形成悬挂毛细水不能释放出来,另外,重力释水并非瞬时完成,而往往迟后于水位下降,给水度一般偏小。

岩石分类

ICS 73. 010 D 10 i7旨 中华人民共和国国家标准 GB/T 17412.3-1998 岩石分类和命名方案 变质岩岩石的分类和命名方案 Classification and Nomenclature Schemes of The Rocks Classification and Nomenclature Schemes of metamorphic Rock 1998一06一17发布1999一01一01实施 国家质量技术监督局发布 Gs/T 17412.3-1998 目次 前言·.......................................................................................................................皿 1 范围······。。····················??1 2 术语定义··············。·····。····一1 3 符号和缩略语···············。·····一2 4 变质岩分类和命名的一般原则 (2) 5 变质岩的分类·················??3 6 轻微变质岩类·············??3 7 板岩类 (4) 8 千枚岩类·····················??4 9 片岩类·····················??6 10 片麻岩类. 7 11 变粒岩类 (8) 12 石英岩类·........................................................................................................·一9 13 角闪岩类 (10) 工4 麻粒岩类............................................................................................................n 15 榴辉岩类 (12) 16 铁英岩类···················?. 12 17 磷灰石岩类(变质磷块岩类)······??12 18 大理岩类 (13) 19 钙硅酸盐岩类·,·············??14 20 碎裂岩类·····················??15 21 糜棱岩类,.····················??16 22 角岩类·······················??16 23 矽卡岩类·····,············。··?17 24 气一液蚀变岩类.................................................................................................·一18 25 混合岩类····················??加 GB/T 17412.3-1998 1 范围 本标准规定了变质岩的分类依据和原则,制定了变质岩岩石分类和命名方案。 本标准适用于地质勘查中的变质岩岩石鉴定,也适用于地质教学和科学研究工作。 2 术语定义 本标准采用下列定义。

第二章岩石中的孔隙与水分

第二章岩石中的空隙与水分 一、名词解释 1.岩石的透水性:岩石允许水透过的能力。 2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。 3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。 4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。 5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。 6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。 7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。 8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。 9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。 10.毛细水:受毛细力作用保持在岩石空隙中的水。 11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。 12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。 13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。 14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。 15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。 二、填空 1.岩石空隙是地下水储存场所和运动通道。空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。 2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。 4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,

野外三大类岩石简单识别

野外三大类岩石简单识别 肉眼对岩石进行分类和鉴定,除了在野外要充分考虑其产状特征外,在室内对手标本的观察上,最关键的是要抓住它的结构、构造、矿物组成等特征。具体步骤可为: (1)首先观察岩石的构造。因为构造从外貌上反映了它的成因类型:如具气孔、杏仁、流纹构造形态时,一定属于火成岩的喷出岩类;具有层理构造以及层面构造时,是沉积岩类;具板状、千枚状、片状或片麻状构造时,属于变质岩类。 三大类岩石的构造中,都有“块状构造”。比如火成岩中的石英斑岩,沉积岩中的石英砂岩,变质,岩中的石英岩,表面上似难区分,此时应结合岩石结构特征的观察进行分析:石英斑岩具火成岩的斑状结晶结构,其中的石英斑晶与基质矿物间呈结晶联结;而石英砂岩具有沉积岩的碎屑结构,碎屑之间呈胶结联结;另外,岩石中的石英颗粒本身也有显著差异----石英斑岩中的石英斑晶具有一定的结 晶外形,呈棱柱状或粒状;石英砂岩中的石英颗粒则呈浑圆状,玻璃光泽已经消失,用锤击或小刀刻划岩石中胶结不牢的部位时,可以看到石英颗粒与胶结物分离后在胶结物上留下的小凹坑。经过重结晶变质作用形成的石英岩,则往往呈致密状,肉眼分辨不出石英颗粒,且石质坚硬、性脆。 (2)对岩石结构的深入观察,可以对岩石进一步的分类。如火成岩中的深成侵入岩类多呈全晶质、显晶质、等粒状结构;而浅成侵入岩类则常呈斑状结晶结构。沉积岩中的碎屑岩、粘土岩、生物化学岩(如

砾岩、砂岩、页岩、石灰岩等)的区分,主要是根据组成物质颗粒的大小,成份及其联结方式。 (3)岩石的矿物组成和化学成份的分析,对岩石的命名和分类也是不可缺少的,特别是与火成岩的命名关系尤为密切。如斑岩和玢岩,同属火成岩中的浅成岩类,其主要区别在于矿物成份。斑岩中的斑晶矿物主要是正长石和石英,玢岩中的斑晶矿物主要是斜长石和黑色矿物。沉积岩中的次生矿物如方解石、白云石、高岭石、石膏、褐铁矿等不可能存在于新鲜的火成岩中。变质矿物如绿泥石、滑石、石棉、石榴子石、红柱石等,则为变质岩所特有。因此,根据某些矿物成分的分析,也可以初步判定岩石的类别。 (4)在岩石命名方面,如果由多种矿物成分组成,则以含量最多的矿物与岩石的基本名称紧紧相连,其他较次要的矿物,按含量多少依次向左排列,如“角闪斜长片麻岩”,说明其矿物组成是以斜长石为主,并有相当数量的角闪石,其他火成岩、沉积岩的多元命名涵意也是如此。 (5)最后应注意的是在肉眼鉴定岩石标本时,常常有许多矿物成份难于辨认。如具隐晶质结构或玻璃质结构的火成岩,泥质或化学结构的沉积岩,以及部分变质岩,由结晶细微或非结晶的物质成份组成,一般只能根据颜色深浅、坚硬性、比重大小和“盐酸反应”等进行初步的判断,火成岩中深色成份为主的,常为基性岩类:浅色成份为主的常为酸性岩类。沉积岩中较坚硬的多为硅质胶结的或硅质成分的岩

岩石破碎

第二章岩石的破碎理论(爆炸理论和钻爆法) 20%-30% 对周围介质做功C H O N CO CO2 H2O 炸药爆炸三要素:高温高压(生成大量气体)高速 三种形式:缓慢分解燃烧爆炸 2000—9000m/s 第二节爆炸理论与炸药(炸药的分类) 1. 殉爆:感度来表示难易程度 2. 传爆:爆轰波和爆速 影响稳定爆轰的主要因素:直径:临界直径;极限直径;炸药密度:混合炸药有临界密度;起爆冲能 3 间隙效应 二、炸药的性能参数 动作用以猛度表示静作用以爆力表示 爆速:高低中炸药 炸药的敏感度:热感度、机械感度、冲击感度、起爆冲能感度和静电火花感度热感度:热安定和火焰感度 机械感度:冲击感度,摩擦感度 起爆冲能感度:用殉爆距离表示 静电感度:e 电子是带负电荷静电 三、爆轰产物和有毒气体 二氧化碳CO2 一氧化塘CO 水H2O 氮氧化物NO N2 炸药的氧平衡:零氧,正氧,负氧CO 第三节矿用炸药与起爆器材 一、矿用炸药的分类 1,煤矿使用炸药:5级等级越高,威力越小,1、2级低瓦斯 铵梯炸药,睡觉炸药,乳化炸药 32mm*190 35mm*170 水胶炸药:含水炸药 乳化炸药:适用于软岩和煤层中工作 2,岩石炸药:硝酸铵,TNT和木粉组成 3,露天炸药: 二、起爆器材 雷管、导爆索、导爆管 1.雷管:管壳、加强帽、起爆药、加强药和电引火装置;桥丝用镍铬丝 脚线;桥丝,管壳,密封塞,纸垫,桥丝连接引火头,起爆药 煤矿瞬发电雷管: 2,秒延期电雷管 3,毫秒延期电雷管 4,抗杂散电流电雷管:无桥丝电雷管和低阻桥丝电雷管 电雷管的主要性能参数:全电阻,最大安全电流,最小发火电流(二)导爆索、继爆管和导爆管

成都理工大学岩石物理学基础实验报告

本科生实验报告 实验课程 学院名称 专业名称 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇年月二〇年月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一岩石物理学及岩石物理性质 第1章矿物和岩石的概念 1.1矿物的定义 矿物是天然产出的,通常由无机作用形成的,具有一定化学成分和特定的原子排列(结构)的均匀固体。组成矿物的元素其原子多是按一定的方式在三维空间内周期性重复排列而形成的具有特定结构的晶体。在外界条件合适时,晶体可以得到正常的发育,生长为规则的几何多面体;但很多情况下,没有足够良好的条件形成这样规则的外貌,矿物的均匀性,则表现在不能用物理的方法把它分成在化学上互不相同的物质,这正是矿物与岩石的根本差别。 矿物千姿百态,但多表现为颗粒状(grain),其大小悬殊,小的要借助于显微镜辨认,大的颗粒直径可达几厘米,仅凭肉眼即可看见。由此可见,矿物在地质上是建造地球的非常小的材料单元。地球上已知的矿物有3300多种。岩石中常见的矿物只有20几种,其中又以长石、石英、辉石、闪石、云母、橄榄石、方解石、磁铁矿和黏土矿物为多。 1.2岩石的定义 岩石是由一种或几种造岩矿物按一定方式结合而成的矿物的天然集合体。它是在地球发展到一定阶段时,经各种地质作用形成的坚硬产物,它是构成地壳和地幔的主要物质,具有自己特定的比重、孔隙度、抗压强度等许多物理性质。岩石虽由矿物组成,但岩石所表现出来的特性,却常常是不能用单独的一种或几种矿物的特性加以替代或描述的岩石是具有稳定外形的固体,那些没有一定外形的液体如石油、气体如天然气以及松散的沙、泥等,都不是岩石。。 岩石圈主要有三大类岩石: 火成岩(火成岩一般指岩浆在地下或喷出地表冷凝后形成的岩石,又称岩浆岩,是组成地壳的主要岩石。); 沉积岩(沉积岩是在地壳表层的条件下,由母岩的风化产物,火山物质、有机物质等沉积岩的原始物质成分,经搬运作用、沉积作用以及沉 积后作用而形成的一类岩石。); 变质岩(地球内部高温或高压条件下,先已存在的岩石发生各种物理、化学

岩石分类

三种常见的岩浆岩: 1.花岗岩是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。 2.橄榄岩侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。 3.玄武岩一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。 (沉积岩) 又叫“水成岩”。是在常温常压条件下岩石遭受风化作用的破坏产物,或生物作用和火山作用的产物,经过长时间的日晒、雨淋、风吹、浪打,会逐渐破碎成为砂砾或泥土。在风、流水、冰川、海浪等外力作用下,这些破碎的物质又被搬运到湖泊、海洋等低洼地区堆积或沉积下来,形成沉积物。随着时间的推移,沉积物越来越厚,压力越来越大,于是空隙逐渐缩小,水分逐渐排出,再加上可溶物的胶结作用,沉积物便慢慢固结而成岩石,这就是沉积岩。沉积岩分布极广,占陆地面积的75%,是构成地壳表层的主要岩石。

四种常见的沉积岩: 1.砾岩一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。 2.砂岩颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,主要成分是石英、长石等,颜色常为白色、灰色、淡红色和黄色。 3.页岩由各种黏土经压紧和胶结而成的岩石。是沉积岩分布最广的一种岩石,层理明显,可以分裂成薄片,有各种颜色,如黑色、红色、灰色、黄色等。 4.石灰岩俗称“青石”,是一种在海、湖盆地中生成灰色或灰白色沉积岩。主要由方解石的微粒组成,遇稀盐酸会发生化学反应,放出气泡。石灰岩的颜色多为白色、灰色及黑灰色,呈致密块状。 变质岩:地壳中的火成岩或沉积岩,由于地壳运动、岩浆活动等所造成的物理、化学条件的变化,使其成分、结构、构造发生一系列改变,这种促成岩石发生改变的作用称为变质作用。由变质作用形成的新岩石叫做变质岩,例如由石英砂岩变质而成的石英岩,由页岩变质

试验五土壤容重比重和孔隙的测定

实验五 土壤容重、比重和孔隙的测定 土壤容重是指土壤在未破坏自然结构的情况下,单位体积的土壤重量(以克/立方厘米表示)。土壤容重的大小与土壤质地、结构、有机质含量和土壤紧实度等有关。土壤比重是指土壤固体部分的重量与在4℃时同体积的水重之比。土壤比重的大小与土壤的矿物组成、有机质含量以及母岩、毋质的特性等有关。利用土壤的比重和容重可以计算土壤总孔隙度、非毛管孔隙度、三相比和孔隙比等项目。因此,它们是土壤物理性质重要测定项目和指标。 一、土壤容重的测定(环刀法) 1.方法原理。利用一定体积的环刀切割自然状态的土壤,使土壤充满环刀。烘干后称重、计算。 测定土壤容重的方法很多,如环刀法、蜡封法等。本次实验采用环刀法. 2.仪器设备。 (1)环刀(用无缝钢管制成,一端有刀口,便于压入土中(图14)。 (2)环刀托(上有两个小孔,在环刀采样时,空气由此排出)。 (3)削土小刀(刀口要平直)、小铁铲、木锤等。 (4)天平(感量 0.1克和 0.01克)。 3.操作步骤。 (1)测量并计算环刀之容积(A )(A =πr 2 h ,式中r 为环刀的内半径,h 为环刀高度),并称重(B ),准确至0.1克(记录环刀号码)。 (2)选择好土壤剖面后,按土壤剖面层次,自上至下用环刀在每层的中部采样,均衡地用力把环刀托垂直压入土中(土壤较硬,可用木锤轻轻敲打环刀托把),待整个环刀全部压入土中后停止下压。用铁铲把环刀周围土壤挖去,并使其下方留有一些多余的土壤,取出环刀,用削土刀刮去粘附在环刀壁上的土壤,并削平环刀两端的土面,使之适与刃口齐平。并在同一地点采土样约100克置于铝盒之中,带回测定土壤比重之用。 (3)用干布擦净粘附于环刀外面的土壤,称重(C ),并放入烘箱内在 105℃下烘6一8 小时,冷却后称重(D )。 测定表层土壤容重要做5个重复,底层做3个,测定表层土壤含水量要做3个重复,底层做2个。 4.结果计算。 土壤容重= A B D (克/立方厘米) 图14 环刀采样示意图

岩石种类

岩石构造标本集(沉积岩类) 很多朋友对野外鉴定很头痛,我认为这是基础理论不扎实,野外实践经验较少的原因,所以发上一些标本供大家学习,不光有图片,还有细部描述! 安山质角砾岩.jpg 岩石名称:安山质角砾岩 英文名称:Andesite breccia 颜色:暗褐绿 构造:块状构造 结构:角砾状结构 主要成分:角砾为绿泥石化安山岩,胶结物为泥质 所属岩类:沉积岩\陆源碎屑岩

白云质石英砂岩.jpg 岩石名称:白云质石英砂岩 英文名称:Dolomitic quartzose sandstone 颜色:灰白 构造:块状构造 结构:粗砂结构 主要成分:碎屑石英,胶结物白云石 所属岩类:沉积岩\陆源碎屑岩 产地:湖北蒲圻

海百合灰岩.jpg 岩石名称:海百合灰岩 英文名称:Encrinite 颜色:暗灰红 构造:块状构造 结构:生物碎屑结构 主要成分:海百合茎,微晶方解石所属岩类:沉积岩\碳酸盐岩 产地:湖北鹤峰

铁质长石砂岩.jpg 岩石名称:铁质长石砂岩 英文名称:Ferruginous arkose 颜色:暗紫红 构造:块状构造 结构:中砂结构 主要成分:长石、石英砂,氧化铁胶结所属岩类:沉积岩\陆源碎屑岩 产地:河南汝州

鲕粒灰岩.jpg 岩石名称:鲕粒灰岩 英文名称:Oolitic limestone 颜色:深灰 构造:块状构造 结构:鲕粒结构 主要成分:方解石质鲕粒,方解石胶结所属岩类:沉积岩\碳酸盐岩 产地:湖北宜昌

泥质长石砂岩.jpg 岩石名称:泥质长石砂岩 英文名称:Medium arkose 颜色:浅红 构造:块状构造 结构:中砂结构 主要成分:长石、石英砂,泥质胶结所属岩类:沉积岩\陆源碎屑岩 产地:河北唐山

油层物理实验报告岩石孔隙度测定

中国石油大学《油层物理》实验报告 实验日期: 成绩: 班级:石工11-1班 学号: 姓名:李悦静 教师: 同组者: 徐睿智 实验一 岩石孔隙度测定 一、实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V ?-= ? 测定岩石骨架体积可以用①气体膨胀法 11221()()Po Vo Vs PV P Vo V V -+=-+ ②气体孔隙度仪 三.实验流程

图1 实验流程图 图2 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1. 将钢圆盘从小到大编号为1、2、3、4; 2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中; 3. 打开样品阀及放空阀,确保岩心室气体为大气压; 4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。 5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。 8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入

岩石的分类27856

岩石的分类 自然界有各种各样的岩石,按成因可分为岩浆岩、沉积岩和变质岩三大类。 一、岩浆岩 岩浆岩的形成: 地壳下部,由于放射性元素的集中,不断地蜕变而放出大量的热能,使物质处于高温(1000"C 以上)、高压(上部岩石的重量产生的巨大压力)的过热可塑状态。成分复杂,但主要是硅酸盐,并含有大量的水汽和各种其他的气体。当地壳变动时,上部岩层压力一旦减低,过热可塑性状态的物质就立即转变为高温的熔融体,称为岩浆。岩浆内部压力很大,不断向地壳压力低的地方移动,以致冲破地壳深部的岩层,沿着裂缝上升。上升到一定高度,温度、压力都要减低。当岩浆的内部压力小于上部岩层压力时,迫使岩浆停留下,冷凝成岩浆岩。 岩浆的成分: 主要有SiO2、TiO2、A1203、Fe203、FeO、MgO、 MnO、CaO、K2O、Na2O等。 依其含SiO2量的多少,分为: 基性岩浆:特点是富含钙、镁和铁,而贫钾和钠,粘度较小,流动性较大。 酸性岩浆:富含钾、钠和硅,而贫镁、铁、钙,粘度大,流动性较小。 岩浆岩的分类:(成岩的地质环境) (1)深成岩: 岩浆侵入地壳某深处(约距地表3km)冷凝而成的岩石。由于岩浆压力和温度较高,温度降低缓慢,组成岩石的矿物结晶良好。 (2)浅成岩: 岩浆沿地壳裂缝上升距地表较浅处冷凝而成的岩石。由于岩浆压力小,温度降低较快,组成岩石的矿物结晶较细小。 (3)喷出岩: 岩浆沿地表裂缝一直上升喷出地表,这种活动叫火山喷发,对地表产生的一切影响叫火山作用,形成的岩石叫喷出岩。在地表的条件下,温度降低迅速,矿物来不及结晶或结晶较差。肉眼不易看清楚。 岩浆岩的产状: 是反映岩体空间位置与围岩的相互关系及其形态特征。由于岩浆本身成分的不同,受地质条件的

岩石理论

?第2章岩石理论 ?岩石是工程机械的施工对象之一,研究影响岩石破碎的因素,找出破碎岩石的规律, 对提高凿岩、破碎机械作业效率,优化作业过程具有重要意义。 ?岩石的破碎方法有:机械破碎、爆炸破碎、水射流破碎等,但国内外使用最多的是机 械破碎。 ?按机械破碎作用的性质不同,破岩方法可分为机械回转钻进破岩、机械冲击钻进破 岩以及冲击回转钻进破岩等。 ? 2.1.1 岩石的分类 ?岩石按其成因可分为:岩浆岩、沉积岩和变质岩。 ?岩石按矿物组成可分为:单矿物岩,如岩盐、石膏,无水石膏、灰岩、白云岩等; 多矿物岩石,如各种岩浆岩。 ?岩浆岩是由硬度较高的矿物组成的,其硬度与强度都较高;沉积岩是由强度较低的 矿物组成的,其硬度与强度也较低。 ?岩石的结构主要是指晶体结构和胶结物的结构 ? 2.1.2 岩石的可钻性分级 ?使用便携式岩石凿测器测定岩石的凿碎比能和凿480次后钎刃磨钝的宽度,将岩石 分7级: ?岩石的可钻性 ?岩石的可钻性是决定钻进效率的基本因素,它反映了钻进时岩石破碎的难易程度。 ?岩石可钻性及其分级在钻探生产中极为重要。 ?它是合理选择钻进方法、钻头结构及钻进规程参数的依据,同时也是考核机械生产 效率的根据。 ?§2.2 岩石物理机械性质 ? 2.2.1 岩石强度 ?(一)岩石强度的概念 ?作用于岩石上的外载荷增大到一定程度时,岩石就会发生破坏。破坏时岩石所能承 受的最大载荷称为极限载荷,单位面积上的极限载荷称为极限强度,简称为岩石的强度。 ?根据受力条件不同,岩石的强度可分为抗压强度、抗拉强度、抗剪强度和抗弯强度 等; ?根据应力状态,岩石的强度可分为单向应力状态下的强度、两向和三向应力状态下 的强度; ?岩石强度 ? 2.2.2 岩石硬度 ? 2.2.2 岩石硬度 ?(一)岩石硬度的概念 ?岩石硬度定义为岩石表面抵抗硬物局部压人的能力。 ?岩石的硬度与抗压强度的关系:二者有着密切的联系,但又有区别,岩石抗压强度 是岩石整体破碎时的阻力;而岩石的硬度是硬物局部压人岩石表面的阻力,是岩石表面抗破碎的能力。 ? 2.2.3 岩石的弹性、塑性和脆性 ?(一)岩石弹性、塑性和脆性的概念 ?在外力作用下,岩石会发生变形,随着载荷不断增加,变形也不断发展,最终 导致岩石破坏。

第二章岩石中的空隙与水分

第二章岩石中的空隙与水分 §2.1 岩石中的空隙岩石的空隙是地下水储存和运移的先决条件,空隙的多少、大小、形状、联通状况和分布规律,决定着地下水的埋藏、分布和运动。 将岩石空隙作为地下水储存场所和运动通道研究时,可分为三类,即:松散岩石中的孔隙,坚硬岩石中的裂隙和可溶岩石中的溶穴。 §2.1.1 孔隙 孔隙(pore)--unconsolidated soil 1、孔隙:在松散堆积物中或胶结不好的沉积岩中以及部分喷出岩中,组成岩石的颗粒或粒集合体之间能存在的多孔状的空隙。 2、孔隙性:岩土孔隙的大小、分布规律、数量、形状、性质、联通情况等的总称。 3、孔隙度:岩石孔隙体积与岩石总体积之比。n=Vn/V 4、影响孔隙度大小的因素: 1)分选程度2)颗粒排列状况:排列方式相同但颗粒直径不同的等粒岩石,其孔隙度完全相同。3)颗粒形状4)胶结充填情况 例外:粘性土的孔隙度 §2.1.2 裂隙 固结的坚硬岩石,包括:沉积岩、岩浆岩、变质岩,一般不存在或只是保留一部分颗粒之间的孔隙,而主要发育各种应力作用下岩石破裂变形产生的裂隙。(fissure)-- hard rock按照成因分类:成岩裂隙构造裂隙风化裂隙 裂隙率:裂隙体积与岩石总体积之比。Kr=Vr/V 野外研究裂隙时,还应注意测定裂隙的方向、宽度、 延伸长度、充填情况。 §2.1.3 溶穴 1、溶穴:起因于水的溶蚀,在可溶岩(白云岩、岩盐、石膏、石灰岩等)中形成的空洞(溶隙)。(cavity)-- soluble rock 2、岩溶率:Kk=Vk/V 特点:岩溶率的变化范围很大,且在相邻很近地点处岩溶率完全不同,同一地点的不同深度处岩溶率也有很大变化。 四、岩石中的空隙小结 1、岩石中的空隙是研究地下水的基础 2、分布特点:孔隙主要分布于松散堆积物中,分布广泛,联通均匀 裂隙分布于坚硬岩石中,分布不均 溶穴分布可溶性岩石中,分布不均 3、孔隙度,运用范围广;裂隙率、岩溶率受到地区限制,运用不广,代表性不强。三者定义也各不相同。 4、裂隙率和岩溶率可以直接评价赋水性,孔隙度加孔隙大小才可评价。 5、孔隙度及其影响因素。 按岩层的空隙类型分为三种类型地下水:①孔隙水;②裂隙水;③岩溶水。 §2.2 岩石中水的存在形式 岩石空隙中水的存在形式有:①结合水;②重力水;③毛细水;④固态水和气态水。岩石骨架中的水(矿物结合水) 一、结合水 1、定义: 2、强结合水(吸着水): 3、弱结合水(薄膜水): 结合水区别于普通液态水的最大特征是:具有抗剪强度,即必须施加一定的力方能使其

岩石孔隙度测定 实验报告

中国石油大学油层物理实验报告 实验日期:2010年11月22日成绩: 班级:资源(中石化)07-1班学号:07131419姓名:武鑫彪教师:张丽丽同组者:无 实验内容:岩石孔隙度测定 一、实验目的 1.悉知岩石孔隙度的概念,掌握其测定原理(膨胀法测定孔隙度)。 2.掌握气测孔隙度的流程与操作步骤。 二、实验原理 根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心室样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: % 100×?=f s f V V V φ三、实验流程与设备 图1.流程图 图2.控制面板

设备:QKY-II型气体孔隙度仪 仪器部件组成: 1气源阀:供给孔隙度仪调节器低于1000KPa的气体。当供气阀开启时,调节器通过常泄,使压力保持稳定。 2调节阀:将1000KPa的气体准确地调节到指定压力(小于1000KPa)。 3供气阀:连接经调节阀后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 5样品阀:能使标准室的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆 盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形 转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压。 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压 力调至某一值(如560KPa)。待压力稳定后,关闭供气阀,并记录标准 室气体压力。 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。 6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步 骤2~5,记录平衡压力。 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制 标准曲线。 P——平衡压力,KPa; V ——岩样固相体积,cm3; s V ——岩样外表体积,cm3; f d——岩样直径,cm; L——岩样长度,cm; Ф——孔隙度,%。

岩石爆破破碎机理研究

黄志强 (桂林工学院,广西,桂林541004) 【摘 要】岩体的软弱层面会影响到爆破破碎效果,如何确定岩石材料的缺陷在爆破破碎中的影响因子是研究岩石破碎机理的关键。通过对当前岩石爆破破碎的研究现状进行综合分析、评述,讨论了岩石爆破破碎机理研究的要点以及今后的研究重点,为后续相关研究指出了方向。 【关键词】岩石破碎;爆破机理;损伤 【中图分类号】TD231.1 【文献标识码】A 【文章编号】1008-1151(2007)12-0086-02 岩石爆破的破碎效应是影响交通土建、水利、矿山等工程效益的重要指标,它影响到生产过程中的铲装、运输和粗碎等工序的效率和成本,也影响到道路、堤坝等基础工程的渗透性、沉降性和稳定性。因此,岩石爆破破碎理论的研究一直是岩石动力学和岩石爆破研究领域的一个热点问题,研究并揭示爆破作用下岩石破碎机理对促进爆破理论和相关技术的发展、提高工程质量和效益具有十分重要的理论和实际意义。 (一)当前研究成果 岩体由于其材料的特殊性,内部具有较多的节理、裂隙、层理等不连续层面,这些不连续面对爆破破碎效果会产生严重的影响,主要体现在应力集中、应力波反射增强、能量耗散、高压爆生气体外逸等。因此在岩石爆破设计、施工中如何处理岩石中的不连续面对爆破效果的影响,是当前研究岩石爆破破碎机理的主要问题。 国内外学者进行的大量研究指出:裂隙岩石的破碎是由爆炸冲击波与爆生气体共同作用的结果,但与均匀介质材料爆破相比,岩体的破碎主要是爆炸应力波作用的结果,裂隙岩体的爆炸气体膨胀压力较小,只是当应力波将岩石破碎成块以后,起到促使碎块分离的作用;应力波在裂隙岩体的传播过程中,在裂隙之间传播的扰动将会产生新的破裂;由于裂隙的发展速度有限,爆炸载荷的速率对裂隙的成长有较大的作用,而高应变率载荷容易产生较多的裂隙。 在此基础之上,当前的相关研究主要在两方面展开,一是追求普遍适用于各种爆破计算和分析、旨在建立相关计算模型的理论研究;一是结合一定工程实践,适用于一定范围的具体工程设计和参数优化的实验研究。在理论研究方面,从岩石破碎研究的发展历程来看,可将其分为弹性理论阶段、断裂理论阶段、损伤理论阶段和分形损伤理论4个阶段。 1.弹性理论阶段 弹性力学模型将岩石视为各向同性的均质、连续的弹性体,岩石在爆炸荷载作用下的破坏是因其内部最大应力超过岩石应力极限引起的。在破碎之前,岩石处于弹性状态。这种理论以弹性力学及有限元方法为基础,运用现代计算机技术可方便的简化工程问题、建立力学模型并加以分析计算。由于这种理论模型不考虑岩石的材料缺陷,其理论基础与实际情况有一定的差距。 2.断裂理论阶段 断裂力学模型认为岩石中的裂纹扩展及断裂破坏是影响岩石爆破破碎效果的主要因素。与弹性模型不同的是该类模型将岩石视为含有微裂纹的脆性材料,岩石的破化过程就是其内部裂纹产生、扩展和断裂的过程。但断裂力学模型仍将裂纹周围看作是均匀的连续介质,因而其仅适用于宏观裂纹形成之后的断裂阶段,对材料开始劣化到宏观裂纹形成之间的力学行为和物理过程并未进行分析描述,其适用范围只限于宏观裂纹已形成的有层理或沉积类岩石。 3.损伤理论阶段 1980年美国Sandia国家实验室的Kipp和Grady开始进行岩石爆破损伤模型的研究,他们认为岩石中存在着大量随机分布的原生裂纹,在爆破作用下部分原生裂纹将被激活并发生扩展,激活的裂纹数服从指数分布。他们运用损伤因子D表示这些岩石裂纹开裂及损伤程度。经过 Seamen、Grady、Kipp、Kus 等人的努力,最后,由 Throne 进一步完善建立了一个能 【收稿日期】2007-10-29 【作者简介】桂林工学院青年扶持基金项目,桂工院科[2007]4号 【作者简介】黄志强(1977-),男,四川武胜人,桂林工学院讲师,主要从事工程力学相关科研工作。 岩石爆破破碎机理研究

3第三章 岩土中的空隙和水

第三章 岩土中的空隙和水 3.1 岩土中的空隙 空隙:void ,interspace ,space 地壳岩石中的空隙为地下水的赋存提供了必要的空间条件。按维尔纳茨基的形象说法“地壳表层就好象是饱含着水的海绵”。 岩石空隙是地下水存储空间和传输通道,空隙的特征(多少、大小、形状、方向性、连通程度及其空间变化等)决定着岩土储容、滞留、释出以及传输水的性能。 岩石空隙可分为三类:a. 未固结的松散岩石中的孔隙;b. 固结的坚硬岩石中的裂隙;c. 可溶岩石中的溶穴(隙)。 1.孔隙(pore ) 松散岩石是由大小不等的颗粒组成的,颗粒及颗粒集合体之间的空隙––––孔隙。 孔隙的多少,决定岩土储容水的能力,在一定条件下,还控制岩土滞留、释出和传输水的能力。孔隙体积的多少可用孔隙度表示: 孔隙度(porosity )(n )––––指某一体积岩土(包括孔隙在内)中孔隙体积所占的比例。即: V V n n = 式中:V n ––––岩石中孔隙的体积; V ––––包括孔隙在内的岩石体积; n ––––孔隙度,用小数或百分数表示。 另外一个概念: 孔隙比(void ratio )(ε)––––指某一体积岩土内孔隙的体积(V n )与固体颗粒体积(V s )之比。即 s n V V = ε 因为V=V n +V s ,所以n 与ε关系为:n n -= 1ε。 应用时: a. 涉及变形时(工程地质)→ε(采用孔隙比较方便); b. 涉及水的储容与运动时(水文地质)→n (采用孔隙度方便)。 影响因素: a. 分选程度:分选程度好,n 大;分选程度差,n 小; b. 颗粒的排列情况:立方体排列时n =47.64%,四面体n =25.95% ; c. 颗粒的形状:形状愈不规则,棱角愈明显,n 愈大; d. 胶结充填情况:充填程度高,n 小。 孔隙度的测定方法:

破碎岩体强度理论综述

HOEK -BROWN强度准则及其在破碎岩体强 度中的应用 摘要:岩石是有大量岩块和结构面组成的不均匀的各向异性材料。但是因为岩体内部结构的不可预见性和建模、计算能力的限制,很多情况下,只能将岩体作为均匀的宏观复合材料进行研究。如何准确定义破碎岩体的强度成了一个关系计算准确性和工程安全的重要问题。本文阐述了岩石力学中破碎岩体的主要强度理论。并对HOEK -BROWN强度理论的提出、发展、参数的选取与确定及实际应用进行了详细的探讨。 关键词:HOEK -BROWN强度准则,破碎岩体,岩体强度理论 1.研究岩体强度理论的重要性 人类生活和经济活动越来越离不开以岩体为对象的工程建设,例如水利水电工程、铁道交通工程、工业与民用建筑、隧道工程、矿山建筑与开发工程、国防工程、冶金化工、地震与防护工程等。总的来说,它们都需要以研究岩体的力学特征为基础。随着岩体工程的规模、数量及复杂性的增加,所涉及的岩体力学的问题也越来越复杂,以至于经常有重大岩体工程事故发生。美国的圣弗朗斯西重力坝、法国马尔帕塞大坝、意大利瓦扬水电站、加拿大亚当贝克水电站压力管道及日本关门铁路隧道等工程的失败或失事的惨痛教训,使人们意识必须加强岩体力学理论研究和分析,正确把握岩体在外荷载作用下的强度、变形及破坏规律。 2.研究破碎岩体强度的难点 在实际工程中遇到的均质岩体情况很少见,所碰到的岩体绝大多数均被各种结构面切割与破碎。节理是岩体中发育最广泛的一种结构面,在很多情况下节理面的力学性质很软弱。节理的存在严重的破坏了岩体的连续性和完整性,大大改

变了岩体的力学性质。节理岩体工程性质的特殊性主要表现在一下三个方面不连续。节理岩体是由不同规模、不同形态、不同成因、不同方向和不同次序的节理面以及被节理面围限而成的结构体共同组成的综合体,节理岩体在几何上和工程性质上都具有不连续性。由于发育在岩体中的节理面具有明显方向性,受节理面影响,节理岩体的工程性质呈现显著的各向异性。另外,实际工程岩体被节理切割程度的大小也与岩体工程规模有关,工程岩体结构也会随着含节理数的多少而发生变化,如图所示,所考虑的岩体范围越小,岩体中所含有的节理数就愈少,因而岩体的结构类型也就会有所不同。由于节理岩体工程性质的不连续、各向异性以及岩体组成物质的非均质,加之节理面在岩体不同部位发育程度和分布规律的差异,不同工程部位的岩体表现出不同的工程性质。节理在地壳上部岩石中具有广泛的分布,并且在岩体介质中呈现出强度低、易变形的特征。节理的发育常常为大坝、边坡和地下硐室等工程带来隐患,并导致工程岩体的失稳与破坏。地质工程中的岩体强度预测、岩坡稳定性分析、岩基承载力确定、地下硐室围岩稳定性评价及相关的动力学现象围岩垮塌或岩爆均直接或间接与岩体变形及强度特征有关。鉴于此,普遍认为节理岩体变形及强度特征的研究是一个富有挑战性的基础性课题,开展此方面的研究不仅非常必要,而且有着重要的实用价值和工程意义。节理的存在不仅大大改变岩体的力学性质,降低岩体的变形模量及强度参数,并使岩体呈现明显的各向异性。节理岩体变形具有各向异性的特征己为人们所熟知,竖向分布节理岩体的变形模量明显大于水平分布节理岩体的变形模量,这种区别主要在于变形机制不同。垂直节理面的压缩变形量主要是由岩块和节理面压密综合而成,平行节理面方向的压缩变形量主要是岩块和水平节理面的错动构成,节理岩体各方向的变形性质的差异由此而产生。与变形特征相类似,节理岩体也具有明显的强度各向异性特征。通常为了实际的需要将岩石近似地简化为各向同性体,基本上未考虑各向异性的性质,对一种岩石只给出一个确定的强度指标。在实际的岩石试验过程中发现,即使是同一地点取出的岩石,不同方向上的强度试验结果,往往也具有很大的离散性。因为本身就已经是各向异性的岩体,在后期构造改造的作用下,其各向异性表现得更加突出。参照图所示,对不含节理的完整岩体,可认为其在宏观上为均质、各向同性的材料对含有一组、二组或三组节理的岩体,其力学性质通常表现为各向异性若岩体被四组或四组以上的等规模、等间距及强度基

东北大学岩石力学讲义第二章岩石破坏机制及强度理论.

第二章 岩石破坏机制及强度理论 第一节 岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力方向平行的裂隙。 二、剪切破坏:岩石试件单向抗压的X 形破坏。从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。 (a ) (b )

三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 123(,)f σσσ= 研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。 第二节 岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 c εε≤ (2-1) c ε—拉应变的极限值,ε—拉应变。

若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。按弹性力学有3 3E E σμ εσσ= -12(+),即33E εσμσσ=-12(+)。若3ε<0则产生拉应变。由于E >0,因此产生拉应变的条件是 3σμσσ-12(+)<0,3μσσσ12(+)> 若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t E σε=?0t E σε=。 按最大线应变理论30εε≥破坏,即 312()t σμσσσ-+≥ (2-2) 式中0ε是允许的拉应变。 二、格里菲斯理论 格里菲斯理论的主要观点是:材料内微小裂隙失稳扩展导致材料的宏观破坏。 格里菲斯理论的主要依据是:1)、任何材料中总有各种微小微纹;2)、裂纹尖端的有严重的应力集中,即应力最大,并且有拉应力集中的现象;3)、当这种拉应力集中达到拉伸强度时微裂纹失稳扩展,导致材料的破坏。 格里菲斯理论的来源:由玻璃破坏得到的启示。 格里菲斯理论的基本假设为: 1、岩石的裂隙可视为极扁的扁椭圆裂隙; 2、裂隙失稳扩展可按平面应力问题处理; 3、裂隙之间互不影响。 按格里菲斯理论,裂纹失稳扩展条件为 1)、当1330σσ+>时,满足 21313()8()0t σσσσσ-++= (2-2)

(整理)工程地质岩石分类及鉴定

工程地质岩石分类及鉴定 中国?宜昌 2016年5月4日 目录 1.工民建工程 (3) 2.公路工程 (5) 3.港口工程 (10) 4.铁路工程 (13) 5.工程岩体分级标准 (18)

1 工民建工程 1.1、岩石坚硬程度分类《岩土工程勘察规范》GB50021—2001 注:1 当无法取得饱和单轴抗压强度数据时,科用点荷载试验强度换算,换算方法按现行国家标准《工程岩体分级标准》(GB50218)执行; 2 当岩体完整程度极为破碎时,可不进行坚硬程度分类。 1.3、岩体完整程度分类《岩土工程勘察规范》GB50021—2001 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。

1.4-2、岩体完整程度划分《建筑地基基础设计规范》(GB50007—2002) 1.5、岩石按风化程度分类《岩土工程勘察规范》GB50021—2001 注:1 波速比Kv为风化岩石与新鲜岩石压缩波速度之比; 2 风化系数K f为岩石与新鲜岩石饱和单轴抗压强度之比; 3 花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化;N<30为残积土。 4 泥岩和半成岩,可不进行风化程度划分。 1.7、岩石按质量指标RQD分类《岩土工程勘察规范》GB50021—2001 1.8、岩层厚度分类《岩土工程勘察规范》GB50021—2001

注:软化系数(K R)等于饱和状态与风干状态的岩石单轴极限抗压强度之比。 1.10、岩体按结构类型划分《岩土工程勘察规范》GB50021—2001 2 公路工程 2.1、岩石坚硬程度分级《公路桥涵地基与基础设计规范》(JTG D63—2007) 注:岩石饱和单轴抗压强度试验要点,见本规范附录B。 2.2、岩体完整程度划分《公路桥涵地基与基础设计规范》(JTG D63—2007) 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。

相关主题
文本预览
相关文档 最新文档