当前位置:文档之家› 基本不等式练习题及标准答案

基本不等式练习题及标准答案

基本不等式练习题及标准答案
基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测

1.(人教A 版教材习题改编)函数y =x +1

x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞)

D .(2,+∞)

2.下列不等式:①a 2+1>2a ;②a +b ab

≤2;③x 2+1

x 2+1≥1,其中正确的个数是

( ).

A .0

B .1

C .2

D .3

3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1

2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x +

1

x -2

(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1

t 的最小值为________.

考向一 利用基本不等式求最值

【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1

y 的最小值为________; (2)当x >0时,则f (x )=

2x

x 2+1

的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +

1

x -1

的最小值为________. (2)已知0<x <2

5,则y =2x -5x 2的最大值为________.

(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.

考向二 利用基本不等式证明不等式

【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab

c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1

c ≥9.

考向三 利用基本不等式解决恒成立问题

【例3】?(2010·山东)若对任意x >0,x

x 2+3x +1≤a 恒成立,则a 的取值范围是

________.

【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.

考向三 利用基本不等式解实际问题

【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )=

80

n +1

.若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式;

(2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1

ab +1

a (a -

b )

的最小值是( ).

A .1

B .2

C .3

D .4

双基自测

D .(2,+∞) 答案 C

2.解析 ①②不正确,③正确,x 2+

1x 2+1=(x 2

+1)+1x 2+1

-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1

2.答案 A

4.解析 当x >2时,x -2>0,f (x )=(x -2)+1

x -2+2≥2

(x -2)×1

x -2

+2

=4,当且仅当x -2=

1

x -2

(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.答案 C

5.解析 ∵t >0,∴y =t 2-4t +1t =t +

1

t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2

【例1】解析 (1)∵x >0,y >0,且2x +y =1,

∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2x

y 时,取等号. (2)∵x >0,∴f (x )=

2x x 2+1

=2x +1x

≤22=1,当且仅当x =

1

x ,即x =1时取等号.答案 (1)3+22 (2)1

【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+

1

x -1

+1≥2+1=3 当且仅当x =2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <2

5,∴5x <2,2-5x >0,∴5x (2-5x )≤?

????5x +2-5x 22

=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8

x =1, ∴x +y =(x +y )? ????8x +2y =10+8y x +2x y =10+2? ??

??

4y x +x y ≥10+2×2×

4y x ·x

y =18,

当且仅当4y x =x

y ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6, ∴当x =12,y =6时,x +y 取最小值18. 答案 (1)3 (2)1

5 (3)18

【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca

b ≥2 b

c a ·ca b =2c ;bc a +ab

c ≥2

bc a ·ab c =2b ;ca b +ab c ≥2

ca b ·ab c =2a .以上三式相加得:2

? ??

??

bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab

c ≥a +b +c .

【训练2】

证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c

b +a +b +

c c =3+b a +c a +a b +c b +a c +b c =3+

? ????b a +a b +? ????c a +a c +? ????

c b +b c ≥3+2+2+2=9,当且仅当a =b =c =1

3时,取等号.

解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =x

x 2+3x +1的最大值即

可,因为x >0,所以y =

x

x 2+3x +1

1x +1x +3≤12 x ·

1x

=1

5,当且仅当x =1时取等号,所以a 的取值范围是????

??

15,+∞答案

????

??15,+∞ 【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10

【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900? ????

x +16x +5

800(0<x ≤5),则y =900? ??

??

x +16x +5 800≥900×2

x ×

16

x

+5 800=13 000(元), 当且仅当x =16

x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低. 【训练3】 解 (1)第n 次投入后,产量为(10+n )万件,销售价格为100元,固定成本为

80

n +1

元,科技成本投入为100n 万元.所以,年利润为f (n )=(10+n )?

????100-80n +1-100n (n ∈N *).(2)由(1)知f (n )=(10+n )? ????100-80n +1-100n =1 000-80? ????n +1+9n +1≤520(万元).当且仅当n +1=9

n +1

即n =8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.

【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =? ??

??1a +2b (a +b )=1+2+b a +2a

b ≥3+2

b a ·2a

b =3+2 2.

当且仅当????

?

a +

b =1,b a =2a

b

,即???

a =2-1,

b =2-2

时,1a +2

b 的最小值为3+2 2. 【试一试】尝试解答] a 2

+1ab +1a (a -b )=a 2

-ab +ab +1ab +1a (a -b )=a (a -b )+

1a (a -b )

+ab +1

ab ≥2

a (a -

b )·1

a (a -

b )

+2

ab ·

1ab =2+2=4.当且仅当a (a -

b )=1a (a -b )

且ab =1

ab ,即a =2b 时,等号成立.答案 D

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

基本不等式练习题

不等式练习题 一、 基本题型 1、若0x >,求31y x x =--的最大值。 2、若22l g l g 2o x o y +=,求14x y +的最大值。 3、若lg 2lg 42x y +=,且0,0x y >>,求lg lg x y +的最大值。 4、若0,0a b >>,且142a b +=,求ab 的最小值。 5、若1x >,求11 y x x =+-的最小值。 6、若302 x <<,求()32y x x =-的最大值。 7、若52x <,求1225 y x x =+-的最大值。 8、求2 y = 9、求4sin sin y x x =+在()0,x π∈上的最小值。 10、若0,0x y >>,且3xy x y =++,求xy 的范围。 11、求()2801 x y x x +=≥+的最值。 12、0,0x y >>,且21x y +=,求41x y +的最小值。 13、0t >,求241t t y t -+=的最小值。 二、选择题 1、,a b R ∈且0ab >,则下列不等式不正确的是( ) .||A a b a b +>- .||||||B a b a b +<+ .||C a b ≤+ .2b a D a b +≥ 2、(),0,,1,22a b a b a b M ∈+∞+==+,则M 的整数部分是( ) .1A .2B .3C .4D 3、(),0,x y ∈+∞且()19a x y x y ??++≥ ???恒成立,则正实数a 的最小值为()

.2A .4B .6C .8D 4、 0,0a b >>则11a b ++() .2A B .4C .5D 5、 ,,1,1x y R a b ∈>>,若3,x y a b a b ==+=11x y +的最大值为() .2A 3.2B .1C 1.2D 6、 ()()1210f x x x x =+-<,则()f x 有() .A 最大值 .B 最小值 .C 增函数 .D 减函数 7、函数()21log 511y x x x ??=++> ?-??的最小值为() .3A - .3B .4C .4D - 8、 0,0a b >>3a 与3b 的等比中项,则11a b +的最小值为() .8A .4B .1C 1.4D 9、0,0,2a b a b ≥≥+=则() 1.2A a b ≤ 1.2B ab ≥ 2 2.2C a b +≥ 22.3D a b +≤ 10、若0,0x y >>且23x y +=则24x y +的最小值为() .A B C .4D 11、下列结论正确的是() 1 .01,l g 2 lg A x x x x >≠+≥当且 .2B x >≥ 1.22C x x ≥当时,+x 的最小值为 1.02,D x x x <<-无最大值

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

不等式高考真题汇编(含答案)

【2010 课标卷】设函数f(x)= 2x 4 1 (Ⅰ) 画出函数y=f(x) 的图像; (Ⅱ)若不等式f(x) ≤ax 的解集非空,求 a 的取值范围. 【答案】 【2011 课标卷】设函数 f ( x) x a 3x , 其中a 0。 (Ⅰ)当a 1时,求不等式 f (x) 3x 2 的解集 (Ⅱ)若不等式 f (x) 0的解集为x| x 1 ,求 a 的值。 解:(Ⅰ)当a 1时,f (x) 3x 2可化为| x 1| 2。 由此可得x 3或x 1。故不等式 f (x) 3x 2的解集为{ x | x 3或x 1} 。( Ⅱ) 由f (x) 0得:x a 3x 0 x a x a 此不等式化为不等式组x a x a 3x 0 或 x a a x 3x 0 即 a x 或 4 a a 2 a 因为 a 0,所以不等式组的解集为| x x 由题设可得 2 a 2 = 1,故a 2 1

【2012 课标卷】已知函数 f (x) x a x 2 (1)当a 3时,求不等式 f ( x) 3的解集; (2)若 f (x) x 4 的解集包含[1,2] ,求a 的取值范围。【解析】(1)当a 3时, f ( x) 3 x 3 x 2 3 x 2 3 x 2 x 3 或 2 x 3 或 3 x x 2 3 x 3 x 3 x 2 3 x 1或x 4 (2)原命题f (x) x 4 在[1,2] 上恒成立x a 2 x 4 x在[1,2] 上恒成立 2 x a 2 x在[1,2] 上恒成立 3 a 0 【2013 课标Ⅰ卷】已知函数 f (x) =|2x 1| | 2x a |, g(x) = x 3 . (Ⅰ)当 a =2 时,求不等式 f (x) <g( x) 的解集; (Ⅱ)设 a >-1, 且当x ∈[ a 2 , 1 2 ) 时, f (x) ≤g(x) , 求a 的取值范围. 【解析】当 a =-2 时,不等式 f (x) <g (x) 化为|2x 1| | 2x 2 | x 3 0 , 5x, x 1 2 设函数y =|2x 1| |2x 2 | x 3 ,y = 1 x 2, x 1 2 ,3x 6, x 1 其图像如图所示,从图像可知,当且仅当x (0,2) 时,y <0 ∴原不等式解集是{ x | 0 x 2} . a (Ⅱ)当x ∈[ , 2 ∴x a 2对x∈[ 1 2 ) 时, f (x) =1 a ,不等式 f (x) ≤g( x) 化为1 a x 3, 4 a 1 a ) 都成立,故, a 2,即a ≤ , 2 2 2 3 ∴a 的取值范围为(-1 ,4 3 ]. 【2013 课标Ⅱ卷】设a、b、c均为正数,且 a b c 1,证明:

基本不等式练习题及答案.doc

双基自测 1 1.( 人教 A 版教材习题改编 ) 函数 y = x + x ( x >0) 的值域为 ( ) . A .( -∞,- 2] ∪[2 ,+∞ ) B .(0 ,+∞) C .[2 ,+∞ ) D .(2 ,+∞) 2 a ;② a +b 2 + 2 1 ≥ ,其中正确的个数是 .下列不等式:① a + > ≤2;③ x 2 1 2 x 1 ab +1 ( ) . A .0 B .1 C .2 D .3 .若 a > ,b > ,且 a + 2 b - = ,则 ab 的最大值为 ( ) . 3 0 0 2 0 B .1 C .2 D . 4 . ·重庆 若函数 f x = x + 1 x > 在 x = a 处取最小值,则 a = . 4 (2011 ) ( ) x -2 ( 2) ( ) A .1+ 2 B .1+3 C .3 D .4 .已知 t > ,则函数 y = t 2- t + 1 5 0 t 的最小值为 ________. 考向一 利用基本不等式求最值 1 1 【例 1】?(1) 已知 x > 0, y > 0,且 2x +y =1,则 x +y 的最小值为 ________; x 2 (2) 当 x >0 时,则 f ( x) =x 2+1的最大值为 ________. 1 【训练 1】 (1) 已知 x >1,则 f ( x) = x + x - 1的最小值为 ________. 已知 <x 2 x - x 2 的最大值为 (2) < ,则 y = ________. 0 5 2 5 (3) 若 x ,y ∈ (0 ,+∞ 且 2 x + y - xy = ,则 x + y 的最小值为 . ) 8 0 ________ 考向二 利用基本不等式证明不等式 bc ca ab 【例 2】?已知 a >0, b > 0, c > 0,求证: a + b + c ≥a +b +c. .

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选 D.0040)1()1(|1||1|11 1 22

或③12 (21)(2)0 x x x ? ≤? ??--+-解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x << 7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和. (1)将y 表示成x 的函数; (2)要使y 的值不超过70,x 应该在什么范围内取值

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式练习题(带答案)(优.选)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

高考真题 选修 不等式选讲

选修4-5 不等式选讲 考点不等式选讲 1.(2017?新课标Ⅰ,23)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x ﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.1.(1)解:当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x= 的二次函数, g(x)=|x+1|+|x﹣1|= , 当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x= ,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g (x)的解集为(1,]; 当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2. 当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2. 综上所述,f(x)≥g(x)的解集为[﹣1,]; (2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在

[﹣1,1]恒成立,则只需,解得﹣1≤a≤1, 故a的取值范围是[﹣1,1]. 2.(2017?新课标Ⅱ,23)已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 2.证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥(+ )2=(a3+b3)2≥4, 当且仅当= ,即a=b=1时取等号, (Ⅱ)∵a3+b3=2, ∴(a+b)(a2﹣ab+b2)=2, ∴(a+b)[(a+b)2﹣3ab]=2, ∴(a+b)3﹣3ab(a+b)=2, ∴=ab, 由均值不等式可得:=ab≤()2, ∴(a+b)3﹣2≤ , ∴(a+b)3≤2, ∴a+b≤2,当且仅当a=b=1时等号成立. 3.(2017?新课标Ⅲ,23)已知函数f(x)=|x+1|﹣|x﹣2|.

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)2 2 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4 x <,求函数14245y x x =-+-的最大值. 练习2.函数 1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.39 32 B. 3942 C. 39 52 D. 39 2

基本不等式练习题(含答案)

基本不等式 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;② a + b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 , ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). ` A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. * 【训练1】 (1)已知x >1,则f (x )=x +1 x -1的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . 》

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. * 求证:1a +1b +1c ≥9. } 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. [ 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低 # (2010·四川)设a >b >0,则a 2+1 ab + 1 a a -b 的最小值是( ). A .1 B .2 C .3 D .4

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

不等式高考真题汇编(含答案)

【2010课标卷】设函数f(x)=241x -+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax 的解集非空,求a 的取值范围. 【答案】 【2011课标卷】设函数()3f x x a x =-+,其中0a >。 (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集 (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。 解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥。 由此可得 3x ≥或1x ≤-。故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-。 ( Ⅱ) 由()0f x ≤得: 30x a x -+≤ 此不等式化为不等式组30x a x a x ≥??-+≤?或30x a a x x ≤??-+≤? 即 4x a a x ≥???≤?? 或2x a a a ≤???≤-?? 因为0a >,所以不等式组的解集为{}|2a x x ≤- 由题设可得2a -= 1-,故2a =

【2012课标卷】 已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集; (2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。 【解析】(1)当3a =-时,()3323f x x x ≥?-+-≥ 2323x x x ≤???-+-≥?或23323x x x <??? , 其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0 ∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12 )时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2 a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 【2013课标Ⅱ卷】设a b c 、、均为正数,且1a b c ++=,证明:

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

相关主题
文本预览
相关文档 最新文档