当前位置:文档之家› 高中数学竞赛平面几何中的几个重要定理

高中数学竞赛平面几何中的几个重要定理

高中数学竞赛平面几何中的几个重要定理
高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明

一、 塞瓦定理

1.塞瓦定理及其证明

定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三

条直线分别交?ABC 三边AB 、BC 、CA 于点D 、

E 、

F ,且D 、E 、F 三点均不是?ABC 的顶点,

则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC

S S AD DB S S ????==. 根据等比定理有

ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC

S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA

??=. A B C D

E

F P

注:在运用三角形的面积比时,要把握住两个三角形是“等高”

还是“等底”,这样就可以产生出“边之比”.

2.塞瓦定理的逆定理及其证明

定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、

F 均不是?ABC 的顶点,若1AD BE CF DB EC FA

??=,那么直线CD 、AE 、BF 三线共点.

证明:设直线AE 与直线BF 交于点P ,

直线CP 交AB 于点D /,则据塞瓦定理有

//1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA

??=,所以有/

/AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.

注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证.

A

B C D

E

F P D /

二、 梅涅劳斯定理

3.梅涅劳斯定理及其证明

定理:一条直线与?ABC 的三边AB 、BC 、CA 所在直线分别交于点

D 、

E 、

F ,且D 、E 、F 均不是?ABC 的顶点,则有 1AD BE CF DB EC FA

??=.

证明:如图,过点C 作AB 的平行线,交EF 于点G .

因为CG // AB ,所以CG CF AD FA

= ————(1) 因为CG // AB ,所以CG EC DB BE

= ————(2) 由(1)÷(2)可得DB BE CF AD EC FA

=?,即得1AD BE CF DB EC FA ??=. 注:添加的辅助线CG 是证明的关键“桥梁”,两次运用相似比得

出两个比例等式,再拆去“桥梁”(CG )使得命题顺利获证.

4.梅涅劳斯定理的逆定理及其证明

定理:在?ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线

上有一点F ,若1AD BE CF DB EC FA

??=, 那么,D 、E 、F 三点共线.

证明:设直线EF 交AB 于点D /,则据

梅涅劳斯定理有 //1AD BE CF D B EC FA

??=. 因为 1AD BE CF DB EC FA

??=,所以有/

/AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.

注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其

相似后面的规律.

三、 托勒密定理

5.托勒密定理及其证明

定理:凸四边形ABCD 是某圆的内接四边形,则有 AB ·CD + BC ·AD

= AC ·BD .

A B C

D E F D /

证明:设点M 是对角线AC 与BD 的交点,在线段BD 上找一点,

使得∠DAE =∠BAM .

因为∠ADB =∠ACB ,即∠ADE =∠ACB ,所以?ADE ∽?ACB ,即得

AD DE AC BC

=,即AD BC AC DE ?=? ————(1) 由于∠DAE =∠BAM ,所以∠DAM =∠BAE ,即∠DAC =∠BAE 。而∠ABD

=∠ACD ,即∠ABE =∠ACD ,所以?ABE ∽?ACD .即得 AB BE AC CD

=,即AB CD AC BE ?=? ————(2) 由(1)+(2)得

AD BC AB CD AC DE AC BE AC BD ?+?=?+?=?.

所以AB ·CD + BC ·AD = AC ·BD .

注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的

构造具有特点,不容易想到,需要认真分析题目并不断尝试.

6.托勒密定理的逆定理及其证明

定理:如果凸四边形ABCD 满足AB ×CD + BC ×AD = AC ×BD ,那

么A 、B 、C 、D 四点共圆.

证法1(同一法):

在凸四边形ABCD 内取一点E ,使得EAB DAC ∠=∠,

EBA DCA ∠=∠,则EAB ?∽DAC ?. 可得AB ×CD = BE ×AC ———(1)

且 AE AB

AD AC = ———(2) 则由DAE CAB ∠=∠及(2)可得DAE ?∽CAB ?.于是有

AD ×BC = DE ×AC ———(3)

由(1)+(3)可得 AB ×CD + BC ×AD = AC ×( BE + DE ).

据条件可得 BD = BE + DE ,则点E 在线段BD 上.则由

EBA DCA ∠=∠,得DBA DCA ∠=∠,这说明A 、B 、C 、D 四点共圆.

证法2(构造转移法)

延长DA 到A /,延长DB 到B /,使A 、B 、B /、A /四点共圆.延长DC 到C /,使得B 、C 、C /、B /四点共圆.(如

果能证明A /、B /、C /共线,则命题获证)

那么,据圆幂定理知A 、C 、C /、A

/四点也共圆. 因此,///A B A D AB BD =,

///B C C D BC BD =.

可得 //////AB A D BC C D A B B C BD

?+?+=. 另一方面,///A C A D AC CD =,即///AC A D A C CD

?=. 欲证//AB A D BC C D BD

?+?=/AC A D CD ?,即证 ///AB CD A D BC CD C D AC BD A D ??+??=??

//()BC CD C D AC BD AB CD A D ??=?-?. 据条件有 AC BD AB CD AD BC ?-?=?,所以需证

//BC CD C D AD BC A D ??=??,

即证

//CD C D AD A D ?=?,这是显然的.所以,//////A B B C A C +=,即A /、B /、C /共线.所以//A B B ∠与//BB C ∠互补.由于//A B B DAB ∠=∠,//BB C DCB ∠=∠,所以DAB ∠与DCB ∠互补,即A 、B 、C 、D 四点共圆.

7.托勒密定理的推广及其证明

定理:如果凸四边形ABCD 的四个顶点不在同一个圆上,那么就有 AB ×CD + BC ×AD > AC ×BD

证明:如图,在凸四边形ABCD 内取一点E ,

使得EAB DAC ∠=∠,EBA DCA ∠=∠,则EAB ?∽DAC ?.

可得AB ×CD = BE ×AC ————(1)

且 AE AB AD AC = ————(2)

则由DAE CAB ∠=∠及(2)可得DAE ?∽CAB ?.于是

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且 满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDC D

塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1= ? ? PA CP NC BN MB AM 塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1= ? ? PA CP NC BN MB AM , 则AN、BP、CM相交于一点. 【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F, 过D作DN∥CG交BG于N,△DGL及△FGM是正三角形. 求证:△LMN为正三角形. G C L M E D F N

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

初中数学竞赛辅导 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r=(s-a)(s-b)(s-c)ss为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有 AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有 n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1 初中竞赛需要,重要 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

欧拉( Euler )线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形 的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的 一半。 费尔马点: 已知 P 为锐角△ ABC内一点,当∠APB=∠ BPC=∠ CPA=120°时, PA +P B+PC的值最小,这个点 P 称为△ ABC的费尔马点。 海伦( Heron)公式: 塞瓦( Ceva)定理: 在△ ABC中,过△ ABC的顶点作相交于一点P 的直线,分别 交边 BC、CA、AB与点 D、E、F,则(BD/DC)·(CE/EA) ·(AF/FB) =1;其逆亦真。密格尔( Miquel )点:

若 AE、 AF、ED、 FB四条直线相交于 A、B、C、 D、E、F 六点, 构成四个三角形,它们是△ABF、△ AED、△ BCE、△ DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚( Gergonne)点 : △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则 AE、 BF、 CD三线共点,这个点称为葛尔刚点。 西摩松( Simson)线: 已知 P 为△ ABC外接圆周上任意一点, PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则 D、E、F 三点共线,这条直线叫做西摩松线。 黄金分割: 把一条线段 (AB) 分成两条线段,使其中较大的线段 (AC)是原线段(AB) 与较小线段 (BC)的比例中项,这样的分割称为黄金分割。 帕普斯( Pappus)定理: 已知点 A 、A 、A 在直线 l 1上,已知点 B 、B 、B 在直线 l 2 上, 123123 且 A1 B2与 A2 B 1交于点 X,A1B3与 A3B1交于点 Y,A2 B 3于 A3 B2交于 点 Z,则 X、Y、Z 三点共线。

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F ,且满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于 点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分 别交AB,CD于点E,F,交BC的延长线于点 O,P是以O为圆心,以OM为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F. 若BE:ED=2AC:DC,则∠ADB=∠FDC D

塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则 1=??PA CP NC BN MB AM 塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点.

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

九年级基础知识竞赛 班级 姓名 学号 1. 小数是无理数 2.2a = a m .a n = (a m ) n = a 0 = a p -= 3. 一个单项式中,所有字母的指数的 叫做这个单项式的次数。 4.因式分解的常用方法(1)提公因式法:ab-bc = (2)运用公式法: a 2 - b 2 = a 2-2ab+b 2 = 5、分式的分子和分母都乘以(或除以)同一个 的整式,分式的值不变。 分式的分子、分母与分式本身的符号,改变其中任何 个,分式的值不变。 6.一元二次方程)0(02≠=++a c bx ax 的求根公式:x= 7.一元二次方程)0(02≠=++a c bx ax 中根的判别式,通常用“?”来表示,即?= 8. 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么x 1+x 2= x 1x 2= 9.、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向 、不等式两边 都乘以(或除以)同一个正数,不等号的方向 、不等式两边都乘以(或除以)同一个负 数,不等号的方向 。 10.在一组数据,,,,21n x x x 这组数据的方差。通常用“2s ”表示,即2s = 11.点P(x,y)到x 轴的距离等于 ,点P(x,y)到y 轴的距离等于 ,点P(x,y)到原点的距离 等于 12.一般地,如果y= ,那么y 叫做x 的一次函数。y= ,y 叫做x 的正 比例函数。一次函数的图像都是 .一次函数有下列性质:(1)当k>0时,y 随x 的增 大而 (2)当k<0时,y 随x 的增大而 13、反比例函数中反比例系数的几何意义,过反比例函数)0(≠=k x k y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S= 。 14二次函数的解析式有三种形式:(1)一般式:y= (2)顶点式:y= (3)交点式:y= 15如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即 当x= 时y= 。 16一元二次方程中的ac 4b 2-=?,在二次函数中表示图像与x 轴是否有交点。当?>0时, 图像与x 轴有 交点;当?=0时,图像与x 轴有 交点;当?<0时,图像与x 轴 交点。 17、线段垂直平分线上的点和这条线段 相等。和一条线段 相 等的点,在这条线段的垂直平分线上。 18.角平分线上的点到这个角的 相等。到一个角的 相等的点在这个角 的平分线上。 19过一点 一条直线与已知直线垂直. 直线外一点与直线上各点连接的所有线段中, 最短。

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

几何篇 梅涅劳斯定理:当直线交三角形ABC三边所在直线BC、AC、A于点D、E、F时,(AF/FB)×(BD/DC)×(CE/EA)=1 以及逆定理:在三角形ABC三边所在直线上有三点D、E、F ,且(AF/FB)×(BD/DC)×(CE/EA)=1 ,那么D、E、F三点共线。 角元形式梅捏劳斯定理: (sin∠BAD/sin∠DAC)×(sin∠ACF/sin∠FCB)×(sin∠CBE/sin∠EBA)=1 塞瓦定理:指在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。 角元塞瓦定理:AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F, 如果(AF/FB)(BD/DC)(CE/EA)=1那么直线AD,BE,CF相交于同一点。”

正弦定理:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有: a/sinA=b/sinB=c/sinC=2R 余弦定理: ,在△ABC中,余弦定理可表示为: c2=a2+b2-2ab cosC a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB 托勒密定理:指圆内接凸四边形两对对边乘积的和等 于两条对角线的乘积。 三弦定理:由圆上一点引出三条弦,中间一弦与最大角 正弦的积等于其余每条弦与不相邻角正弦的积之和。用图表述;圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,根据《三弦定理》,有以下关系, ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。 西姆松定理:过三角形外接圆上异于三角形顶点的 任意一点作三边的垂线,则三垂足共线。(此线常称为西 姆松线) 斯特瓦尔特定理设已知△ABC及其底边上B、C两 点间的一点D,则有 AB2·DC+AC2·BD-AD2·BC=BC·DC·BD。

初二公式定理大全 1、单独的一个数或一个字母也是单项式。 2、单项式中的数字因数叫做这个单项式的系数。 3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、几个单项式的和叫做多项式。在多项式中,每个单向式叫做多项式的项,其中,不含字母的项叫做常数项。 5、一般地,多项式里次数最高的项的次数,就是这个多项式的次数。 6、单项式和多项式统称整式。 7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。 8、把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。 9、几个整式相加减,通常用括号把每个整式括起来,再用加减号连接:然后去括号,合并同类项。 10、幂的乘方,底数不变,指数相同。 11、同底数幂相乘,底数不变,指数相加。 12、幂的乘方,底数不变,指数相乘。 13、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 14、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在一个单向式里含有的字母,则连同它的指数作为积的因式。 15、单向式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 16、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 17、两个数的和与这两个数的差的积=这两个数的平方差。这个公式叫做(乘法的)平方差公式。 18、两数和(或差)的平方=它们的平方和,加(或减)它们积的2倍。这两个公式叫做(乘法的)完全平方公式。 19、添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。 20、同底数幂相加,底数不变,指数相减。 21、任何不等于0的数的0次幂都等于1. 22、单向式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 23、多项式除以单向式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 24、吧一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 25、ma+mb+mc,它的各项都有一个公共的因式m,我们把因式M叫做这个多项式各项的公因式。 由m(a+b+c)=ma+mb+mc,可得ma+mb+mc=m(a+b+c)

相关主题
文本预览
相关文档 最新文档