当前位置:文档之家› 音乐是数学的奇迹

音乐是数学的奇迹

音乐是数学的奇迹
音乐是数学的奇迹

前一阵校内上流行一个matlab演奏《卡农》的帖子,写法蛮帅的,用的还是纯律而非平均律。回想起我初中时候在少科站无聊也用Turbo Pascal编过《亚洲雄风》来着,当时就觉得一串数字转化成音乐是件很神奇的事情。来聊聊音乐和数学哈~

音乐之所以和谐美妙,很大程度上得益于两个数学上的约等式同时成立:

1) 2 ^ (7/12) = 1.4983 ≈ 3/2,误差0.1%

2) 2 ^ (4/12) = 1.2599 ≈ 5/4,误差0.8%

听起来很邪乎吧?待我慢慢道来……

【陪音】

唱歌的时候如果唱不上去了我们经常会―唱低八度‖,这时候虽然声音低了许多,但与原唱并不冲突,与伴奏也仍然和谐。那为什么―八度‖那么特殊呢?或者说,为什么差八度的音听着那么像呢?原来差八度的两个音其频率正好差两倍——比如中音do(钢琴正中的C,记作C4或c’)是261.6赫兹,而高音do(记作C5或c’’)是它的两倍523.3赫兹。

那为什么频率差两倍就听起来像呢?这里需要引入陪音(upper partials)的概念,也称为泛音(overtone)。除了一些音色很纯的音(比如机器发出的正弦波)外,多数乐器演奏中除了激活原本频率的声波(基音)之外还会激活这些频率的整数倍,也就是陪音。当你按下钢琴的C4,这时空气中激荡着的不只有261.6赫兹的声波,还有523.3赫兹、784.9赫兹、1046.5赫兹等等(称为泛音列),而泛音列中各个音的不同强度和相位正反映了乐器的音色。注意523.3赫兹是C5,1046.5赫兹是C6,但784.9赫兹并不是一个C音,我们后文会讲到784.9赫兹比较接近G5。也就是说,同一音名的两个音之间肯定有陪音的关系,但反之不成立——陪音不必须是同一音名。回到八度的问题:C5本身就是C4最近的一个陪音,C5的陪音也都是C4的陪音,所以弹C5时激活的音频弹C4时也会激活(当然强度不同),两个音听起来自然像啦~

【平均律】

搞清楚了啥是八度,那一个八度里的音又是怎么分的呢?大家知道七声调式中一个八度是7个基本音级、12个半音,2个半音等于一个全音。大调是―全全半全全全半‖,小调是―全半全全半全全‖。在巴赫开始提倡、现代普遍采用的十二平均律中,这12个半音是均匀分布的——从物理上讲,也就是半音阶中的音的频率形成一个等比数列。比如说C4是261.6赫兹,C5是523.3赫兹,而两者之间的11个音每个的频率是上一个的2 ^ (1/12) = 1.0595倍——C?4是261.6 * 1.0595 = 277.2赫兹,D4是277.2 * 1.0595 = 293.7赫兹,依此类推。一个半音又可以分成100个音分(cent),差一个音分相当于频率差2 ^ (1/1200) = 1.00058倍,一个八度也就是1200个音分。普通人对音高的辨别阈大概是20音分(0.2个半音),而音乐家可以达到5音分(0.05个半音),不同音高下的辨别阈还有所不同。

为什么要用平均律,让所有音均匀分布呢?一个重要的原因是方便转调。比如周杰伦的《安静》,开始一直是B?调,在唱到第二遍副歌―你要我说多难堪‖的时候突然升了一个全音变成了C调——也就是之前的B?变成C,C变成D,D变成E等等,但尽管音高变了旋律听起来还是一样的,唱也还是一个感觉,区别最多也就是转一下调情绪激动一点。这种转调后的不变性是平均律特有的,在其他一些律制(比如五度相生律、纯律和中庸全音律)中不成立。同时这也意味着除平均律外,其他律制中每个调号的色彩都略有不同。这就是为什么亨德尔会偏好F大调和G小调(当时还没有平均律),而lady gaga就不那么在乎。

【音程的协和】

前菜上完了,下面是主菜:音程的协和。协和(consonant)这个概念,操作定义大致就是听起来和谐、悦耳。在实证研究中一般是给参与者同时播放两个正弦音(这种音不带陪音,只有基音),调整其间的频率间隔,然后让参与者在7点量表上评价这个音程有多悦耳、多优美、多和谐之类。Plomp和Levelt的这篇论文里结合了前人和他们自己的实验结果,得到这样一条曲线来描述两个正弦音的间隔与这个音程不协和程度的关系:

图一:音程不协和度与音程中根音和冠音间隔半音数的关系(图出自《American Scientist》上的这篇文章,是P & L原文Fig.10的重新制作)

怎么样,这条曲线看起来很光滑圆润小正太吧?可如果是这样,难道两个音的间隔越大越协和?那为什么又要分协和音程和不协和音程呢?且慢,记得我们讲这只是两个基音之间的不协和程度,而考虑上两个音各自陪音之间的协和程度之后,这图就变成了下面的样子:

图二:考虑陪音后的音程不协和度(出自《American Scientist》,P & L原文Fig.11的重新制作)

光滑圆润的小正太转眼变成了小刺猬,而且这刺还不是乱长,偏偏长在0、3、4、5、7、9、12这几条线附近,是不是很神奇?我反正觉得挺神奇的。原文中没有给详细的推导过程,于是我就自己尝试推导了一下(蓝字部分)。

首先图一这个小正太,怎么看怎么像一个Gamma分布。我试了几次后发现它和Gamma (2,1)最为接近:

图三:用Excel自制的Gamma (2,1),和图一长得很像吧

这个曲线大概反映出我们听觉的特点:当两个纯音间隔很小(比如小于0.2个半音)时人耳难以分辨,因此感觉是完全协和的。当刚开始能够分辨出两个音的时候感觉特别刺耳,于是就出现了1-2个半音处不协和的高峰,而之后随着间隔变大刺耳的感觉逐渐减弱,不和谐度也下降了。Gamma (2,1) 模型的具体数值

如下表:

表一:根据Gamma (2,1) 算出的不协和度数值(y轴无量纲)

接下来看陪音之间的协和。打个不太恰当的比方,谈恋爱不仅要两个人谈得来,还要讲究门当户对不是?所以说还要拿双方的弟弟妹妹们来配配看是否和谐,最后把所有不和谐的因素加起来看。表二中列出了根音6倍之内陪音和冠音8倍之内陪音的间隔半音数。从图三中看到两个音相差6个半音以上不协和程度就很低了,所以忽略掉陪音频率差别在3:2以上的情况(实际计算的时候我是忽略了2:1以上的情况)。

表二:根音陪音和冠音陪音的间隔半音数

把表二中的数值代入Gamma模型,就得到表三的不和谐度:

表三:根音陪音和冠音陪音的不协和度

把所有陪音的不协和度加起来就得到了图四,和American Scientist上的图(图二)差不多吧:

图四:考虑陪音后的音程不协和度(Excel自制)

以上部分我们用一个Gamma模型推导了考虑陪音后根音-冠音间隔和音程不和谐度的关系。那么图上突然下降的那几根刺是怎么来的呢?

举例来讲,间隔半音数7附近不协和度突然下降,而这个下降主要来自根音的3倍音(橙色线)和6倍音(绿色线)。回到表三,可以看到7个半音(G4)这一栏下黑框中的两个数(0.02)远远小于黑框两边6个半音和8个半音两栏(0.37),使得G4的陪音与C4的3倍音、6倍音上的不和谐度只有两边F?4和G?4的10%不到。类似的情况也出现在0、3、4、5、9、12个半音的栏目中(表三中粗体标出)。

之所以这些位置会出现不协和度突然下降,寻根溯源到表二就很清楚了:表三中标粗的位置在表二中都接近0(绝对值< 0.2)。对照Gamma分布的曲线(图三)和之前的讨论,两个音相差小于0.2个半音时普通人难以分辨其差别,也就不会觉出不协和。而一旦稍高于这个阈限,不协和度就陡然上升。这也就解释了为什么会有―刺‖及其两边的突起形状。

还是以G4(和C4间隔7个半音)为例:G4的2倍音和C4的3倍音太过接近,以致听不出不协和;G4的4倍音和C4的6倍音,G4的6倍音和C4的9倍音等等也都如此。这样叠加的效果使得G4和C4构成的音程总体而言听起来不协和度低,也就解释了7附近的不协和度下降。注意,不管原图还是自制图中都只考虑了根音6倍以内的陪音,加上更高倍数陪音的话―刺‖会更多。

OK,如果还有人follow的话,以上冗长的推导简单来讲就是要证明这样一个结论:当根音和冠音的振动频率成简单整数比时,音程就协和。两者所成整数比越简单、越精确,音程就越协和。

这个结论大体是得到实证数据支持的:我们通常听来协和的音程(图二中―刺‖的位置)都可以近似表示成简单整数比,而不协和音程表示成整数比要么分子分母较大,要么误差较大(表四)。简单整数比也同样能解释一些三和弦的协和:比如同为大三度和小三度的叠加,大三和弦其三个音的比例是4:5:6从而听起来非常―正‖,小三和弦三个音的比例是10:12:15协和程度就略差一些。

表四:协和音程和不协和音程对应的振动频率比

【见证奇迹】

总结一下上面两部分说的:协和音程要求音阶中各个音的频率成简单整数比a/b,而平均律要求音阶在1和2之间构成等比数列,也即各个音的频率比需要表示为2^(m/n)(m为两个音的间隔数,n为一个八度音阶的全部音数)。也就是说,音程如果既要协和又要符合平均律的话,就必须有a/b = 2^(m/n)。但这里就产生了矛盾:a/b 是有理数,而2^(m/n) 在m非n整数倍的情况下是无理数,两者没法相等。

怎么办呢?所幸人耳没那么精确,允许一定误差,也就是可以a/b ≈ 2^(m/n)。两边取以2为底的对数得m/n ≈ log2 (a/b),或者写成m/n = log2(a/b) + ε(标为*式),此处ε 是平均律情况下音频比偏离简单整数比的误差。这个误差当然不能太大:前文提到一般人对音高的辨别阈大概在20音分左右,我们取15音分(听力稍好的人的辨别阈)作为标准,也就得到|ε| < 15/1200 = 0.0125。

然后考虑简单整数比a/b:a/b为整数(1、2)时产生的是极完全和谐音程,这时候m/n = 0或1,必然有精确解。而我们关注的是其他协和音程,即a/b = 3/2, 4/3, 5/4, 6/5时能不能找到相应的m/n。而事实上,只要找到在a/b = 3/2(纯五度)和a/b = 5/4(大三度)情况下符合*式的m1/n和m2/n,其他常用协和音程也都迎刃而解。蓝字部分解释了为什么存在纯五度和大三度后就能导出所有其他协和音程:

log2 (4/3) = 1 – log2 (3/2),log2 (3/2) 是有理数时log2 (4/3) 必是同分母的有理数,即存在纯五度也就存在纯四度

log2 (5/4) = 1 – log2 (8/5),存在大三度也就存在小六度

log2 (6/5) = log2 (3/2) – log2 (5/4),存在纯五度、大三度也就存在小三度

log2 (5/3) = 1 – log2 (6/5),存在小三度也就存在大六度

好,接下来的工作就是一个一个试了(连分数可以得到最接近的解,但我们需要所有误差范围之内的解):下面列出了n在30以内所有接近纯五度的m1/n,m1/n ≈ log2 (3/2) = 0.585

7/12, 14/24

10/17

11/19

13/22

15/26

16/27

17/29

接近大三度的m2/n,m2/n ≈ log2 (5/4) = 0.322;红色标出的是既存在纯五度、也存在大三度的情况

1/3, 2/6, 3/9, 4/12, …

5/16

6/19

7/22

8/25

9/28

9/29

对比两串数,12这个神奇数字就这样华丽丽地登场了:在12平均律下相差7个半音的音程可以满足纯五度(12是满足该条件最小的n),而恰好此律下相差4个半音的音程可以满足大三度。

你或许说如果没有12平均律,那19平均律、22平均律也行啊——且慢,让我们把纯五度的纯度要求提高些(毕竟这是完全协和音程),取到音乐家的辨别阈5音分(|ε| < 5/1200 = 0.0041)来看看。这时12平均律仍然满足要求,而19平均律、22平均律则被踢出。下一个满足要求的是29平均律,遗憾的是29平均律的大三度没有12平均律的纯,以至于如果需要找一个真正比十二平均律更纯的平均律,最小也要41平均律。

现在看出奇迹所在了吧?如果没有12平均律而要用41平均律,那钢琴上弹一个八度需要手跨41个键,而钢琴的琴键总数将达到300个……更重要的是,41平均律中两个相邻音之间只差不到30音分,实在不好辨别啊……

恩,这也就是我要说的,音乐美妙多亏一个数学的巧合,说夸张点就是―音乐是数学的奇迹‖。再来回顾一下这两个神奇的式子:

7/12 = log2 (3/2) – 0.0016

4/12 = log2 (5/4) + 0.0114

两边取2的幂次就得到文章开头的两个式子了。

【不只是数学】

相信较真儿的同志肯定发现了不少问题:上述模型中小六度应该是不协和的,而实际乐理中认为小六度是协和音程;模型只考虑了根音6倍音以下的情况,而没说明为什么取6倍;用Gamma分布描述人耳对不协和程度的感知缺乏理论依据,等等。确实,这个模型有很多简化和不足的地方。而且我只是关注单音程协和的问题,要解释三和弦、四和弦的协和,乃至和弦进行的问题就要复杂得多了(这里有解释三和弦和谐程度的几个模型,简化中文版看这里)。

进一步说,协和又怎么样,协和的音乐就好听吗?这个答案必须是否定的。欧洲中世纪和中国古代都有―音乐之美在于和谐‖的思想,进而产生出像复调音乐―奥加农‖和中国的―雅乐‖这样追求绝对协和的音乐。以奥加农为例,全部依平行四度、平行五度进行,但其结果是音乐过于空洞、苍白,为历史所淘汰。平行五八度的进行也因为过于协和而在古典乐理中被禁掉。现代音乐那就更自由了:爵士、布鲁斯的和弦进行就与古典音乐有明显差别,而现代主义的无调性音乐就完全没有协和可谈了。所以说协和只是音乐之美的一个方面,节奏、音色、曲式、歌词等等往往起到更大的影响。不过说实在的,作为一个俗人,还是听协和点的音乐比较舒服啊~

草鱼原创,转载请注明

参考文献:

《律制详解》

【和专题】跟我和一曲阿卡贝拉,by悠扬

Cook N.D. & Hayashi T. (2008).The Psychoacoustics of Harmony Perception. American Scientist, July-August: 311-319.

Plomp, R., & Levelt, W.J.M. (1965).Tonal consonances and critical bandwidth. Journal of the Acoustical Society of America, 38, 548-560.

————————————————————————————————————————————————————

没想到浏览量破万了,非常感谢大家的支持和分享。我不是学音乐也不是学数学的,只是业余感兴趣,懂得很皮毛。不过乐理还真是个老少咸宜的话题,欢迎一起探讨。顺便推荐几个其他的数学帖:

所有的数都可以用二十个以内的汉字表达?

Impossible Puzzle

Manufactoria!

厚脸皮一下,再链几个原创旅游帖:

坦桑尼亚游记之―大七‖

秘鲁游记之神兽家谱

阿根廷游记之攻略篇

浅谈数学与音乐之关系

浅谈数学与音乐之关系 众所周知,音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,看似风马牛不相及的“多情”的音乐,与“冷酷”的数学也有关系吗?答案是肯定的。甚至可以说音乐与数学是相互渗透,互相促进的。 其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,古希腊的毕达哥拉斯学派用比率将数学与音乐联系起来. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶和调音理论诞生了,而且在西方音乐界占据了统治地位. 虽然托勒密对毕达哥拉斯音阶的缺点进行了改造,得出了较为理想的纯律音阶及相应的调音理论,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶及相应的调音理论出现才被彻底动摇。 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子·地员篇》和《吕氏春秋·音律篇》中分别有述;明代朱载在其音乐著作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义·内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次. 孔子说的六艺“礼、乐、射、御、书、数”,其中“乐”指音乐,“数”指数学,即孔子就已经把音乐与数学并列在一起。由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学的影子。 乐谱的书写是数学在音乐上显示其影响的最为明显的地方。在乐谱中,我们可以找到拍号、每个小节的拍子、全音符、二分音符、四分音符、八分音符等等。谱写乐曲要使它适合于每音节的拍子数,这相似于找公分母的过程——在一个固定的拍子里,不同长度的音符必须使它凑

数学与音乐

数学与音乐 2500年前的一天,古希腊哲学家毕达哥拉斯外出散步,经过一家铁匠铺,发现里面传出的打铁声响,要比别的铁匠铺更加协调、悦耳。他走进铺子,量了又量铁锤和铁砧的大小,发现了一个规律,音响的和谐与发声体体积的一定比例有关。尔后,他又在琴弦上做试验,进一步发现只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1:2产生八度,2:3产生五度,3:4产生四度等等。就这样,毕达哥拉斯在世界上第一次发现了音乐和数学的联系。他继而发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。千百年来,研究音乐和数学的关系在西方一直是一个热门的课题,从古希腊毕达哥拉斯学派到现代的宇宙学家和计算机科学家,都或多或少受到“整个宇宙即是和声和数”的观念的影响,开普勒、伽利略、欧拉、傅立叶、哈代等人都潜心研究过音乐与数学的关系。数学几何与哲学相契携行,渗进西方人的全部精神生活,透入到一切艺术领域而成为西方艺术的一大特色。圣奥古斯汀更留下“数还可以把世界转化为和我们心灵相通的音乐”的名言。现代作曲家巴托克、勋伯格、凯奇等人都对音乐与数学的结合进行大胆的实验。希腊作曲家克赛纳基斯(1933~)创立“算法音乐”,以数学方法代替音乐思维,创作过程也即演算过程,作品名称类乎数学公式,如《S+/10-1.080262 》为10件乐器而作,是1962年2月8日算出来的。马卡黑尔发展了施托克豪森的“图表音乐”(读和看的音乐)的思想,以几何图形的轮转方式作出“几何音乐”。

数学是研究现实世界空间形式的数量关系的一门科学,它早已从一门计数的学问变成一门形式符号体系的学问。符号的使用使数学具有高度的抽象。而音乐则是研究现实世界音响形式及对其控制的艺术。它同样使用符号体系,是所有艺术中最抽象的艺术。数学给人的印象是单调、枯燥、冷漠,而音乐则是丰富、有趣,充溢着感情及幻想。表面看,音乐与数学是“绝缘”的,风马牛不相及,其实不然。德国著名哲学家、数学家莱布尼茨曾说过:“音乐,就它的基础来说,是数学的;就它的出现来说,是直觉的。”而爱因斯坦说得更为风趣:“我们这个世界可以由音乐的音符组成也可以由数学公式组成。”数学是以数字为基本符号的排列组合,它是对事物在量上的抽象,并通过种种公式,揭示出客观世界的内在规律:而音乐是以音符为基本符号加以排列组合,它是对自然音响的抽象,并通过联系着这些符号的文法对它们进行组织安排,概括我们主观世界的各种活动罢了,正是在抽象这一点上将音乐与数学连结在一起,它们都是通过有限去反映和把握无限。 数学和音乐位于人类精神的两个极端,一个人全部创造性的精神活动就在这两个对立点的范围之内展开,而人类在科学和艺术领域中所创造出来的一切都分布在这两者之间。音乐和数学正是抽象王国中盛开的瑰丽之花。有了这两朵花,就可以把握人类文明所创造的精神财富。被称为数论之祖的希腊哲学家、数学家毕达哥拉斯认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。”世界上哪里有数,哪里就有美。数学像音乐及其它艺术能唤起人们的审美

艺术中的数学

数学简史论文 —艺术中的数学【35】 班级:园艺(一)班 :元伟 学号:2011014014

艺术中的数学 引言: 数学——抽象的思辨、严密的推理、逻辑的论证、精确的计算,总揽全局而又步步为营的思维方式构造起号称为“思维的体操”的数学大 厦的地基。而艺术是对哲学思想的变迁和艺术家们对多变的技术环境的反应的最直接的表现形式,艺术是浮想联翩、潇洒不羁、蔑视规律,跳跃的思维律动弥漫出若即若离的艺术图景。乍一看数学与艺术看作水火不容,但细细品味艺术家们开始使用数学的语言和思想并将其贯穿于五彩缤纷的艺术生活之中,鉴于辩证唯物论任何事物都是辨证统一的数学与艺术也蕴涵着在的统一。美国代数学家P.R.Halmos说“数学是创造性的艺术,因为数学家创造了美好的概念。数学是创造性的艺术因为数学家像艺术家一样的生活一样的工作一样的思索数学是 创造性的艺术因为数学家这样对待它。”可见无论是数学还是艺术都是一种创造性的活动并且包含了对于美的直接追求。继平教授说“美是人性的追求。”艺术是美的表达方式数学是美的语言数学追求美也创造美。数学与艺术的结合使美更加简明。随着人们物质生活的日益提高对自然精神生活的享受也会提升到更高的层次。就算我们日常生活中随处可见到的广告、海报、宣传品等实用艺术新兴出现的现代媒体艺术中。为吸引观众的眼球就必须运用数学鬼斧神工的创造力来产生艺术的无穷魅力。近几十年来在我国和许多国家出现了一种应用数学方法研究艺术的思潮。本文就从数学在音乐文学建筑绘画等方面的应用来研究艺术中渗透的数学思想和精神。

一、数学在音乐中的应用音乐是心灵和情感在声音方面 的外化数学是客观事物高度抽象和逻辑思维的产物那么“多情”的音乐 与“冷酷”的数学有关系吗。回答是肯定的西尔威斯特说过“难道不可以把音乐描述为感觉的数学把数学描述为理智的音乐吗拉莫说过“音乐是一种必须掌握一定规律的科学这些规律必须从明确的原则出发这个原则没有 数学的帮助就不可能进行研究我必须承认虽然我在相当长时期的实践活 动中获得许多经验但是只有数学能帮助我发展我的思想照亮我甚至没有 发觉原来是黑暗的地方。”君不是也听说过微积分被称为“无限的交响乐” 1、黎曼几何与普兰克的钢琴合奏曲一样优美的感叹吗。从古至今数学与音 乐一直联系在一起。世界著名波兰作曲家和钢琴家肖邦很注意乐谱的数学规则形式和结构有位研究肖邦的专家称肖邦的乐谱“具有乐谱语言的 数学特征”。事实上乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上我们看到速度节拍4/4拍、3/4拍等等;全音符、二分音 符、四分音符、八分音符、十六分音符等等。书写乐谱是确定每小节的 某分音符数与求公分母的过程相似---不同长度的音符必须与某一拍所规 定的小节相适应。在毕达哥拉斯时代音乐是数学的一部分。毕达哥拉斯可以说是音乐理论的一位始祖他阐明了单弦的调和乐音与单弦长之间的 关系。两根绷得一样紧的弦若一根长是另一根长的两倍就产生谐音而且 两个谐音正好相差八度。若两弦长之比为32则产生另一种谐音此时短弦发出的音比长弦发出的音高五度。事实上产生每一种谐音的各种弦的长 度都成正整数比这被认为是美丽旋律中的数学。乐器的形状和结构与各种数学概念有关。不管是弦乐器还是有空气柱发声的管乐器它们的结构 都反映出一条指数曲线的形状。此外18世纪的数学家通过用数学结构分析音乐使常微分方程的研究取得了一定进展。黄金分割在作曲的应用在一些乐曲的创作技法上将高潮或者是音程节奏的转折点安排在全曲的黄 金分割点0.618处,例如要创作89节的乐曲其高潮便在55节处,如果 是55节的乐曲高潮便在34节处。 2、学家傅立叶研究证实无论乐音复杂的还是简单的都可以用数学语言给以 完全的描述。对乐声性质的研究中发现所有乐声---器乐和声乐---都可用数

音乐是数学的奇迹

前一阵校内上流行一个matlab演奏《卡农》的帖子,写法蛮帅的,用的还是纯律而非平均律。回想起我初中时候在少科站无聊也用Turbo Pascal编过《亚洲雄风》来着,当时就觉得一串数字转化成音乐是件很神奇的事情。来聊聊音乐和数学哈~ 音乐之所以和谐美妙,很大程度上得益于两个数学上的约等式同时成立: 1) 2 ^ (7/12) = 1.4983 ≈ 3/2,误差0.1% 2) 2 ^ (4/12) = 1.2599 ≈ 5/4,误差0.8% 听起来很邪乎吧?待我慢慢道来…… 【陪音】 唱歌的时候如果唱不上去了我们经常会―唱低八度‖,这时候虽然声音低了许多,但与原唱并不冲突,与伴奏也仍然和谐。那为什么―八度‖那么特殊呢?或者说,为什么差八度的音听着那么像呢?原来差八度的两个音其频率正好差两倍——比如中音do(钢琴正中的C,记作C4或c’)是261.6赫兹,而高音do(记作C5或c’’)是它的两倍523.3赫兹。 那为什么频率差两倍就听起来像呢?这里需要引入陪音(upper partials)的概念,也称为泛音(overtone)。除了一些音色很纯的音(比如机器发出的正弦波)外,多数乐器演奏中除了激活原本频率的声波(基音)之外还会激活这些频率的整数倍,也就是陪音。当你按下钢琴的C4,这时空气中激荡着的不只有261.6赫兹的声波,还有523.3赫兹、784.9赫兹、1046.5赫兹等等(称为泛音列),而泛音列中各个音的不同强度和相位正反映了乐器的音色。注意523.3赫兹是C5,1046.5赫兹是C6,但784.9赫兹并不是一个C音,我们后文会讲到784.9赫兹比较接近G5。也就是说,同一音名的两个音之间肯定有陪音的关系,但反之不成立——陪音不必须是同一音名。回到八度的问题:C5本身就是C4最近的一个陪音,C5的陪音也都是C4的陪音,所以弹C5时激活的音频弹C4时也会激活(当然强度不同),两个音听起来自然像啦~ 【平均律】 搞清楚了啥是八度,那一个八度里的音又是怎么分的呢?大家知道七声调式中一个八度是7个基本音级、12个半音,2个半音等于一个全音。大调是―全全半全全全半‖,小调是―全半全全半全全‖。在巴赫开始提倡、现代普遍采用的十二平均律中,这12个半音是均匀分布的——从物理上讲,也就是半音阶中的音的频率形成一个等比数列。比如说C4是261.6赫兹,C5是523.3赫兹,而两者之间的11个音每个的频率是上一个的2 ^ (1/12) = 1.0595倍——C?4是261.6 * 1.0595 = 277.2赫兹,D4是277.2 * 1.0595 = 293.7赫兹,依此类推。一个半音又可以分成100个音分(cent),差一个音分相当于频率差2 ^ (1/1200) = 1.00058倍,一个八度也就是1200个音分。普通人对音高的辨别阈大概是20音分(0.2个半音),而音乐家可以达到5音分(0.05个半音),不同音高下的辨别阈还有所不同。 为什么要用平均律,让所有音均匀分布呢?一个重要的原因是方便转调。比如周杰伦的《安静》,开始一直是B?调,在唱到第二遍副歌―你要我说多难堪‖的时候突然升了一个全音变成了C调——也就是之前的B?变成C,C变成D,D变成E等等,但尽管音高变了旋律听起来还是一样的,唱也还是一个感觉,区别最多也就是转一下调情绪激动一点。这种转调后的不变性是平均律特有的,在其他一些律制(比如五度相生律、纯律和中庸全音律)中不成立。同时这也意味着除平均律外,其他律制中每个调号的色彩都略有不同。这就是为什么亨德尔会偏好F大调和G小调(当时还没有平均律),而lady gaga就不那么在乎。

音乐与数学

音乐是数学的奇迹作者:于悦 前一阵校内上流行一个matlab演奏《卡农》的帖子,写法蛮帅的,用的还是纯律而非平均律。回想起我初中时候在少科站无聊也用Turbo Pascal编过《亚洲雄风》来着,当时就觉得一串数字转化成音乐是件很神奇的事情。来聊聊音乐和数学哈~ 音乐之所以和谐美妙,很大程度上得益于两个数学上的约等式同时成立: 1) 2 ^ (7/12) = 1.4983 ≈ 3/2,误差0.1% 2) 2 ^ (4/12) = 1.2599 ≈ 5/4,误差0.8% 听起来很邪乎吧?待我慢慢道来…… 【陪音】 唱歌的时候如果唱不上去了我们经常会―唱低八度‖,这时候虽然声音低了许多,但与原唱并不冲突,与伴奏也仍然和谐。那为什么―八度‖那么特殊呢?或者说,为什么差八度的音听着那么像呢?原来差八度的两个音其频率正好差两倍——比如中音do(钢琴正中的C,记作C4或c’)是261.6赫兹,而高音do(记作C5或c’’)是它的两倍523.3赫兹。 那为什么频率差两倍就听起来像呢?这里需要引入陪音(upper partials)的概念,也称为泛音(overtone)。除了一些音色很纯的音(比如机器发出的正弦波)外,多数乐器演奏中除了激活原本频率的声波(基音)之外还会激活这些频率的整数倍,也就是陪音。当你按下钢琴的C4,这时空气中激荡着的不只有261.6赫兹的声波,还有523.3赫兹、784.9赫兹、1046.5赫兹等等(称为泛音列),而泛音列中各个音的不同强度和相位正反映了乐器的音色。注意523.3赫兹是C5,1046.5赫兹是C6,但784.9赫兹并不是一个C音,我们后文会讲到784.9赫兹比较接近G5。也就是说,同一音名的两个音之间肯定有陪音的关系,但反之不成立——陪音不必须是同一音名。回到八度的问题:C5本身就是C4最近的一个陪音,C5的陪音也都是C4的陪音,所以弹C5时激活的音频弹C4时也会激活(当然强度不同),两个音听起来自然像啦~ 【平均律】 搞清楚了啥是八度,那一个八度里的音又是怎么分的呢?大家知道七声调式中一个八度是7个基本音级、12个半音,2个半音等于一个全音。大调是―全全半全全全半‖,小调是―全半全全半全全‖。在巴赫开始提倡、现代普遍采用的十二平均律中,这12个半音是均匀分布的——从物理上讲,也就是半音阶中的音的频率形成一个等比数列。比如说C4是261.6赫兹,C5是523.3赫兹,而两者之间的11个音每个的频率是上一个的2 ^ (1/12) = 1.0595倍——C?4是261.6 * 1.0595 = 277.2赫兹,D4是277.2 * 1.0595 = 293.7赫兹,依此类推。一个半音又可以分成100个音分(cent),差一个音分相当于频率差2 ^ (1/1200) = 1.00058倍,一个八度也就是1200个音分。普通人对音高的辨别阈大概是20音分(0.2个半音),而音乐家可以达到5音分(0.05个半音),不同音高下的辨别阈还有所不同。 为什么要用平均律,让所有音均匀分布呢?一个重要的原因是方便转调。比如周杰伦的《安静》,开始一直是B?调,在唱到第二遍副歌―你要我说多难堪‖的时候突然升了一个全音变成

对于数学之美的理解和感悟

对于数学之美的理解和感悟 摘要:通过对数学的产生和发展及数学特点的简要介绍,表达了学习数学过程中产生的对于数学之美的理解和感悟。 关键词:数学;数学文化;美 伽利略曾说过:自然这本书是用数学语言写成的。哪里有数,哪里就有美。数学总是美的,数学是美的科学。 数学的美具体表现在以下两个方面,一个是探索之美,就是它指导人类认识世界的能力;还有一个是应用之美,就是它指导人类改造世界的能力。数学是研究数与形的科学,它来源于生产,服务于生活,并不是空中楼阁。在古代埃及,尼罗河定期泛滥,重新丈量土地的需要发展了几何学;在古代中国,发达的农业生产及天文观测的需要,也促进了数学的发展。数学与社会文化始终是密切相关的。据说,两千多年前,柏拉图学园的门口挂着一块牌子,写着:“不懂几何的人不得入内。”柏拉图之后的两千多年,即1939年12月,英国数学家、哲学家怀特海在美国哈佛大学作了一次讲演,题为“数学与善”,认为只有人类的智力才能“从实例中抽象出某一类型东西来。可见,数学并不是一棵傲然孤立的大树。它是在人类的物质需求和精神生活影响下生长起来的,同时它也以自己独特的魅力对人类文化的不同领域产生深远影响。 要谈数学的美,就不得不先从数学的产生和发展讲起。数学来源于人类的生产实践活动,即来源于原始人捕获猎物和分配猎物、丈量土地和测量容积、计算时间和制造器皿等实践,并随着人类社会生产力的发展而发展。数学经历了最初的,零碎的积累,而至今逐渐发展成熟,成为一门科学,其知识的运用已成为个人与团体生活中不可或缺的一部分。马克思曾说过:“一门科学只有成功地运用了数学,才能达到真正完善的境地。”作为一门基础科学,几乎所有的科学,包括化学,天文学,物理学,经济学等,都通过数学来提炼其严密的逻辑依据,并以数学的形式来表达自己的定律和公理等。比如:质能等价理论,爱因斯坦狭义相对 论的最重要的推论,2 E 。正因为数学来自现实世界,正确地反映了客观世界联系形 MC 式的一部分,所以它才能被应用,才能指导实践,甚至预见某些现象和规律。比如:1844年英国的亚当斯利用引力定律和对天王星的观察资料,在海王星还没有被天文望远镜观测到之前就通过数学方法成功推算出这颗未知行星的轨道,预测了它的存在。 其次,数学究竟有哪些特点呢?首先,数学具有高度的抽象性:它撇开了事物的具体内容,仅仅从抽象的数方面去进行研究。比如1+1这样简单的计算,它可能就是从一匹马加上一匹马是几匹马这样简单的问题抽象出来的,但是经过抽象以后,撇开具体的内容,它成为了一个规律。掌握了这个规律,那就不论是马,还是树或者其他任何事物都可以按这样的运算规律进行计算。其次,数学还具有准确性的特点。也即逻辑的严密性,结论的确定性。比如摆在眼前的一张桌子,你可以从颜色,质地,材料等方面来描绘它,但从数学的角度来看它,“1”张桌子就是真理,若是“2”张,甚至只是“1.0001”张,就是谬误了。最后,是应用的广泛性:这一点与数学的高度抽象性紧密相连,具体表现在一个数量关系,可以代表一切具有这样数量关系的实际问题。比如,经济学中的求解成本最小化和收益最大化的条件可以用同一个微分方程来表示,而抛去这个微分方程的具体意义不谈,又可以将它应用到其他经济学问题的解决中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性

数学与音乐

数学与音乐 难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗?──J.J.西尔威斯特 数学与音乐与计算是分不开的,人们想到数学,想到数学家,说到陈景润与“哥德巴赫猜想”,都会自然想到计算,甚至觉得数学家简单到只需一只笔和一堆纸就可以工作。那么,数学计算对于科学发展有多大意义呢?音乐也需要数学计算吗?若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。 有学者认为:西方音乐,在其发生之初便与数学有着不容忽视的血缘关系。这种血缘关系可以上溯到毕达哥拉斯时代,毕达哥拉斯认为“数”是世界万物的本源、根基。即使现有的音阶序列——五度音程或八度音程——也更多是出于推理而不完全是人耳分辨的纯粹“自然”的结果。也就是说音乐是社会的产物,与科技发展有着密切关系。人在成其为人之后,其发声不可能自然地形成五度或八度音程,最初的人的发声,同其他动物声音一样,是简单的。正如鲁迅所说,最早的音乐是“吭唷吭唷”派。由于推理和计算,形成了五度、八度音程,就西方来说,在最早的键盘乐器上得以体。在中国古代,则体现为多弦乐器上不同的弦及弦的不同部位或最早的打孔乐器不同的孔表示不同的音高。又由于西方音乐发展过程中逐渐把键盘乐器摆在“霸主”地位,这或许由于教堂管风琴的影响。使得键盘乐器同人声与弦乐器之间总存在着难以弥合的音差,比如键盘乐器就无法表达出弦乐器揉弦的声音。这给调音带来麻烦,于是不得不迁就钢琴,在有钢琴参与的演奏中,所有乐器的调音是以钢琴为准的。因为钢琴统领着一切乐器,是乐器之王,其形体也是个庞然大物。 键盘乐器每个音之间的音差,不是人耳自然分辨的结果,而是一种数学计算和推理。被小提琴大师梅纽因万分佩服的巴赫的赋格曲和平均律音阶,正是西方严肃音乐中所有基本逻辑和数学般严密的音响推理的集中体现。巴赫的48首十二平均律钢琴曲,实际上是数学计算得出的数据所显示的声音和谐,音乐的和谐与美感体现是的数字的和谐与美感。这种数学的或数字的关系,到勋伯格发展到了极端化——12音体系——也由听音乐产生美感转变为看乐谱看到美感,因而勋伯格的音乐也就排斥了普通人。乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似──不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。 除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的──事实上被拨弦的每一和谐组合可表示 成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C 的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=k x形式的

音乐中的数学

音乐中的数学 孙佳琛(04012605) (东南大学信息科学与工程学院) 摘要:当我们沉浸在美妙的音乐中时,你是否曾想到音乐与数学有着密切的联系。在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学。本文将围绕数学与音乐的历史渊源、数学与节拍的联系、数学与音乐的融合、大自然音乐中的数学等展开论述。 Abstract:When we are immersed in the wonderful music,did you ever think that music and mathematics are closely linked.With the rapid development of computer and information technology,music and math are more closely linked inmusic theory’music composition,music synthesis,electronic music production and so on.This article will focus on the history between Mathematics and music,contact with mathematics and beat, fusion of mathematics and music, Mathematics in the natural music. 关键词:音乐、数学、历史、节拍、融合 Keyword:Music,Mathematics,History,Beat,Fusion. 一、引言 《梁祝》优美动听的旋律,《十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲,田野中昆虫啁啾的鸣叫……这些美妙而看似普通的音乐实际上都与数学有着密不可分的联系。 从古至今,无论是在音符的音调上,亦或是在音乐的节拍上,都存在着十分巧妙的数学联系。 同样在音乐界,有一些数学素养很好的音乐家也为音乐的发展做出了重要的贡献。 二、数学与音乐的历史渊源 人们对数学与音乐之间联系的研究和认识可以说源远流长。 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来。故事可以追溯到这里,有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示

数学与音乐3

数学与音乐 数学是研究现实世界空间形式和数量关系的一门科学,符号体系的使用使数学具有高度的抽象性。而音乐则是研究现实世界音响形式及对其控制的艺术,它同样使用符号体系,是所有艺术中最抽象的艺术。从表面上看,音乐与数学是“绝缘”的,其实不然。那数学与音乐有什么关联吗?为了回答这个问题,有必要先来介绍一下“音乐数”。 声音是否悦耳动听,与琴弦的长短有关。弹琴时,手指在琴弦上移动,不断改变琴弦的长度,琴就会发出高低起伏、抑扬顿挫的声音。如果是三根弦同时发音,只有当它们的长度比是3∶4∶6时,声音才最和谐、最优美,于是人们便把3、4、6叫做“音乐数”。它是在2500年前由古希腊著名数学家毕达哥拉斯发现的。 有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示成整数比,按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C

的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。由此他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 数学与音乐的交响诗从此唱响,千百年来让无数人流连陶醉。比如:乐器之王——钢琴的键盘上,从一个C键到下一个C键就是音乐中的一个八度音程,其中共包括13个键,有8个白键和5个黑键,而5个黑键分成两组,一组有两个黑键,另一组有3个黑键,2、3、5、8、13恰好就是数学史上著名的斐波拉契数列中的前几个数。此外,乐谱的书写表现数学对音乐的影响也非常显著。在乐稿上,我们看到书写乐谱时确定每小节内的音符数,与求公分母的过程相似。作曲家创作的音乐在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体。 也正因为如此,研究音乐和数学的关系在西方一直是一个热门课题。现代作曲家巴托克、勋伯格、凯奇等人都对音乐与数学的结合进行过大胆的实验。希腊作曲家克赛纳基斯创立了“算法音乐”,以数学方法代替音乐思维,创作过程也即演算过程,作品名称类似于数学公式,如《S+/10-1.080262》为10件乐器而作,于1962年2月8日计算而得。马卡黑尔发展了施托克豪森的“图表音乐”的思想,以几何图形的轮转方式作出“几何音乐”。19世纪数学家约翰>傅里叶的

数学与音乐相融

数学与音乐的相融 千百年来,音乐和数学都被紧密的联系在一起。早在公元前500年的毕达哥拉斯时代,人们已经意识到乐音的和谐与否可以用其频率的数学关系来诠释。 在最近几十年,随着数学和计算机科学的发展,一种全新的音乐形式---MIDI音乐诞生了,越来越多的人再次注意到数学和音乐的完美融合。 本文从数学家毕达哥拉斯谈起,阐述了数学与音乐两个学科之间和谐关系,基于数理科学的音乐理论。同时,文章简单介绍了MIDI音乐的数学原理。 关键词:毕达哥拉斯十二平均律节拍MIDI音乐 Abstract: Music and mathematics always had a close relationship. Since Pythagoras it is known that harmony can be understood simply by the numerical relation of the frequencies. In the last years ,with the improvement of mathematics and computer science, a new field of music ,MIDI(Musical Instrument Digital Interface) boomed,they who are in an increasing number begun to focus on the intimate relationship of mathematics and music again. Keywords:Pythagoras,beat, Musical Instrument Digital Interface 一.音乐理论的鼻祖毕达哥拉斯 毕达哥拉斯是古希腊著名的数学家,公元前572年生于爱琴海中临近小亚细亚的萨摩斯岛,公元前500年卒于他林敦。毕达哥拉斯研究数学的目的并不在于实用,而是为了探索自然的奥秘,他以发现并证明勾股定理著称。 作为数学家,毕达哥拉斯可谓是功绩显赫,不过,他对音乐的贡献也不可低估。有传说,毕达哥拉斯经过一家铁匠铺,听到铁锤打击铁砧的声音,辨认出了四度、五度和八度三种和谐音,他猜想是由于铁锤重量的不同导致了声音的不同,并通过称量不同铁锤的重量确认了其间的关系。 毕达哥拉斯学派是最先用比率将音乐与数学联系起来的。他们发现谐声是由长度成整数比,绷得同样紧的弦发出的,整数比增加弦的长度,能产生整个音阶(音阶概念在下一部分详细阐述)。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 毕达哥拉斯将乐音与数字比例相对应,将一种抽象的感觉--声音的和谐----做了量化,率先建立了音乐理论基础的数学学说。从此,音乐和数学几乎是被注定的融合在了一起。

数学和音乐

数学和音乐 提起数学,很多人爱之恨之,一言难尽。数学总被人贴上严肃和枯燥的标签,其实任何事物都不能将其绝对化,数学也是如此,数学也有其美的一方面,只是缺少了发现数学美的眼睛。这里是我平时听歌时留意到的两首和数学有关的流行歌曲加上网上搜索的4首,大家看看数学和音乐的融合吧。 1.《哥德巴赫猜想》歌手:后弦专辑:古·玩 著名的歌德巴赫猜想和流行歌曲有关联吗,在这首歌中,两者之间被赋予了奇妙的联系,两个人一加一的感情复杂困惑,就算大师猜一辈子也没结果,《哥德巴赫猜》做了一次古典R&B的大胆尝试。歌曲以 一段十八世纪西方古典钢琴曲为开头,随即加入浓重R&B节奏,到高潮时甚至加入ng风格,做了一次新的尝试,过门和结尾出跳出的钢琴 吉他协奏,配上了戏曲腔调的吟唱,让整首歌曲充满了东西方大胆碰撞的火花。 歌词:歌德巴赫,沉思眉头紧锁 两个素数的和,一个假设,一七四二 数学方程传说,机关算尽怎么,难以突破? 简单复杂,两个人的几何, 推了又敲能有,什么结果,简单的谜 古今乐此不疲,算术大师的困惑

句句承诺,订下铁锁,信誓旦旦却又双双未果 哥德巴赫猜,猜不破情谜未来 哥德巴赫猜,三十六计走为上 哥德巴赫猜,脑袋半火一半海 哥德巴赫猜,他猜到头发已发白 多少,一加一的爱,哥德巴赫猜,有点无奈 算了,没结果也好,传说中真实的味道 2.《悲伤的双曲线》歌手:王渊超 很抒情的一首歌,旋律很美,包含了很多数学知识来表明两个人的所处的情况,也表明了人生的无奈,但愿人长久,千里共婵娟。 歌词: 如果我是双曲线,恩~你就是那渐近线 如果我是反比例函数,你就是那坐标轴 虽然我们有缘,能够生在同一个平面 然而我们又无缘,恩~慢慢长路无交点 为何看不见,等式成立要条件 难到正如书上说的,无限接近不能达到 如果我是双曲线,恩~你就是那渐近线 如果我是反比例函数,你就是那坐标轴 虽然我们有缘,能够生在同一个平面 然而我们又无缘,恩~慢慢长路无交点 为何看不见,等式成立要条件 难到正如书上说的,无限接近不能达到 为何看不见,明月也有阴晴圆缺

数学与音乐的交响诗

数学与音乐的交响诗 ——浅谈数学与音乐的联系 江苏江都国际学校初二(2)班绪梦莹 难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗? ——J.J.西尔威斯特 2500年前的一天,古希腊哲学家毕达哥拉斯外出散步,经过一家铁匠铺,发现里面传出的打铁声响,要比别的铁匠铺更加协调、悦耳。他走进铺子,量了量铁锤和铁砧的大小,发现了一个规律,音响的和谐与发声体体积的一定比例有关。 尔后,他又在琴弦上做试验,进一步发现只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1:2产生八度,2:3产生五度,3:4产生四度等等。他继而发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C 的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 就这样,毕达哥拉斯在世界上第一次发现了音乐和数学的联系。 数学与音乐的交响诗就此唱响。它是如此绚烂、磅礴,却又如一股涓涓细流,滋润着人们心中饥渴的田畴!没有琐碎的飞尘迷失自我,没有浅淡的风月撩人心神;只有抽象的符号撞击出的醉人声响,引无数人们在这儿留连,去揭开数学与音乐神秘的面纱。 千百年来,研究音乐和数学的关系在西方一直是一个热门的课题,从古希腊毕达哥拉斯学派到现代的宇宙学家和计算机科学家,都或多或少受到“整个宇宙即是声和数”的观念的影响,开普勒、伽利略、欧拉、傅里叶、哈代等人都潜心研究过音乐与数学的关系。数学与音乐相互交融的美与和谐,渗进西方人的全部精神生活,透入到一切艺术领域而成为西方艺术的一大特色。 19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。 数学是研究现实世界空间形式的数量关系的一门科学,它早已从一门计数的学问变成一门形式符号体系的学问。符号的使用使数学具有高度的抽象。而音乐则是研究现实世界音响形式及对其控制的艺术。它同样使用符号体系,是所有艺术中最抽象的艺术。表面看,音乐与数学是“绝缘”的,风马牛不相及,其实不然。 这里引用翁瑞霖教授的一段话:“数学是推理中的音乐,而音乐则是感觉中的数学。代表理性的数学,其规律、和谐与秩序所产生的美感,虽无声音之传递,但与音乐是根本相通的;而代表感性的音乐,其音强、音高、音色、节奏、旋律、曲式及风格,虽无明确之数字表达,但数学的踪影却处处可见”。 乐谱的书写是表现数学对音乐的影响的第一个显著的领域。且先不谈简谱最直观的数字化

小学数学与音乐数学故事新讲

小学数学与音乐数学故事新讲生活中出处充满数学的趣味,在这里济南奥数网小编为大家整理了一些小学生数学故事,希望济南的家长和孩子能在快乐中了解数学,爱上数学。 小学生数学故事:数学与音乐 音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,多情的音乐与冷酷的数学也有关系吗?我们的回答是肯定的。甚至可以说音乐与数学是相互渗透,互相促进的。 孔子说的六艺礼、乐、射、御、书、数,其中乐指音乐,数指数学。即孔子就已经把音乐与数学并列在一起。我国的七弦琴(即古琴)取弦长l,7/8,5/6,4/5,3/4,2/3,3/5,1/2,2/5,1/3,1/4.1/5,1/6,1/8得所渭的13个徽位,含纯率的1度至22度,非常自然,足很理想的弦乐器。我国著名古琴家查阜西早就指出,要学好古琴,必须对数学有一定素养。世界著名波兰作曲家和钢琴家肖邦很注意乐谱的数学规则、形式和结构,有位研究肖邦的专家称肖邦的乐谱具有乐谱语言的数学特征。 其实,任何一门学科都离不开死记硬背,关键是记忆有技 巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基

础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。 数学的抽象美,音乐的艺术美.经受了岁月的考验,相互的渗透。如今,有了数学分析和电脑的显示技术,眼睛也可辨别音律,成就是多么激动人心啊!对音乐美更深的奥秘至今还缺乏更合适的数学工具加以探究,还有待于音乐家和数学家今后的合作和努力。 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。 更多数学与音乐数学故事和其他相关复习资料,尽在查字典数学网!请大家及时关注! 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是

数学与音乐1

数学与音乐 贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系? 数学是研究现实世界空间形式和数量关系的一门科学,符号体系的使用使数学具有高度的抽象性。而音乐则是研究现实世界音响形式及对其控制的艺术,它同样使用符号体系,是所有艺术中最抽象的艺术。从表面上看,音乐与数学是“绝缘”的,其实不然。 人们对数学与音乐之间联系的研究和认识最早可以追溯到公元前六世纪(约2500年前)。 有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示成整数比,按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C 的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。由此他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生

了,而且在西方音乐界占据了统治地位。 在古代,音乐的发展就与数学紧密地联系在了一起。从那时起到现在,随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学。乐谱的书写离不开数学。 我们知道在钢琴的键盘上,从一个C 键到下一个C 键就是音乐中的一个八度音程。其中共包括13 个键,有8 个白键和5 个黑键,而5 个黑键分成2 组,一组有2 个黑键,一组有3 个黑键,2、 3、5、8、13 恰好就是著名的斐波那契数列中的前几个数。1、2、3、 4、5、6、7、i等音阶就是利用等比数列规定的。 音乐中的数学变换. 数学中存在着平移变换,音乐中也存在着平移变换。我们把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移,这实际上就是音乐中的反复。作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的。 十九世纪的著名的数学家约瑟夫.傅里叶(Joseph Fourier)证明了所有的乐声,不管是器乐还是声乐,都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等。

数学文化之探秘音乐与数学

2019数学文化之探秘音乐与数学数学文化博大精深,涉及到我们生活的各个方面。查字典数学网为大家推荐数学文化之探秘音乐与数学,希望大家认真品阅。 音乐与数学 动人的音乐常给人以美妙的感受。古人云:余音绕梁,三日不绝,这说的是唱得好,也有的人五音不全,唱不成调,这就是唱得不好了。同样是唱歌,甚至是唱同样的歌,给人的感觉却是迥然不同。其重要原因在于歌唱者发声振动频率不同。 人类很早就在实践中对声音是否和谐有了感受,但对谐和音的比较深入的了解只是在弦乐器出现以后,这是因为弦振动频率和弦的长度存在着简单的比例关系。近代数学已经得出弦振动的频率公式是?W?=?,这里,P是弦的材料的线密度;T是弦的张力,也就是张紧程度;L是弦长;W是频率,通常以每秒一次即赫兹为单位。 那么,决定音乐和谐的因素又是什么呢?人类经过长期的研究,发现它决定于两音的频率之比。两音频率之比越简单,两音的感觉效果越纯净、愉快与和谐。 首先,最简单之比是2:1。例如,一个音的频率是160、7赫兹,那么,与它相邻的协和音的频率应该是2×260、7赫兹,这就是高八度音。而与频率为2×260、7赫兹的音和谐

的次一个音是4×260、7赫兹。这样推导下去,我们可以得到下面一列和谐的音乐: 260、7,2×260、7,22×260、7…… 我们把它简记为C0,C1,C2,……,称为音名。 由于我们讨论的是音的比较,可暂时不管音的绝对高度(频率),因此又可将音乐简写为: C0C1C2C3…… 20212223…… 需要说明的是,在上面的音列中,不仅相邻的音是和谐的,而且C与C2,C与C3等等也都是和谐的。一般说来这些协和音频率之比是2M。(其中M是自然数) 这就是我们为大家整理的数学文化之探秘音乐与数学,有没有哪一条触动了你呢?

相关主题
文本预览
相关文档 最新文档