当前位置:文档之家› 数学竞赛辅导托勒密定理一

数学竞赛辅导托勒密定理一

数学竞赛辅导托勒密定理一
数学竞赛辅导托勒密定理一

勒密定理 Ptolemy (约公元85年~165年),希腊数大天文学家,他的主要着作《天文集》被后人称为“伟大的数学书”。 托勒密定理 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和。 已知:四边形ABCD 内接于圆,如图,求证:AB·CD+BC·AD=AC·BD

证明:在∠BAD 内作∠BAE =∠CAD ,交BD 于E 。

因∠ABE=∠ACD ,所以△ABE ∽△ACD , 从而AB·CD =AC·BE ①;

易证△ADE ∽△ACB ,所以BC·AD=AC·DE ②;

①+②得AB·CD+BC·AD=AC·BD 。

托勒密定理的逆定理:如果凸四边形两组对边的积的和,等于两对角线的积,此四边形必内接于圆。

已知四边形ABCD 满足AB·CD+BC·AD=AC·BD , 求证:A 、B 、C 、D 四点共圆。

证明:构造相似三角形,即取点E ,使∠BCE =∠ACD ,且∠CBE =∠

CAD ,则△CBE ∽△CAD 。所以BC·AD=AC·BE ①;

又CD CA CE CB =,∠BCA =∠ECD ,所以△BCA ∽△ECD 。AB·CD =AC·DE ②;①+②得AB·CD+BC·AD=AC·(BE+DE )。显然有BE+DE≥DB 。

于是AB·CD+BC·AD≥AC·DB 。等号当且仅当E 在BD 上成立,结合已

知条件得到此时等号成立,这时∠CBD =∠CAD ,即A 、B 、C 、D 四点共圆。 托勒密定理的推广 托罗密不等式在四边形ABCD 中, 有AB·CD+AD·BC≥AC·BD. 并且当且仅当四边形内接于圆时,等式成立。

推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ?∠=?∠+?∠

推论2(四角定理) 四边形ABCD 内接于O e ,则

直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排序的四点,则AB CD BC AD AC BD ?+?=?

一、直接应用托勒密定理

例1如图,P 是正△ABC 外接圆的劣弧

上任一点(不与B 、C 重合),

求证:PA=PB +PC .

分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为

繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB ,

∵AB=BC=AC . ∴PA=PB+PC .

二、完善图形借助托勒密定理

例2证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 E B

D A A D C B E

证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.

由托勒密定理,有 AC ·BD=AB ·CD +AD ·BC . ①

又∵ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD .②

把②代人①,得AC 2=AB 2+BC 2.

例3如图,在△ABC 中,∠A 的平分线交外接∠圆于D ,连结BD ,

求证:AD ·BC=BD(AB +AC).

证明:连结CD ,依托勒密定理,有AD ·BC =AB ·CD +AC ·BD .

∵∠1=∠2,∴ BD=CD .

故 AD ·BC=AB ·BD +AC ·BD=BD(AB +AC).

三、构造图形借助托勒密定理

例4若a 、b 、x 、y 是实数,且a 2+b 2=1,x 2+y 2=1.求证:ax +by ≤1.

证明:如图作直径AB=1的圆,在AB 两边任作Rt △ACB 和Rt △ADB ,

使AC =a ,BC=b ,BD =x ,AD =y .

由勾股定理知a 、b 、x 、y 是满足题设条件的.

据托勒密定理,有AC ·BD +BC ·AD=AB ·CD .

∵CD ≤AB =1,∴ax +by ≤1.

四、巧变原式妙构图形,借助托勒密定理

例5已知a 、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B .

分析:将a 2=b(b +c)变形为a ·a=b ·b +bc ,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b ,两对角线为a ,一底边为c .

证明:如图,作△ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D ,连结BD 、

DC 、DA .∵AD=BC ,?

?ACD BDC =∴∠ABD=∠BAC . 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.

依托勒密定理,有BC ·AD=AB ·CD +BD ·AC .①

而已知a 2=b(b +c),即a ·a=b ·c +b 2. ②

∴∠BAC=2∠ABC .

五、巧变形妙引线借肋托勒密定理

例6在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,

分析:将结论变形为AC ·BC +AB ·BC=AB ·AC ,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.

如图,作△ABC 的外接圆,作弦BD=BC ,边结AD 、CD .

在圆内接四边形ADBC 中,由托勒密定理,

有AC ·BD +BC ·AD=AB ·CD

易证AB=AD ,CD=AC ,∴AC ·BC +BC ·AB=AB ·AC ,

作业

1.已知△ABC 中,∠B=2∠C 。求证:AC 2=AB 2+AB ·BC 。

2.证明:从圆周上一点到圆内接正方形的四个顶点的距离不可能都是有理数.

3.若a ≥b ≥c >0,且a <b +c ,解方程ax b x c c x b =-+-2222。

4.如图,圆O 外接于正方形ABCD ,P 为弧AD 上的任意一点,

求证PB PC PA +为定值。 O

C P

初中数学竞赛中常用重要定理

初中数学竞赛中常用重 要定理 Document number:WTWYT-WYWY-BTGTT-YTTYU-

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F 且D 、E 、F 三点共线,则 FB AF EA CE DC BD ??=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线 上 有点D 、E 、F ,且满足FB AF EA CE DC BD ??=1,则D 、E 、F 三点共线。 3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、 P 、 M ,则 1=??PA CP NC BN MB AM 4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的 边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。 5、 广勾股定理的两个推论: 推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2 222221a c b -+;m b =2 222221b c a -+;m c =2 222221c b a -+ 6、 三角形内、外角平分线定理: 内角平分线定理:如图:如果∠1=∠2,则有 AC AB DC BD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有 AC AB DC BD = 7、 托勒密定理:四边形ABCD 是圆内接四边形,则有 AB ·CD+AD ·BC=AC ·BD 8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线 AD 、BE 、CF 共点于P

分数运算的技巧——小学数学奥林匹克竞赛辅导讲座

小学数学奥林匹克竞赛辅导讲座——分数运算的技巧 分数的四则混合运算,与整数四则混合运算一样,按先乘除后加减有顺序进行,整数四则混合运算中的定律和性质,在分数运算中同样适用。但是,要提高分数运算的速度和正确率,除了掌握这些常规的运算法则外,我们还应该掌握一些特殊的运算技能和技巧,常用的分数运算技巧和方法,主要有凑整法、裂项法、约分法等。 【例1】计算2002× [分析]本题可以按照整数乘以分数的计算法则计算,但这样做很显然比较麻烦,可以根据题中数的特点,合理灵活地选择计算方法,把题目中的因数拆成两数和或两数差的形式。 [解]方法—:2002×=2002×(1-) =2002×1-2002× =2002-1 方法二:2002×=(2001+1)× =2001×+1× =2000 点评:在一些分数乘法计算中,可根据数字的特点,合理地把参加运算的数拆成两数和或两数差的形式,在拆数时要注意:一要使参加运算的数变形不变值,二要达到便于简化计算目的。 【例2】计算3×25+37.9×6

[分析]注意观察3和6,它们的和为10,但是,只有当分别与它们相乘的另一个因数相同时,才能运用乘法分配律来进行简算,因此不难想到把37.9分拆成25.4和12.5两部分。当12.5与6.4相乘时,又可以将6.4看成8×0.8,这样计算就简便多了。 [解]3×25+37.9+6 =3+25+(25.4+12.5)×6.4 =3.6×25.4+25.4×6.4+12.5×6.4 =(3.6+6.4)×25.4+12.5×8×0.8 =254+85 =334 点评:有时可以结合题中数字可以凑整的特点,来对数进行合理的分拆。 【例3】× [分析]可以发现181818,818181都是两位数连写三遍得到的六位数,所以分别有约数18与81,同样,218218和182182分别有约数218与182,所以先把各分子、分母写成乘积的形式,把相同因数约分后再计算。 [解]×=× = = 点评:本题所用的方法为约分法,可以把分子分母中相同的因数通过约分来化简运算。同样,如果分子分母含有相同的因式,也可把它直接约去进行化简。 【例4】计算++++……+

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.doczj.com/doc/0a18724036.html,/journal/pm https://https://www.doczj.com/doc/0a18724036.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

浙江省九年级数学竞赛辅导系列 讲座九 圆练习

数学竞赛辅导系列讲座九——圆 1、如图,已知P 是边长为a 的正方形ABCD 内一点,△PBC 是等边三角形,则△PAD 的外接圆半径是( ) A 、a B 、 2 a C 、 3 2 a D 、12 a 2、如图,在矩形ABCD 中,AB=3,BC=2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则Sin ∠CBE=( ) A 、63 B 、2 3 C 、1 3 D 、 1010 3、如图,圆心在原点,半径为2的圆内有一点P (22 ,22 ),过P 点作弦AB 与劣弧AB 组成一个弓形,则该弓形面积的最小值为( ) A 、π-1 B 、π-2 C 、4 3 π-1 D 、4 3 π- 3 4、如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴切与点Q ,与y 轴交于点M (0,2),N (0,8),则点P 的坐标是( ) A 、(5,3) B 、(3,5) C 、(5,4) D 、(4,5) 5、在底面直径是2,母线长为4的圆锥,若一只小虫子以点A 出发,绕侧面一周又回到点A ,则它爬行的最短路线长是( ) A 、2π B 、 4 2 C 、4 3 D 、5 6、如果一个三角形的面积和周长都被一直线所平分,则这条直线必经过这个三角形的( ) A 、内心 B 、外心 C 、重心 D 、垂心 7、如图,⊙O 与Rt △ABC 的斜边AB 切于点D ,与直角边AC 交于点E 且,DE ∥BC ,已知AE=2 2 ,AC=3 2 ,BC=6,则⊙O 的半径是( ) A 、3 B 、4 C 、4 3 D 、2 3 D A C P D E Y X A O P B y x N M O P Q

数学竞赛定理

欧拉小定理:同一三角形的垂心、重心、外心,九点圆圆心四点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半,九点圆圆心到垂心与重心距离相等。 欧拉大定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr 九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。 费尔马点:已知P 为锐角△ABC 内一点,当∠APB =∠BPC =∠CPA =120°时,PA +PB +PC 的值最小,这个点P 称为△ABC 的费尔马点。 海伦公式:在△ABC 中,边BC 、CA 、AB 的长分别为a 、b 、c ,若p = 21(a +b +c ),则△ABC 的面积S = ))()((c p b p a p p --- 塞瓦定理:在△ABC 中,过△ABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、AB 与点D 、E 、F ,则 1=??FB AF EA CE DC BD 密格尔定理:若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚定理:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点。 西姆松定理:已知P 为△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥ACPF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,这条直线叫做西摩松线。 笛沙格定理:已知在△ ABC 与△A'B'C'中,AA'、BB'、CC'三线相交于点O ,BC 与B'C'、CA 与C'A'、AB 与A'B'分别相交于点X 、Y 、Z ,则X 、Y 、Z 三点共线 摩莱三角形:在已知△ABC 三内角的三等分线中,分别与BC 、CA 、AB 相邻的每两线相

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理 《定理1》正弦定理 △ABC中,设外接圆半径为R,则 证明概要如图1-1,图1-2 过B作直径BA',则∠A'=∠A,∠BCA'=90°,故 即;同理可 得 当∠A为钝角时,可考虑其补角,π-A. 当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。 《定理2》余弦定理△ABC中,有关系 a2=b2+c2-2bccosA;(*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA;(**) c=acosB+bcosA. 证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面,则有 =(bcosA-c2)+(bsinθ)2即 a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。 《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线 于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。在△FBD、△CDE、△AEF中,由正弦定理,分别有

《定理4》塞瓦定理(Ceva) (塞瓦点) 设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则 证法简介 (Ⅰ)本题可利用梅内劳斯定理证明: (Ⅱ)也可以利用面积关系证明 同理 ④ ⑤ ③×④×⑤得 《定理5》塞瓦定理逆定理 在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。 证法简介 (Ⅰ)若AD∥BE(如图画5-1) 则 EA CE BD BC = 代入已知式:1=??FB AF BD BC DC BD 于是 CB DC FB AF = , 故 AD∥CF,从而AD∥BE∥CF (Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得 1='??B F AF EA CE DC BD 而已知1=??FB AF EA CE DC BD 可见FB AF B F F A ='' 则 FB AF AF B F F A F A +='+'' AB FB AF B F F A =+='+'ΘAF F A ='Θ 即F '即F ,可见命题成立 《定理6》斯特瓦尔特定理

《小学数学竞赛辅导》教学大纲

《小学数学竞赛辅导》教学大纲 课程编号:12307057 总学时: 14 课程学分:1 开课对象:小学教育专业本科学生 课程类别:专业任选课 课程英文译名:Tutorship of Mathematics Competition in Primary School 一、课程任务和目的 任务:使学生了解小学数学竞赛选手的选拔与培养的方式、途径和策略,了解小学数学竞赛题型,掌握小学数学竞赛题的解题规律,培养学生研究小学数学的兴趣,提高学生的解题能力和数学思维能力。 目的:小学数学竞赛辅导是为将来从事小学数学教学打下坚实基础。 二、课程教学内容与要求 (一)绪论(2学时) 教学要求:明确开设小学数学竞赛辅导课程的意义,教学的方式和要求,了解小学数学竞赛的内容,发展趋势,以及小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学重点:小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学难点:数学竞赛的题型 教学内容: 1.课程的意义 2.小学数学竞赛的教学内容,发展趋势 3.小学数学竞赛选手的选拔与培养的方式、途径和策略 4.小学数学竞赛的题型介绍 (二) 假设法问题(2学时) 教学要求:掌握假设法解题的方法、步骤,了解应用假设法解决的典型题型及基本解法。 教学重点:假设法解题的方法、步骤。 教学难点:假设法解题。 教学内容: 1.假设法解题的方法、步骤 2.鸡免同笼问题的解决方法及推广 3.分数应用题应用假设法解题举例 (三) 盈亏、还原问题(2学时)

教学要求:掌握盈亏、还原问题的类型,解法,介绍应用方程思想解决此类问题的方法及典型题的介绍。 教学重点:掌握盈亏、还原问题的类型,解法。 教学难点:确定类型 教学内容: 1.盈亏、还原问题的类型 2.盈亏、还原问题的解题思想、方法 3.典型题的介绍,应用方程思想解决的方法 (四)相遇和追及问题(2学时) 教学要求:掌握相遇和追及问题的类型,解法,以及变异问题。 教学难点:较难相遇与追及问题的解法。 教学重点:变异问题—追及问题在钟面上数学问题中的应用。 1.相遇和追及问题的类型,求解的方法 2.典型题的介绍 3.钟面上的数学问题 (五) 整除问题(2学时) 教学要求:深刻理解整除的概念、性质、数的整除特征,以及整除问题的具体应用实例。 教学重点:数的整除特征及其应用。 教学难点:数的整除特征。 教学内容: 1.整除的概念、性质 2.数的整除特征 3.整除问题的应用实例 4.典型题的介绍 (六) 工程问题(2学时) 教学要求:掌握工程问题的类型、计算公式,解法。 教学重点:工程问题的分数应用题。 教学难点:工程问题的分数应用题。 教学内容: 1.工程问题的类型 2.工程问题的计算公式、解法 3.工程问题的分数应用题 4.典型题的介绍 (七) 抽屉原理(2学时)

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

(推荐)高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. A B C D E F P

注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、 F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. A B C D F P D /

数学竞赛辅导讲座:高斯函数Word版

数学竞赛辅导讲座:高斯函数 知识、方法、技能 函数][x y =,称为高斯函数,又称取整函数. 它是数学竞赛热点之一. 定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -== 由][x 、}{x 的定义不难得到如下性质: (1)][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ (2)对任意实数x ,都有1}{0},{][<≤+=x x x x 且. (3)对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][. (4)][x y =是不减函数,即若21x x ≤则][][21x x ≤,其图像如图I -4-5-1; }{x y =是以1为周期的周期函数,如图I -4-5-2. 图Ⅰ—4—5—1 图Ⅰ—4—5—2 (5)}{}{];[][x n x x n n x =++=+.其中* ∈∈N n R x ,. (6)∑∑==∈≥+≥++≥+n i i i n i i R x x x y x y x x y x y x 1 1 ],[][ };{}{}{{];[][][ ;特别地,

].[][ b a n b na ≥ (7)][][][y x xy ?≥,其中+∈R y x ,;一般有∑∏=+=∈≥n i i i n i i R x x x 1 1 ],[][ ;特别地, *∈+∈≤N n R x x x n n ,],[][. (8)]] [[ ][n x n x =,其中*∈+∈N n R x ,. 【证明】(1)—(7)略. (8)令Z m m n x ∈=,][,则1+≤≤ m n x m ,因此,)1(+<≤m n x nm .由于nm , N m n ∈+)1(,则由(3)知,),1(][+<≤m n x nm 于是,.]] [[,1][m n x m n x m =+<≤故 证毕. 取整函数或高斯函数在初等数论中的应用是基于下面两个结论. 定理一:* ∈+∈N n R x ,,且1至x 之间的整数中,有][n x 个是n 的倍数. 【证明】因n n x x n n x n x n x n x ?+<≤?+<≤ )1]([][,1][][即,此式说明:不大于x 而是n 的倍数的正整数只有这n x ] [个: .][,,2,n n x n n ? 定理二:在n !中,质数p 的最高方次数是 .][][][)!(32 +++=p n p n p n n p 【证明】由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,…,n n ,1-各数中所含p 的方次数的总和.由定理一知,1,2,…,n 中有][p n 个p 的倍数,有][ 2p n 个p 2 的倍数,…,所以.][ ][)!(2 ++=p n p n n p 此定理说明:M p n n p ?=)!(!,其中M 不含p 的因数.例如,由于

初等数论中的几个重要定理高中数学竞赛

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模 的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。 从而对,使得; 若,,则,,故对于,有。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。 除外,别的数可两两配对,积除以余1。故。

定义:设为整系数多项式(),我们把含有的一组同余式 ()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为: 这里,,以及满足,(即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5:(拉格郎日定理)设是质数,是非负整数,多项式 是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。 定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。 以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

迎春杯数学竞赛指导讲座(一)

第一讲 速算与巧算(一) 我们已经学过四则运算的定律和性质等基础知识。这一讲主要介绍基本定律和性质在加减法中的灵活运用,以便提高计算的技能技巧。 一、运用加法运算定律巧算加法 1.直接利用补数巧算加法 如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。 如:28+52=80,49+51=100,936+64=1000。 其中,28和52互为补数;49和51互为补数;936和64互为补数。 在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。 例1 巧算下面各题: (1)42+39+58; (2)274+135+326+265。 解:(1)原式=(42+58)+39 =100+39=139 (2)原式=(274+326)+(135+265) =600+400=1000 2.间接利用补数巧算加法 如果两个加数没有互补关系,可以间接利用补数进行加法巧算。 例2 计算986+238。 解法1:原式=1000-14+238 =1000+238-14 =1238-14=1224 解法2:原式=986+300-62 =1286-62=1224 以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。 解法3:原式=(62+924)+238=924+(238+62) =924+300=1224 解法4:原式=986+(14+224) =(986+14)+224=1224 以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。所以可称为“拆分凑补法”。 3.相接近的若干数求和 下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。 例3 计算71+73+69+74+68+70+69。 解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。我们把这7个数都看作70,则变为7个70。如果多加了,就减去,少加了再加上,这样计算比较简便。 原式=70×7+(1+3-1+4-2+0-1) =490+4=494 二、利用减法性质巧算 1.从一个数里连续减去几个减数,可以从这个数里减去这几个减数的总和。用字母表示为: a-b-c-e=a-(b+c+e) 当连续减去的减数可以凑成整十、整百、整千时(即互为补数),可以先求出这几个减数的和。 例4 计算450-210-190。 解:原式=450-(210+190) =450-400=50 2.从一个数里减去几个数的和,可以从这个数里连续减去这几个数。用字母表示为: a-(b+c+e)=a-b-c-e

相关主题
文本预览
相关文档 最新文档