当前位置:文档之家› 汽车差速器与主减速器设计毕业设计

汽车差速器与主减速器设计毕业设计

汽车差速器与主减速器设计毕业设计
汽车差速器与主减速器设计毕业设计

摘要

本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。

关键词:建模,差速器,主减速器,分析

Abstract

This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing.

Keywords: Modeling, Differential,Final drive,Analysis

目录

摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1)

1.1课题来源 (1)

1.2课题研究现状 (1)

1.2.1国内外汽车行业CAD研究与应用情况 (1)

1.3主减速器的研究现状 (1)

1.4 差速器的研究现状 (2)

1.5 课题研究的主要内容 (3)

2QY7180概念轿车主减速器与差速器总体设计 (4)

2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4)

2.1.1QY7180概念轿车的主要参数 (4)

2.1.2QY7180概念轿车主减速器与差速器结构选型 (4)

2.2主减速器与差速器的结构与工作原理 (5)

2.3QY7180概念轿车主减速器主减速比i0的确定 (6)

3主减速器和差速器主要参数选择与计算 (7)

3.1主减速器齿轮计算载荷的确定 (7)

3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转

矩Tce (7)

3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7)

3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8)

3.2主减速器齿轮传动设计 (8)

3.2.1按齿面接触强度设计 (8)

3.2.2按齿根弯曲强度设计 (10)

3.2.3按变速器一挡齿轮设计 (12)

3.3差速器行星齿轮与半轴齿轮主要参数选择和计算 (15)

4主减速器与差速器的三维实体建模 (18)

4.1主减速器三维建模分析与设计思路 (18)

4.2斜齿轮的建模过程 (19)

4.3锥齿轮的建模过程 (27)

4.4差速器壳体、主减速器壳体的创建 (37)

4.4.1差速器壳体的创建 (37)

4.4.2主减速器壳体的创建 (38)

5主减速器与差速器的装配与运动仿真 (39)

5.1主减速器装配思路 (39)

5.2主减速器装配过程 (39)

5.3主减速器运动仿真 (41)

5.3.1运动仿真思路 (41)

5.3.2建立运动仿真过程 (42)

5.3.3运动仿真分析 (42)

总结与展望 (45)

致谢 (46)

参考文献 (47)

1绪论

1.1课题来源

课题《QY7180概念轿车主减速器、差速器设计》本课题是数字化样车设计的一部分,主要使用Pro/E软件完成QY7180概念轿车变速器主减速器、差速器的三维模型建立、校核分析和工程图设计。

1.2课题研究现状

1.2.1国内外汽车行业CAD研究与应用情况

美国的汽车公司在上世纪80年代初就开始CAD系统的规划与实施,到了80年代中期有大半以上的产品设计工作采用CAD来进行设计制造,并取消了中间过程,使计算机与制造终端直接相连,最终实现了系统网络化,至90年代初其产品开发全面采用CAD。德国、日本等发达国家的一些大型汽车企业,在上世纪90年代就已基本上全面采用CAD。我国从20世纪70年代开始研究和推广CAD,到目前为止,国内大型制造型企业如汽车企业已普遍实施了CAD系统,一些大型汽车企业的CAD应用水平也接近国际先进水平。

1.3主减速器的研究现状

减速器是机械装备制造业应用较为广泛的传动与调速设备,在现代科研、国防、交通、冶金、化工以及基础设施建设等众多领域应用十分

广泛。汽车主减速器是驱动桥最重要的组成部分,其功用是将万向传动装置传来的发动机转矩传递给驱动车轮,是汽车传动系中减小转速、增大扭矩的主要部件。目前车用减速器发展趋势和特点是向着六高、二低、二化方向发展,即高承载能力、高齿面硬度、高精度、高速度、高可靠性、高传动效率,低噪声、低成本,标准化、多样化。自改革开放以来,中国的汽车工业得到了长足发展与进步,车用主减速器也随着整车的发展不断成长和成熟起来。随着轿车的技术不断发展,发动机前置前轮驱动已成为普及型轿车的首选,发动机前置前轮驱动的轿车,结构紧凑、造价成本较低,但是造成发动机舱零件总成增加、车辆重心前移,对车辆的加速性能与制动性能都有较大影响,对发动机前置前轮驱动的轿车而言,减小发动机与动力总成的质量与尺寸成为一个主要的优化设计方向。设计开发上,CAD、CAE、CAM等计算机应用技术,以及UG、CATIA、PRO/E等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化,使得主减速器的优化设计变得简单与方便。从发动机的大马力、低转速的发展趋势以及车辆的最高车速的提升来看,车桥减速器应该向小速比方向发展:在最大输出扭矩相同时齿轮的使用寿命要求更高(齿轮疲劳寿命平均可达50万次以上);在额定轴荷相同时,车桥的超载能力更强;主减速器齿轮使用寿命更长、噪音更低、强度更大,润滑密封性能更好;整体刚性好,速比范围宽。

1.4 差速器的研究现状

近年来中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是

一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆、石油化工、电力通讯差速器的精度、可靠性是中国差速器行业的紧迫任务。

1.5 课题研究的主要内容

课题主要内容

(1)QY7180概念轿车的基本情况

(2)QY7180概念轿车主减速器、差速器设计结构特点及设计方法(3)QY7180概念轿车主减速器、差速器设计三维建模及二维工程图

(4)QY7180概念轿车主减速器、差速器设计运动分析

(5)了解Pro/E的参数化设计方法

本次课题主要通过对QY7180概念轿车主要动力参数得分析计算,得出其主减速器与差速器的主要参数,并通过Pro/E软件实现主减速器与差速器的三维实体建模,并对其进行运动仿真。

2QY7180概念轿车主减速器与差速器总体设计

2.1QY7180概念轿车主要参数与主减速器、差速器结构选型

2.1.1QY7180概念轿车的主要参数

QY7180概念轿车的主要参数见表2.1。

表2.1 QY7180轿车主要参数

主要参数数值

总质量1490

最高车速(km/h)161

最大功率(kw/rpm )70/5200

最大扭距(N·m/rpm)145/3000

前轴轴荷(满载/空载)800/645

后轴轴荷(满载/空载)770/425

变速器一挡传动比 3.455

变速器二挡传动比 1.944

变速器三挡传动比 1.286

变速器四挡传动比0.969

变速器五挡传动比0.800

2.1.2QY7180概念轿车主减速器与差速器结构选型

QY7180轿车是一款发动机前置前轮驱动的轿车,整车重量较小,发动机输出功率不大,因此该车的整套动力系统均是横向布置、采用质量较小、结构较为简单的部件。因为经大概估算的主减速比不大,主减速器采用结构简单、体积及质量小且制造成本较低的单级主减速器,且主减速器为横向布置,不需要该变动力的传动方向,因此主减速器齿轮采

用传动较为平稳、噪音较低、承载能力较强的圆柱斜齿轮,如图 2.1。对于行驶在公路上的汽车来说,由于路面较好,各驱动轮与路面的附着系数几乎没有差别,且附着较好,因此采用结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,如图2.2。

2.2主减速器与差速器的工作原理

主减速器是由主减速器主动齿轮、主减速器从动齿轮、轴承与外壳组成;差速器是由行星齿轮、半轴齿轮与差速器壳体组成。与差速器结构如图2.1与图2.2所示。

图2.1 主减速器结构图

图2.2 差速器结构

主减速器是在传动系中起降低转速,增大转矩作用的主要部件,当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器布置在动力向驱动轮分流之前的位置,有利于减小其前面的传动部件(如离合器、变速器、传动轴等)所传递的转矩,从而减小这些部件的尺寸和质量。差速器是汽车驱动桥的主要构成部件,其作用就是在向两个半轴传递动力的同时,可以调节两边半轴的转速旋转,使其有转速差以使两边车轮尽可能以纯滚动的形式作不等半径行驶,减少轮胎与地面的摩擦。发动机的动力经变速器再从传动轴进入主减速器后,直接驱动差速器壳,差速器壳再将动力传递到行星齿轮,由行星齿轮带动左、右半轴齿轮,进而驱动车轮,左、右半轴的转速之和等于差速器壳转速的两倍。当汽车直线行驶时,行星齿轮、左、右半轴齿轮和驱动车轮三者转速相同。当汽车转弯行驶时,由于汽车驱动车轮受力情况发生变化,反馈在左右半轴上,进而破坏差速器原有的平衡,这时转速重新分配,导致内侧车轮转速减小,外侧车轮转速增加,重新达到平衡状态,同时,汽车完成转弯动作。

2.3QY7180概念轿车主减速器主减速比i0的确定

主减速比的大小,对主减速器的结构形式、轮廓尺寸及质量的大小影响很大。主减速器比的选择,应在汽车总体设计时和传动系的总传动比一起,由汽车的整车动力计算来确定。对于具有很大功率储备的轿车、客车、长途公共汽车,尤其是对竞赛汽车来说,在给定发动机最大功率P emax 的情况下,所选择的值应能保证这些汽车有尽可能高的最高车速

v amax [1]。这时i 0值由下式来计算:

0max 0.286252000.3770.377 4.35621610.8

r p

a gh r n i v i ??===?? r r :车轮滚动半径 r r =0.2862m

n p :发动机最大功率时转速 n p =5200r/min

v amax :最高车速 v amax =161km/h

i gh :变速器最高档传动比 i gh =i g5=0.800

3主减速器和差速器主要参数选择与计算

3.1主减速器齿轮计算载荷的确定

由于汽车行驶时传动系载荷的不稳定性,因此要准确地计算出主减速器齿轮的计算载荷是比较困难的。通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮在良好路面上开始滑转时这两种情况下作用在主减速器从动齿轮上的转矩(T ce 、T cs )的较小者,作为汽车在强度

计算中用以验算主减速器从动齿轮最大应力的计算载荷[1]。

3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转矩T ce

max 101145 3.455 4.35620.9982.0563221

d e ce K T i i T N m n η????????===??? K d :猛接离合器时所产生的动载系数 K d =1

T emax :发动机最大转矩 T emax =145N ·m

i 0:主减速比 i 0=4.3562

i 1:变速器一档传动比 i 1=3.455

n :驱动桥数 n=1

η:传动系传动效率 η=0.9

3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩T cs

1178400.810.28620.85772.4449220.99

r cs G m r T N m ?η??????===??? G 1:满载状态下驱动桥上的动载荷 G 1=7840N

m 1:汽车加速时前轴载荷转移系数 m 1=0.81

φ:轮胎与路面间的附着系数 φ=0.85

r r :轮胎滚动半径 r r =0.2862

η:主减速器从动齿轮到车轮之间的传动效率 η=0.99

3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩

14600.2862()(0.0150.080)464.8106110.99

a r jm r h p G r T f f f N m i n η??=??=++=????? G a :汽车满载总重量 G a =14602N

i :主减速器从动齿轮到车轮之间的传动比 i=1

r r :轮胎滚动半径 r r =0.2862

η:主减速器从动齿轮到车轮之间的传动效率 η=0.99

n :驱动桥数 n=1

f r :道路滚动阻力系数 f r =0.015

f h :平均爬坡能力系数 f h =0.08

f p :汽车性能系数 f p =0

3.2主减速器齿轮传动设计

设计思路

主要通过机械设计教材提供的方法进行齿面接触强度设计、齿根弯曲强度设计以及按主减速器一挡齿轮进行设计,然后对比各种方法的优劣 ,进行选择。

3.2.1按齿面接触强度设计

齿轮精度为6级[6]

小齿轮齿数z 1=14

大齿轮齿数z 2=z 1×4.3562=60.98≈61

初选螺旋角为β=14?

试选载荷系数K t =1.6

转矩T 1=T jm =464.8106N ·m

小齿轮转速n 1=6500.0603r/min

宽度系数Φd =0.6

弹性影响系数Z e =189.8MPa ?

齿轮的接触疲劳强度极限σHlim1=σHlim2=1200MPa

计算应力循环次数(按寿命10年每年300天每天3小时)

91606500.06031330010 3.5110N =?????=?

982 3.5110/4.35628.0575610N =?=?

取接触疲劳寿命系数K HN1=0.91 K HN2=0.94

取失效概率为1%,安全系数S=1

选取区域系数Z h =2.433

端面重合度计算:ε

α1=0.69 εα2=0.86 εα=εα1+εα2=1.55 1lim110.911200[]10921

HN H H K MPa S σσ??=== 2lim220.941200[]11281HN H H K MPa S σσ??=

== 许用接触应力

12[]10921128[]111022

H H H MPa σσσ++=== 试算小齿轮分度圆直径d 1t ,由计算公式得[6]

1t d ≥带入参数得d 1t =69.8185mm

计算圆周速度

11

69.81856500.0603

23.75/601000601000t d n v m s ππ????===??

计算齿宽b 及模数m nt

169.81850.641.89t d b d mm φ=?=?=

11cos 69.8185cos14 4.8414

t nt d m z β???=== 2.25 4.84 2.2510.888nt h m mm =?=?=

/ 3.8474b h =

计算纵向重合度εβ

10.318tan 0.3180.614tan140.666d z βεφβ=???=????=

计算载荷系数K

使用系数K α=1.5

动载系数K v =1.15

齿间载荷分配系数K h α=K f α=1.1

齿向载荷分配系数K h β=1.388

齿向载荷分布系数K f β=1.26

2.63373a v ha fa h f K K K K K K K ββ=?????=

按实际的载荷系数校正所算得的分度圆直径

1182.4368t d d mm == 计算模数m n

11cos 82.4368cos14 5.713414

n d m mm z β???=== 3.2.2按齿根弯曲强度设计

计算载荷系数

1.5 1.15 1.1 1.26

2.39085v f f K K K K K ααβ=???=???=

根据纵向重合度查得螺旋角影响系数Y β=0.92

取弯曲疲劳寿命系数为K FN1=0.89 K FN2=0.92,安全系数为1.4

查得小齿轮的弯曲疲劳强度极限σ

FE1=810MPa 查得大齿轮的弯曲疲劳强度极限σ

FE2

=810MPa 计算弯曲疲劳许用应力

1110.89810[]514.9291.4FN FE F K MPa S σσ??=== 2220.92810[]532.2861.4

FN FE F K MPa S σσ??=== 查取齿形系数Y F α1=3.1 Y F α2=2.28

查取应力校正系数Y S α1=1.48 Y S α2=1.73 计算大小齿轮的[]

Fa sa F Y Y σ?并加以比较 111 3.1 1.480.008909966[]514.929

Fa sa F Y Y σ??== 222 2.28 1.730.007410302[]532.286

Fa sa F Y Y σ??== 小齿轮的数值较大

设计计算

5.387m mm ≥== 对比计算结果,由齿面解除疲劳强度计算的法面模数与由齿根弯曲疲劳强度计算的法面模数相差不大,取标准值M n =6,取分度圆直径

d 1=82.4368mm

11cos 82.4368cos1411.046

n d z m β???=== 取z 1=11,则z 2=z 1×4.3562=47.91≈48,取z 2=48

计算中心距

汽车单级主减速器及差速器的结构设计与强度分析毕业论文

汽车单级主减速器及差速器的结构设计 与强度分析毕业论文 第一章绪论 1.1 选题的背景与意义 通过学校的实习我对汽车的构造及各总成的原理有了一定的了解,同时结合以前课堂学习的理论知识,对于进行汽车一些总成的设计有了一定的理论基础,现选择课题内容为对BJ2022汽车的使用性能的驱动桥(主减速器及差速器)进行设计。通过本课题可以进一步加深对汽车构造、汽车设计及汽车各总成的工作原理,特别是本课题驱动桥中的主减速器及差速器与半轴的认识和了解;同时经过设计过程,了解学习一些现代汽车工业的新设计方法及新技术,对于即将从事汽车行业工作的我也是一种锻炼,为即将的工作做铺垫。 1.2 研究的基本内容 1.2.1 主减速器的作用 汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。而主减速器是在汽车传动系中起降低转速,增大转矩作用的主要部件。当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。汽车正常行驶时,发动机的转速通常比较高,如果将很高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、

分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。 1.2.2 主减速器的工作原理 从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,主减速器的一对齿轮增大转矩并相应降低转速,以及当发动机纵置时还具有改变转矩的旋转方向。 1.2.3 国内主减速器的状况 现在国家大力发展高速公路网,环保、舒适、快捷成为汽车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为汽车主减速器技术的发展趋势。 在产品上,国内汽车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N 公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE等计算机应用技术,以及AUT优AD、UG16、CATIA、proE等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。

毕业设计论文二级减速器

安徽理工大学继续教育学院 毕业设计 题目二级直齿圆柱齿轮减速器 系别 专业机械电子工程 班级 09 姓名汪凡凯 学号 指导教师 日期 2011年5月

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

差速器毕业设计

目录 摘要 .............................................................................................................................................. I Abstract........................................................................................................................................... II 1 引言 (3) 1.1 差速器的作用 (3) 1.2 差速器的工作原理 (3) 1.3 差速器的方案选择及结构分析 (7) 1.3.1 差速器的方案选择 (7) 1.3.2差速器的结构分析 (7) 2 差速器的设计 (8) 2.1 差速器设计初始数据的来源与依据 (8) 2.2 差速器齿轮的基本参数的选择 (8) 2.3 差速器齿轮的几何尺寸计算 (12) 2.3.1 差速器直齿锥齿轮的几何参数 (12) 2.3.2 差速器齿轮的材料选用 (13) 2.3.3 差速器齿轮的强度计算 (14) 3 差速器行星齿轮轴的设计计算 (15) 3.1 行星齿轮轴的分类及选用 (15) 3.2 行星齿轮轴的尺寸设计 (16) 3.3 行星齿轮轴材料的选择 (16) 3.4 差速器垫圈的设计计算 (16) 3.4.1 半轴齿轮平垫圈的尺寸设计 (17) 3.4.2 行星齿轮球面垫圈的尺寸设计 (17) 4 差速器标准零件的选用 (17) 4.1 螺栓的选用和螺栓的材料 (17) 4.2 螺母的选用和螺母的材料 (18) 4.3 差速器轴承的选用 (18) 4.4 十字轴键的选用 (18) 5 半轴的设计 (18) 5.1 半轴的选型 (18) 5.2 半轴的设计计算 (19) 5.2.1 半轴的受力分析 (19) 5.2.2 半轴计算载荷的确定 (20) 5.2.3 半轴杆部直径初选 (21) 5.2.4 半轴的强度计算 (21) 5.2.5 半轴的材料 (22) 6 差速器总成的装配和调整 (23) 6.1 差速器总成的装配 (23) 6.2 差速器总成的装配 (23)

TYQ4190型汽车轮边减速器的设计

任务书 毕业设计(论文)题目: 汽车轮边减速器设计 毕业设计(论文)要求及原始数据(资料): 要求: 1.根据原始数据和有关资料,进行文献检索、调查研究工作; 2.综合应用所学基础理论和专业知识,制定最佳设计方案; 3.所设计的轮边减速器总成应满足1250型载重车的各项性能要求; 4.设计图纸要求布局合理,正确清晰,符合国家制图标准及有关规定; 5.毕业设计说明书要求内容完整、层次清晰、文理通顺,具体按照太原理工大学毕业论文规范 撰写; 6.通过毕业设计,掌握轮边减速器的结构型式、设计方法; 7.独立按时完成毕业设计所承担的各项任务。 原始数据(资料): 1、质量参数:(kg) 载质量整备质量总质量挂车质量半挂鞍座质量 12000 7000 19000 35000 11000 尺寸参数: (mm) 外形尺寸5980×2500×3030 轴距3400 接近角/离去角(度) 18/32 车箱内部尺寸轮距2027/1820 最小离地间隙240 2、其它参数: 1)、最高车速:98km/h 2)、最大爬坡度(%):30 3)、车轮及轮胎:12.00R20 4)、轴数:2 毕业设计(论文)主要内容: 1.结合4190型牵引车的相关参数及结构特点,进行轮边减速器总成的设计; 2.确定轮边减速器的结构类型; 3.确定轮边减速器总成的主要性能参数; 4.轮边减速器总成的设计、计算、分析、制图; 5.其他相关零部件的设计; 6.结合本课题查阅并翻译1万印刷符合的英文资料; 7.模拟申请专利一份 8.编写设计说明书。

学生应交出的设计文件(论文): 1. 轮边减速器总成图纸一套; 2.毕业设计说明书。(按太原理工大学学生毕业论文撰写规范写) 主要参考文献(资料): 1吉林大学汽车工程系编著.汽车构造(下册) 第五版. 北京:人民交通出版社2王望予.汽车设计(第4版).北京:机械工业出版社 3 机械设计手册(上.中册).北京:化学工业出版社 4(日)武田信之著.方泳龙译.载货汽车设计.北京:人民交通出版社 5高维山.驱动桥.北京:人民交通出版社 6 QC/T 265-2004《汽车零部件编号规则》 专业班级学生 要求设计(论文)工作起止日期2011-3-21---2011-6-17 指导教师签字日期2011-3-21 教研室主任审查签字日期 系主任批准签字日期

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

差速器开题报告

山东科技大学 本科毕业设计(论文)开题报告 题目 学院名称机械电子工程学院 专业班级机械设计制造及其自动化07-4 学生姓名魏循中 学号 200703021225 指导教师李学艺 填表时间: 2011年 3月 21 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用a4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。篇二:汽车差速器毕业设计开题报告 轻型载货汽车的差速器设计 2. 课题研究背景和意义 目前国内轻型货车乃至重型货车的差速器产品的技术基本来源于美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外技术而发展的,在目前看来有了一定的成果和规模,但是们目前我国的差速器没有自己的核心技术产品,开发能力依然很弱、影响了整车新车的开发成本,所以在差速器开发的技术开发上还有很长的路要走。 在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。汽车差速器是汽车传动中的最重要的部件之一,它有三大作用:首先是将发动机输出的动力传输到车轮上;其次,将主减速器已经增加的扭矩一分为二的分配给左右两根半轴;然后,它担任汽车主减速齿轮,在动力传输至车轮前将传动系的转速减下来,将动力传到车轮上,同时允许两侧车轮以不同的轮速转动。差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 3. 1国内外发展动态 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。近年来年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。对国外而言,国外的那些差速器生产企业的研究水平已经很高,而且还在不断地进步,年销售额达到18亿美金的伊顿公司汽车集团是全球化的汽车零部件制造供应商,主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器类产品年销售量达250万只,在同类产品居领导地位。国内的差速器起步较晚,目前的发展主要靠引进消化国外产品来满足需求。 3.2差速器的发展趋势 差速器作为车辆上必不可少的重要传动零件,要使车辆的舒适性以及通过性有所提高,

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

毕业设计说明书 BJ2022汽车单级主减速器及差速器的结构设计与强度分析 学生姓名:学号:学院: 专业: 指导教师: 2012年6月0801074117 机电工程学院地面武器机动工程

BJ2022汽车单级主减速器及差速器的结构设计与强度分析 摘要 汽车主减速器及差速器是汽车传动中最重要的部件之一。它能够将万向传动装置传来的发动机转矩传给驱动车轮,以实现降速增扭。 本次设计的是有关BJ2022汽车的主减速器和差速器,并要使其具有通过性。本次设计的内容包括有:方案选择,结构的优化与改进。齿轮与齿轮轴的设计与校核。并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。 方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核。 主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 关键词:驱动桥,主减速器,差速器,半轴

BJ2022 car single stage and the structure of the main reducer differential design and strength analysis ABSTRACT Automobil reduction final drive and differential is one of the best impossible parts in automobile gearing. It can chang speed and driving tuist within a big scope . The problem of this design is BJ2022 car differential unit ,it’ s properly in common use . The design of scheme, the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings , and also the design explain the construction of differential action . The ting of the scheme desierment main deside. The drive ratio of gear,according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear , and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears. Compare the strength of the biggest load dangraes section. It require structure simple and accord with demand in select of bearings . The Lord reducer to improve the car driving and differential stability and its through sex has a unique function, is one of the focal points of automotive design. Key words : Drive axle,Main reducer,Differential,Axle

汽车差速器的设计与分析

摘要 本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

目录 1.引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (3) 1.4毕业设计初始数据的来源与依据 (4) 1.5本章小结 (5) 2.差速器的设计方案 (6) 2.1差速器的方案选择及结构分析 (6) 2.2差速器的工作原理 (7) 2.3本章小结 (9) 3.差速器非标准零件的设计 (10) 3.1对称式行星齿轮的设计计算 (10) 3.1.1对称式差速器齿轮参数的确定 (10) 3.1.2差速器齿轮的几何计算图表 (15) 3.1.3差速器齿轮的强度计算 (17) 3.1.4差速器齿轮材料的选择 (18) 3.1.5差速器齿轮的设计方案 (19) 3.2差速器行星齿轮轴的设计计算 (19) 3.2.1行星齿轮轴的分类及选用 (19) 3.2.2行星齿轮轴的尺寸设计 (20) 3.2.3行星齿轮轴材料的选择 (20) 3.3差速器垫圈的设计计算 (20) 3.3.1半轴齿轮平垫圈的尺寸设计 (21) 3.3.2行星齿轮球面垫圈的尺寸设计 (21) 3.4本章小结 (21) 4.差速器标准零件的选用 (22)

机械毕业设计625二级圆柱直齿齿轮减速器

1引言 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。 当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。 在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。

2 传动装置总体设计 2.0设计任务书 1设计任务 设计带式输送机的传动系统,采用两级圆柱直齿齿轮减速器传动。 2 设计要求 (1)外形美观,结构合理,性能可靠,工艺性好; (2)多有图纸符合国家标准要求; (3)按毕业设计(论文)要求完成相关资料整理装订工作。 3 原始数据 (1)运输带工作拉力 F=4KN (2)运输带工作速度V=2.0m/s (3)输送带滚筒直径 D=450mm η (4)传动效率96 = .0 4工作条件 两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限10年,年工作300天。 2.1 确定传动方案

减速器毕业设计

设计说明书 一、前言1 (—)课程设计的目的(参照第1页) 机械零件课程设计是学生学习《机械技术》(上、下)课程后进行的一项综合训练,其主要目的是通过课程设计使学生巩固、加深在机械技术课程中所学到的知识,提高学生综合运用这些知识去分析和解决问题的能力。同时学习机械设计的一般方法,了解和掌握常用机械零部件、机械传动装置或简单机械的设计方法与步骤,为今后学习专业技术知识打下必要的基础。(二)传动方案的分析(参照第10页) 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低.在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。本设计采用的是单级直齿轮传动(说明直齿轮传动的优缺点)。 说明减速器的结构特点、材料选择和应用场合(如本设计中减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成)。 设计说明书 1

二、传动系统的参数设计 已知输送带的有效拉力F w =2350,输送带的速度V w =1.5,滚筒直径D=300。连续工作,载荷平稳、单向运转。 1)选择合适的电动机;2)计算传动装置的总传动比,分配各级传动比;3)计算传动装置的运动参数和动力参数。 解:1、选择电动机 (1)选择电动机类型:按工作要求和条件选取Y 系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。 (2)选择电动机容量 工作机所需功率: 75.3ηw 1000=?= Vw Fw Pw ,其中带式输送机效率ηw =0.94。 电动机输出功率: 12.4== η Pw Po 其中η为电动机至滚筒、主动轴传动装置的总效率,包括V 带传动效率ηb 、一对齿轮传动效率ηg 、两对滚动轴承效率ηr 2、及联轴器效率ηc ,值 计算如下:η=ηb ·ηg ·ηr 2·ηc =0.90 由表10—1(134页)查得各效率值,代入公式计算出效率及电机输出功率。使电动机的额定功率Pm =(1~1.3)Po ,由表10—110(223页)查得电动机的额定功率Pm=5.5。 (3)选择电动机的转速 计算滚筒的转速:== D Vw nw π6095.49 根据表3—1确定传动比的范围:取V 带传动比i b =2~4,单级齿轮传动比i g =3~5,则总传动比的范围:i =(2X3)~(4X5)=6~20。 电动机的转速范围为n′=i·n w (6~20)·n w =592.94~1909.8 在这个范围内电动机的同步转速有1000r /min 和1500r /min ,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1000,根据同步转速确定电动机的型号为Y132M2-6,满载转速960。(223页) 型号 额定功率 满载转速 同步转速 Y132M2-6 5.5 960 1000 2、计算总传动比并分配各级传动比 (1)计算总传动比:i=n m /n W =8~14 (2)分配各级传动比:为使带传动尺寸不至过大,满足i b

差速器毕业设计-论文

目录 摘要.................................... I Abstract .................................... II 1 引言 (3) 1.1 差速器的作用. (3) 1.2 差速器的工作原理. (3) 1.3 差速器的方案选择及结构分析. (7) 1.3.1 差速器的方案选择. (7) 1.3.2 差速器的结构分析 (7) 2 差速器的设计. (8) 2.1 差速器设计初始数据的来源与依据. (8) 2.2 差速器齿轮的基本参数的选择. (8) 2.3 差速器齿轮的几何尺寸计算. (12) 2.3.1 差速器直齿锥齿轮的几何参数. (12) 2.3.2 差速器齿轮的材料选用. (13) 2.3.3 差速器齿轮的强度计算. (14) 3 差速器行星齿轮轴的设计计算. (15) 3.1 行星齿轮轴的分类及选用. (15) 3.2 行星齿轮轴的尺寸设计. (16) 3.3 行星齿轮轴材料的选择. (16) 3.4 差速器垫圈的设计计算. (16) 3.4.1 半轴齿轮平垫圈的尺寸设计. (17) 3.4.2 行星齿轮球面垫圈的尺寸设计. (17) 4 差速器标准零件的选用. (17) 4.1 螺栓的选用和螺栓的材料. (17) 4.2 螺母的选用和螺母的材料. (18) 4.3 差速器轴承的选用. (18) 4.4 十字轴键的选用. (18) 5 半轴的设计. (18) 5.1 半轴的选型. (18) 5.2 半轴的设计计算. (19) 5.2.1 半轴的受力分析. (19) 5.2.2 半轴计算载荷的确定. (20) 5.2.3 半轴杆部直径初选. (21) 5.2.4 半轴的强度计算. (21) 5.2.5 半轴的材料. (22) 6 差速器总成的装配和调整. (23) 6.1 差速器总成的装配. (23) 6.2 差速器总成的装配. (23)

二级减速器(机械课程设计)(含总结)

机械设计课程设计 : 班级: 学号: 指导教师: 成绩:

日期:2011 年6 月 目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1—输送带 2—电动机 3—V带传动 4—减速器 技术与条件说明: 1)传动装置的使用寿命预定为8年每年按350天计算,每天16小时计算; 2)工作情况:单向运输,载荷平稳,室工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率 0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1; 2)零件图2(低速级齿轮,低速级轴);

汽车后桥减速器壳工艺规程设计及其夹具设计

优秀设计 引言 毕业设计是学生的最后一个教学环节,我这次毕业设计的题目是某汽车后桥减速器壳工艺规程设计及其夹具设计。 汽车在正常行驶时,发动机的转速很高,只靠变速箱来降低,会使变速箱的尺寸增大。同时,转速下降,扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。因此,在动力向左右驱动轮分流的差速器之前需要设置一个主减速器。而主减速器壳是汽车后桥主减速器的一部分。主减速器壳体加工精度的高低直接影响着差速器壳及主、被动齿轮的配合精度,因而其加工工艺直接影响车桥和整车质量。 我此次毕业设计的任务是对汽车后桥减速器壳进行工艺分析并且设计其夹具。经过查阅相关资料,并且结合所学的机械知识,对该零件进行工艺分析,确定出合理的加工工艺方案,并选择切削用量及其工艺装备。了解零件的结构特点及技术要求,查阅相关书籍,例如夹具方面的教材及图册,经过反复的研究、设计、比较、试验,最终设计出一套合理的夹具,即车法兰止口的夹具。 最后在老师和同学的帮助下,经过不断地修改、检查,最终完成了汽车后桥减速器壳工艺规程及其夹具设计。 本次毕业设计使我在机械方面受益匪浅。特别是刘老师在工作中对我的耐心辅导,他对学生强烈的责任感和严谨的治学态度,无不给我以深刻的影响。 由于类似的大型课题很少接触,经验能力方面的欠缺,错误之处一定存在,恳请各位老师给予批评指正,以便今后的工作尽善尽美。

目录 目录 (2) 第1章零件的分析 (4) 1.1减速器壳在汽车上的位置及功用 (4) 1.2减速器壳的结构特点及技术要求 (4) 1.2.1结构特点 (4) 1.2.2技术要求分析 (5) 第2章工艺规程的设计 (7) 2.1生产类型的确定 (7) 2.1.1生产纲领的确定 (7) 2.1.2零件年产量的确定 (7) 2.1.3生产类型的确定 (7) 2.1.4生产类型对应的工艺特征 (7) 2.2毛坯的选择 (8) 2.2.1铸件的精度等级选择: (8) 2.2.2毛坯余量及偏差的选择 (8) 2.3各加工表面的加工方法的选择 (10) 2.3.1加工方法的确定 (10) 2.3.2加工阶段的划分 (12) 2.4制定加工工艺路线 (13) 2.5工艺方案的分析 (17) 2.6确定各工序的加工余量、工序尺寸、切削用量及工时定额 (18) 2.6.1确定各工序的加工余量 (18) 2.6.2确定各工序的工序尺寸 (19) 2.6.3确定各工序的切削用量 (20) 2.6.4确定各工序的工时定额 (26) 2.7确定各工序的工艺装备和机床的选择 (43) 2.7.1刀具的选择 (43) 2.7.2量具的选择: (44) 2.7.3夹具的选择 (45) 2.7.4机床设备的选择: (46) 2.8选择定位基准的原则 (46) 2.8.1粗基准的选择 (46) 2.8.2精基准的选择 (47) 2.9合理夹紧方法的确定 (48) 2.9.1夹紧力的方向 (48) 2.9.2夹紧力的作用点 (48)

二级减速器毕业设计

济源职业技术学院 毕业设计 题目二级圆柱齿轮减速器的设计系别机电系 专业机电一体化技术 班级机电0602班 姓名Xxx 学号06010204 指导教师高清冉 日期2008年11月

设计任务书 设计题目: 二级圆柱齿轮减速器 设计要求: 运输带拉力 F = 3400 N 运输带速度 V = 1.3 m/s 卷筒直径 D = 320 mm 滚筒及运输带效率η=0.94 。要求电动机长期连续运转,载荷不变或很少变化。电动机的额定功率Ped稍大于电动机工作功率Pd。工作时,载荷有轻微冲击。室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差为±4%,要求齿轮使用寿命为10年,传动比准确,有足够大的强度,两班工作制,轴承使用寿命不小于15000小时,要求轴有较大刚度,试设计二级圆柱齿轮减速器。 设计进度要求: 第一周:熟悉题目,收集资料,理解题目,借取一些工具书。 第二周:完成减速器的设计及整理计算的数据,为下步图形的绘制做准备。 第三周:完成了减速器的设计及整理计算的数据。 第四周:按照上一阶段所计算的数据,完成零部件的CAD的绘制。 第五周:根据设计和图形绘制过程中的心得体会撰写论文,完成了论文的撰写。 第六周:修改、打印论文,完成。 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是: ①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力; ②适用的功率和速度范围广; ③传动效率高,η=0.92-0.98; ④工作可靠、使用寿命长; ⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。齿轮减速器按减速齿轮的级数可分为单级、二级、三级和多级减速器几种;按轴在空间的相互配置方式可分为立式和卧式减速器两种;按运动简图的特点可分为展开式、同轴式和分流式减速器等。单级圆柱齿轮减速器的最大传动比一般为8~10,作此限制主要为避免外廓尺寸过大。若要求i>10时,就应采用二级圆柱齿轮减速器。二级圆柱齿轮减速器应用于i:8~50及高、低速级的中心距总和为250~400mmm的情况下。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

机械毕业设计英文外文翻译402驱动桥和差速器 (2)

附录 附录A Drive axle/differential All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.

相关主题
文本预览
相关文档 最新文档