当前位置:文档之家› 高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)
高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题

在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.

添加平行线证题,一般有如下四种情况.

1、为了改变角的位置

大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.

例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使

∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形.

证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA.

在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC.

这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.

例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE.

证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知

∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.

2、欲“送”线段到当处

利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂

线,M 、N 、Q 为垂足.求证:PM +PN =PQ.

证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.

这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷.

3 、为了线段比的转化

由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.

∥=A D

B P Q

C 图1

P E D G A B F C 图2A N E B Q K G C D M F P 图3

例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP

AB +AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ ∥BC,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.

由BM 1=CM 2,可知BE +CE =M 1E +M 2E,

易知 AP AB =DE BE ,AQ AC =DE CE ,1

1AN AM =DE E M 1,22AN AM =DE E M 2. 则AP AB +AQ AC =DE

CE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP

AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.

例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA =∠EDA.

证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M.

显然,AN BD =KA KD =AM

DC .有BD ·AM =DC ·AN. (1) 由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BC

AN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ.

显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA =∠EDA.

这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.

4、为了线段相等的传递

当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.

例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.

如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=4

1(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME . 由BD =DC,可知ED =DN.有△BED ≌△CND. 于是,BE =NC.

显然,MD 为EN 的中垂线.有 EM =MN. 由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.

所以,AD 2=2

21??

? ??BC =41(AB 2+AC 2). 这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路.

A P

E D M 2M 1B Q N 1N 2图4图5M P A Q N

F B D C E K 图6A N C D

E B M

例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF. 证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.

易知DB 2=FB 2=AB ·HB,AD 2=AE 2=AG ·AB.

二式相减,得DB 2-AD 2=AB ·(HB -AG),或 (DB -AD )·AB =AB ·(HB -AG). 于是,DB -AD =HB -AG,或 DB -HB =AD -AG.

就是DH =GD.显然,EG ∥CD ∥FH.故CD 平分EF.

这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而得到G 、H 两点.证明很精彩.

经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.

如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的

直线.于是,有 BN DM =AN AM =NC ME ,即 BN DM =NC ME 或ME DM =NC

BN . 此式表明,DM =ME 的充要条件是 BN =NC. 利用平行线的这一性质

,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线

BD ∥EF,AC 的延长线交EF 于G.求证:EG =GF. 证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD ∥EF ,

可知MN ∥BD.易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC .

可得MC =CN. 所以,EG =GF. 例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K,求证:AK 平分BC. 证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF. 由OD ⊥BC,可知OK ⊥PQ. 由OF ⊥AB,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ.

由OE ⊥AC,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP. 显然,∠FKQ =∠EKP,可知∠FOQ =∠EOP.由OF =OE,可知Rt △OFQ ≌Rt △OEP. 则OQ =OP.于是,OK 为PQ 的中垂线,故 QK =KP.所以,AK 平分BC.

综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用. 练习题

1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN =∠CFN.

(提示:设P 为AC 的中点,易证PM =PN.)

2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC =45°,∠APC =60°.求∠ACB. (提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD ∽△PBA.答:75°)

3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.

(提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与

EMQD 面积相等.答:120cm 2)

A G D O H

B F

C E 图7图8A

D B N C

E M A B M E

F N D C

G O 图10

4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC.

(提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k 2.答:211k

) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于

F.求证:

DE AD =FB

CF .(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.) 6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c.求证:a

1+b 1=c 1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)

7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G.求证:FH =HG.

(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N.)

8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N.求证:OM =ON.

(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F.过O 作BP 的垂线,G 为垂足.AB ∥GF.)

第二讲 巧添辅助 妙解竞赛题

在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.

1、挖掘隐含的辅助圆解题

有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.

1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC,D 是底边BC 上一点,E 是线段AD 上一

点且∠BED =2∠CED =∠A.求证:BD =2CD. 分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平

分线,但因BE ≠ED,故不能直接证出BD =2CD.若延长AD 交△ABC 的外接圆于F,则可得EB =EF,从而获取. 证明:如图1,延长AD 与△ABC 的外接圆相交于点F,连结CF 与BF,则∠

BFA =∠BCA =∠ABC =∠AFC,即∠BFD =∠CFD.故BF:CF =BD:DC.

又∠BEF =∠BAC,∠BFE =∠BCA,从而∠FBE =∠ABC =∠ACB =∠BFE.

故EB =EF. 作∠BEF 的平分线交BF 于G,则BG =GF.

因∠GEF =2

1∠BEF =∠CEF,∠GFE =∠CFE,故△FEG ≌△FEC.从而GF =FC. 于是,BF =2CF.故BD =2CD. 1.2 利用四点共圆 例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D

A B G C D F

E 图1A B C

D

O

四点共圆,欲求sin ∠AOB,联想到托勒密定理,只须求出BC 、AD 即可.

解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P,则∠ADP =∠ABC =60°.

设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x)3x =2x(1+2x).解得AD =x =23-2,BC =2

1BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12. 又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =26

3615+. 例3 已知:如图3,AB =BC =CA =AD,AH ⊥CD 于H,CP ⊥BC,CP 交AH 于P.求证:△ABC 的面积S =4

3AP ·BD. 分析:因S △ABC =43BC 2=43AC ·BC,只须证AC ·BC =AP ·BD, 转化为证△APC ∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).

证明:记BD 与AH 交于点Q,则由AC =AD,AH ⊥CD 得∠ACQ =∠ADQ.又AB =AD,故∠ADQ =∠ABQ.

从而,∠ABQ =∠ACQ.可知A 、B 、C 、Q 四点共圆.

∵∠APC =90°+∠PCH =∠BCD,∠CBQ =∠CAQ,

∴△APC ∽△BCD. ∴AC ·BC =AP ·BD.于是,S =43AC ·BC =4

3AP ·BD. 2 、构造相关的辅助圆解题

有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.

2.1 联想圆的定义构造辅助圆

例4 如图4,四边形ABCD 中,AB ∥CD,AD =DC =DB =p,BC =q.求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利

用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.

∵AB ∥CD,∴BC =AE. 从而,BC =AE =q.在△ACE 中,∠CAE =90°,CE =2p,AE =q,故

AC =22AE CE -=224q p -.

2.2 联想直径的性质构造辅助圆 例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.

分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从

而可确定动点A 的范围,进而确定AD 的取值范围.

解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交

于两点B(-2,0)、C(4,0).

分别以BC 、DA 为直径作⊙D 、⊙E,则两圆与抛物线均交于两点 P (1-22,1)、Q (1+22

,1).

A 图3

B P

Q

D H C

A E D C

B 图4

可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有

3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9.

2.3 联想圆幂定理构造辅助圆

例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M,交AC 于N.求证:AB 2-AN 2=BM ·BN.

分析:因AB 2-AN 2=(AB +AN)(AB -AN)=BM ·BN,而由题设易知AM =AN,联想割线定理,构造辅助圆即可证得结论. 证明:如图6, ∵∠2+∠3=∠4+∠5=90°,

又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN.

以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN. 由割线定理有BM ·BN =BF ·BE =(AB +AE)(AB -AF)=(AB +AN)(AB -AN)=AB 2-AN 2, 即 AB 2-AN 2=BM ·BN.

例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP 2

+FQ 2=EF 2.

分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.

证明:如图7,作△BCE 的外接圆交EF 于G,连结CG. 因∠FDC =∠ABC =∠CGE,故F 、D 、C 、G 四点共圆.

由切割线定理,有EF 2=(EG +GF)·EF =EG ·EF +GF ·EF

=EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2. 2.4 联想托勒密定理构造辅助圆

例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D,连结AD 和BD,如图9所示. ∵∠A +∠A '=180°=∠A +∠D, ∠BCD =∠B =∠B ', ∴∠A '=∠D,∠B '=∠BCD. ∴△A 'B 'C '∽△DCB. 有

DC B A ''=CB C B ''=DB

C A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab . 又AB ∥DC,可知B

D =AC =b,BC =AD =a.从而,由托勒密定理,得

AD ·BC =AB ·DC +AC ·BD,即 a 2=c ·''a ac +b ·'

'a ab . 故aa '=bb '+cc '. 练习题 1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则

AC AB =DC BD . E

A N C D B

F M 12345图6(1)(2)图8A B C A'B'C'c a b a'c'b'A B C D a b b

c 图9

(提示:不妨设AB ≥AC,作△ADC 的外接圆交AB 于E,证△ABC ∽△DBE,从而AC AB =DE BD =DC

BD .) 2. 已知凸五边形ABCDE 中,∠BAE =3a,BC =CD =DE,∠BCD =∠CDE =180°-2a.求证:∠BAC =∠CAD =∠DAE.

(提示:由已知证明∠BCE =∠BDE =180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE.)

3. 在△ABC 中AB =BC,∠ABC =20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数.

(提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM =2

1∠BKM =10°,得∠AMC =30°.)

4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF,CE ⊥AE.求

证:AB ·AE +AD ·AF =AC 2.

(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割线

定理可证得结论.)

5. 如图11.已知⊙O 1和⊙O 2相交于A 、B,直线 CD 过A 交⊙O 1和⊙O 2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.求证:AC 2=AB ·AE.

(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F,证E 在⊙O 3上,得△ACE ≌△ADF,从而AE =AF,由相交弦定理即得结论.)

6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2. (提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC ∽△ABM 证AB ·AC =AN ·AM.)

7. 若正五边形ABCD E 的边长为a,对角线长为b,试证:a b -b

a =1. (提示:证

b 2=a 2+ab,联想托勒密定理作出五边形的外接圆即可证得.)

第三讲 点共线、线共点

在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

1、点共线的证明

点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n ≥4)点共线可转化为三点共线。

例1、如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD ,BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。证:连AK ,DG ,HB 。

由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形,其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。

例2 如图所示,菱形ABCD 中,∠A=120

°,O 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。 F D A E C

图10图11

证:如图,连AC ,DF ,DE 。因为M

O 上, 则∠AMC=60°=∠ABC=∠ACB ,

有△AMC ∽△ACF ,得CD

CF CA CF MA MC ==。 又因为∠AMC=BAC ,所以△AMC ∽△EAC ,得

AE AD AE AC MA MC ==。 所以AE

AD CD CF =,又∠BAD=∠BCD=120°,知△CFD ∽△ADE 。所以∠ADE=∠DFB 。因为AD ∥BC ,所以∠ADF=∠DFB=∠ADE ,于是F ,E ,D 三点共线。

例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。由Q 作该圆的两条切线QE 和QF ,切点分别为E ,F ;求证:P ,E ,F 三点共线。

证 :如图:连接PQ ,并在PQ 上取一点M ,使得B ,C ,M ,P 四点共圆,连CM ,PF 。设PF 与圆的另一交点为E ’,并作QG 丄PF ,垂足为G 。易如 QE 2=QM ·QP=QC ·QB ① ∠PMC=∠ABC=∠PDQ 。

从而C ,D ,Q ,M 四点共圆,于是PM ·PQ=PC ·PD ② 由①,②得PM ·PQ+QM ·PQ=PC ·PD+QC ·QB , 即PQ 2=QC ·QB+PC ·PD 。易知PD ·PC=PE ’·PF ,

又QF 2=QC ·QB ,有PE ’·PF+QF 2=PD ·PC+QC ·AB=PQ 2, 即PE ’·PF=PQ 2-QF 2。又PQ2-QF 2=PG 2-GF 2=(PG+GF)·(PG -

GF)=PF ·(PG -GF),从而PE ’=PG -GF=PG -GE ’,即GF=GE ’,故E ’与E 重合。

所以P ,E ,F 三点共线。

例4 以圆O 外一点P ,引圆的两条切线PA ,PB ,A ,B 为切点。割

线PCD 交圆O 于C ,D 。又由B 作CD 的平行线交圆O 于E 。若F 为CD 中点,求证:A ,F ,E 三点共线。 证:如图,连AF ,EF ,OA ,OB ,OP ,

BF ,OF ,延长FC 交BE 于G 。

易如OA 丄AP ,OB 丄BP ,OF 丄CP ,所以P ,A ,F ,O ,B

五点共圆,有∠AFP=∠AOP=∠POB=∠PFB 。

又因CD ∥BE ,所以有∠PFB=∠FBE ,∠EFD=∠FEB , 而FOG 为BE 的垂直平分线,故EF=FB

,∠FEB=∠EBF , 所以∠AFP=∠EFD ,A ,F ,E 三点共线。

2、线共点的证明 证明线共点可用有关定理(如三角形的3条高线交于一点),或

证明第3条直线通过另外两条直线的交点,也可转化成点

共线的问题给予证明。 例5 以△ABC 的两边AB ,AC 向外作正方形ABDE ,

ACFG 。△ABC 的高为AH 。求证:AH ,BF ,CD 交于一点。 证:如图。延长HA 到M ,使AM=BC 。连CM ,BM 。 设CM 与BF 交于点K 。

在△ACM 和△BCF 中,AC=CF ,AM=BC , ∠MAC+∠HAC=180°,∠HAC+∠HCA=90°,并且∠BCF=90°+∠HCA ,

因此∠BCF+∠HAC=180°∠MAC=∠BCF 。从而△MAC ≌△BCF ,∠ACM=∠CFB 。

所以∠MKF=∠KCF+∠KFC=∠KCF+∠MCF=90°,即 BF 丄MC 。

C E (E ')A B

D F P M Q G M

E D

B H

C F K

G A

同理CD 丄MB 。AH ,BF ,CD 为△MBC 的3条高线,故AH ,BF ,CD 三线交于一点。

例6 设P 为△ABC 内一点,∠APB -∠ACB=∠APC -∠ABC 。又设D ,E 分别是△APB 及△APC 的内心。证明:AP ,BD ,CE 交于一点。

证:如图,过P 向三边作垂线,垂足分别为R ,S ,T 。连RS ,ST ,RT ,设BD 交AP 于M ,CE 交AP 于N 。

易知P ,R ,A ,S ;P ,T ,B ,R ;P ,S ,C ,T 分别四点共 圆,则∠APB -∠ACB=∠PAC+∠PBC=∠PRS+∠PRT=∠SRT 。 同理,∠APC -∠ABC=∠RST ,由条件知∠SRT=∠RST ,所以RT=ST 。 又RT=PBsinB ,ST=PCsinC ,所以PBsinB=PCsinC ,那么

AC

PC AB PB =。 由角平分线定理知MP

AM PB AB PC AC NP AN ===。故M ,N 重合,即AP ,BD ,CE 交于一点。 例

O 1

与O 2外切于P 点,QR 为两圆的公切线,其中Q ,R

分别为O 1

O 2上的切点,过Q 且垂直于QO 2的直线与过R 且垂直于RO 1的直线交于点I ,IN 垂直于O 1O 2,垂足为N,IN 与QR 交于点M.证明:PM ,RO 1,QO 2三条直线交于一点。

证:如图,设RO 1与QO 2交于点O ,连MO ,PO 。 因为∠O 1QM=∠O 1NM=90°,所以Q ,O 1,N ,M 四点共圆,有∠QMI=

∠QO 1O 2。 而∠IQO 2=90°=∠RQO 1,所以∠IQM=∠O 2QO 1, 故△QIM ∽△QO 2O 1,得MI O O QM QO 211=同理可证MI

O O RM RO 212=。因此 21RO QO MR QM = ① 因为QO 1∥RO 2,所以有211RO QO OR O O = ②

由①,②得MO ∥QO 1。 又由于O 1P=O 1Q ,PO 2=RO 2,所以 2

1211PO P O RO Q O OR O O ==, 即OP ∥RO 2。从而MO ∥QO 1∥RO 2∥OP ,故M ,O ,P 三点共线,所以PM ,RO 1,QO 2三条直线相交于同一点。

3、 塞瓦定理、梅涅劳斯定理及其应用

定理1 (塞瓦(Ceva)定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点。若AP ,BQ ,CR 相交于一点M ,则 1=??RB AR QA CQ PC BP 。

证:如图,由三角形面积的性质,有 BMC AMC S S RB

AR

??=, AMC AMB S S PC BP ??=, AMB BMC S S QA CQ ??=.以上三式相乘,得1=??RB AR QA CQ PC BP

. 定理2 (定理1的逆定理

):

O 1O 2

N P I

Q R M

O

A R Q

B

P 设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 上的点。若1=??RB

AR QA CQ PC BP ,则AP ,BQ ,CR 交于一点。

证:如图,设AP 与BQ 交于M ,连CM ,交AB 于R ’。

由定理1有1''=??B R AR QA CQ PC BP . 而1=??RB AR QA CQ PC BP ,所以RB

AR B R AR =''. 于是R ’与R 重合,故AP ,BQ ,CR 交于一点。

定理3 (梅涅劳斯(Menelaus)定理):

一条不经过△ABC 任一顶点的直线和三角形三边BC ,CA ,AB(或它们的延长线)分别交于

P ,Q ,R ,则1=??RB

AR QA CQ PC BP 证:如图,由三角形面积的性质,有 BRP ARP S S RB

AR

??=, CPR BRP S S PC BP ??=, ARP CRP S S QA CQ ??=.将以上三式相乘,得1=??RB AR QA CQ PC BP

. 定理4 (定理3的逆定理):

设P ,Q ,R 分别是△ABC 的三边BC ,CA ,AB 或它们延长线上的3点。若

1=??RB

AR QA CQ PC BP ,则P ,Q ,R 三点共线。 定理4与定理2的证明方法类似。

塞瓦定理和梅涅劳斯定理在证明三线共点和三点共线以及与之有关的题目中有着广泛的应用。

例8 如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC=∠EAC 。

证:如图,连接BD 交AC 于H ,过点C 作AB 的平行线交AG 的延长线于I ,过点C 作AD 的平行线交AE 的延长线于J 。

对△BCD 用塞瓦定理,可得1=??EC

DE HD BH GB CG ① 因为AH 是∠BAD 的角平分线, 由角平分线定理知

AD AB HD BH =,代入①式1=??EC DE AD AB GB CG ② 因为CI ∥AB ,CJ ∥AD ,则AB CI GB CG =,CJ AD EC DE =。代入②式得1=??CJ AD AD AB AB CI .从而CI=CJ 。又由于∠ACI=180°-∠BAC=180°-∠DAC=∠ACJ ,

所以△ACI ≌△ACJ ,故∠IAC=∠JAC ,即∠GAC=∠EAC.

例9 ABCD 是一个平行四边形,E 是AB 上的一点,F 为CD 上

的一点。AF 交ED 于G ,EC 交FB 于H 。连接线段GH 并延长交

AD 于L ,交BC 于M 。求证:DL=BM. H

C

A D

B

G I J

E F

G A E B

J L

M H

证:如图,设直线LM 与BA 的延长线交于点J ,与DC 的延长线交于点I 。

在△ECD 与△FAB 中分别使用梅涅劳斯定理,得

1=??HE CH IC DI GD EG , 1=??JA

BJ HB FH GF AG . 因为AB ∥CD ,所以GF AG GD EG =, HB FH HE CH =.从而JA

BJ IC DI =,即=+CI CI CD AJ AJ AB +,故CI=AJ. 而LA DL AJ DI CI BJ MC BM ===, 且BM+MC=BC=AD=AL+LD. 所以BM=DL 。

例10 在直线l 的一侧画一个半圆T ,C ,D 是T 上的两点,T 上过C 和D 的切线分别交l 于B 和A ,半圆的圆心在线段BA 上,E 是线段AC 和BD 的交点,F 是l 上的点,EF 垂直l 。求证:EF 平分∠CFD 。

证:如图,设AD 与BC 相交于点P ,用O 表示半圆T 的圆

心。过P 作PH 丄l 于H ,连OD ,OC ,OP 。

由题意知Rt △OAD ∽Rt △PAH ,于是有DO

HP AD AH =. 类似地,Rt △OCB ∽Rt △PHB , 则有CO

HP BC BH =. 由CO=DO ,有BC BH AD AH =,从而1=??DA PD CP BC HB AH . 由塞瓦定理的逆定理知三条直线AC ,BD ,PH 相交于一点,即E 在PH 上,点H 与F 重合。 因∠ODP=∠OCP=90°,所以O ,D ,C ,P 四点共圆,直径为OP.

又∠PFC=90°,从而推得点F 也在这个圆上,因此∠DFP=∠

DOP=∠COP=∠CFP ,所以EF 平分∠CFD 。

例11 如图,四边形ABCD 内接于圆,AB ,DC 延长线交于E ,

AD 、BC 延长线交于F ,P 为圆上任意一点,PE ,PF 分别交圆于

R ,S. 若对角线AC 与BD 相交于T. 求证:R ,T ,S 三点共

线。

先证两个引理。

引理1:A 1B 1C 1D 1E 1F 1为圆内接六边形,若A 1D 1,B 1E 1,C 1F 1交于一点,则有11

11111111111=??A F F E E D D C C B B A .如图,设A 1D 1,B 1E 1,C 1F 1交于点O ,根据圆内接多边形的性质易知

△ OA 1B 1∽△OE 1D 1,△OB 1C 1∽△OF 1E 1,△OC 1D 1∽△OA 1F 1,从而有 O D O B E D B A 111111=, O B O F C B F E 111111=,O

F O D A F D C 111111=.将上面三式相乘即得1111111111111=??A F F E E D D C C B B A , 引理2:

圆内接六边形A 1B 1C 1D 1E 1F 1,若满足11

11111111111=??A F F E E D D C C B B A 则其三条对角线A 1D 1,B 1E 1,C 1F 1交于一点。

该引理与定理2的证明方法类似,留给读者。

例11之证明如图,连接PD ,AS ,RC ,BR ,AP ,SD.由△EBR ∽△

EPA ,△FDS ∽△FPA ,知 D l

A B O F(H)E C P E B R C T A P S D F

B A 1O

C D 11

1

EP EB PA BR =,FD FP DS PA =.两式相乘,得FD

EP FP EB DS BR ??=. ① 又由△ECR ∽△EPD ,△FPD ∽△FAS ,知EP EC PD CR =,FA

FP AS PD =. 两式相乘,得FA

EP FP EC AS CR ??= ② 由①,②得FD EC FA EB CR DS AS BR ??=??. 故=??AB SA DS CD RC BR CE

DC FD AF BA EB ??. ③ 对△EAD 应用梅涅劳斯定理,有1=??CE

DC FD AF BA EB ④ 由③④得1=??AB

SA DS CD RC BR .由引理2知BD ,RS ,AC 交于一点,所以R ,T ,S 三点共线。

练 习

A 组

1. 由矩形ABCD 的外接圆上任意一点M 向它的两对边引垂线MQ 和MP ,向另两边延长线引垂线MR ,MT 。证明:PR 与QT 垂直,且它们的交点在矩形的一条对角线上。

2. 在△ABC 的BC 边上任取一点P ,作PD ∥AC ,PE ∥AB ,PD ,PE 和以AB ,AC 为直径而在三角形外侧所作的半圆的交点分别为D ,E 。求证:D ,A ,E 三点共线。

3. 一个圆和等腰三角形ABC 的两腰相切,切点是D ,E ,又和△ABC 的外接圆相切于F 。求证:△ABC 的内心G 和D ,E 在一条直线上。

4. 设四边形ABCD 为等腰梯形,把△ABC 绕点C 旋转某一角度变成△A ’B ’C ’。证明:线段A ’D, BC 和B ’C 的中点在一条直线上。

5. 四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P 。设三角形ABP ,BCP ,CDP 和DAP 的外接圆圆心分别是O 1,O 2,O 3,O 4。求证:OP ,O 1O 3,O 2O 4三直线交于一点。

6. 求证:过圆内接四边形各边的中点向对边所作的4条垂线交于一点。

7. △ABC 为锐角三角形,AH 为BC 边上的高,以AH 为直径的圆分别交AB ,AC 于M ,N ;M ,N 与A 不同。过A 作直线l A 垂直于MN 。类似地作出直线l B 与l C 。证明:直线l A ,l B ,l C 共点。

8. 以△ABC 的边BC ,CA ,AB 向外作正方形,A 1,B 1,C 1是正方形的边BC ,CA ,AB 的对边的中点。求证:直线AA 1,BB 1,CC 1相交于一点。

B 组

9. 设A 1,B 1,C 1是直线l 1上的任意三点,A 2,B 2,C 2是另一条直线l 2上的任意三点,A 1B 2和B 1A 2交于L ,A 1C 2和A 2C 1交于M ,B 1C 2和B 2C 1交于N 。求证:L ,M ,N 三点共线。

10. 在△ABC ,△A ’B ’C ’中,连接AA ’,BB ’,CC ’,使这3条直线交于一点S 。求证:AB 与A ’B ’、BC 与B ’C ’、CA 与C ’A ’的交点F ,D ,E 在同一条直线上(笛沙格定理)。

11. 设圆内接六边形ABCDEF 的对边延长线相交于三点P ,Q ,R ,则这三点在一条直线上(帕斯卡定理)。

第四讲 四点共圆问题

“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.

判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.

1、“四点共圆”作为证题目的

例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆.

(第19届美国数学奥林匹克) 分析:设PQ ,MN 交于K 点,连接AP ,AM. 欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′)

或MC ′2-KC ′2=PB ′2-KB ′2 . ① 不难证明 AP=AM ,从而有AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2 =(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②

由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△

OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2,O 3四点共圆. (第27届莫斯科数学奥林匹克) 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA.观察△OBC 及其外接圆,立得∠OO 2O 1=

21∠OO 2B=∠OCB.观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A=∠OCA.由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.

2、以“四点共圆”作为解题手段

这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.

(1)证角相等

例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK.求证:∠DMA =∠CKB.(第二届袓冲之杯初中竞赛) 分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK.

∵∠DAB+∠ADC =180°,∴∠CMK+∠KDC =180°.

故C ,D ,K ,M 四点共圆?∠CMD =∠DKC.

但已证∠AMB =∠BKA ,∴∠DMA =∠CKB. (2)证线垂直 例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N(K 与N 不同).△ABC

外接圆和△BKN 外接圆相交于B 和M.求证:∠BMO=90°.

(第26届IMO 第五题) 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,

只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G.易得∠GMC=∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+∠BMK=180°-∠CMK , ∴∠COK+∠CMK=180°?C ,O ,K ,M 四点共圆.

在这个圆中,由OC=OK ? OC=OK ?∠OMC=∠OMK.但∠GMC=∠BMK ,故∠BMO=90°.

(3)判断图形形状

例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题) A B C K M N P Q B ′C ′A B C

O O O O 1

23

??A B C D K M ··A B O K N C M G I

A B C D E F K G ······分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B=90° +21∠ADB=90°+2

1∠ACB=∠AI D B ?A ,B ,I D ,I C 四点共圆. 同理,A ,D ,I B ,I C 四点共圆.此时

∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-2

1∠ADC , ∴∠AI C I D +∠AI C I B =360°-21(∠ABC+∠ADC)=360°-21×180°=270°.故∠I B I C I D =90°.

同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算 例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一

点,且∠OPB=45°,PA:PB=5:14.则PB=__________(1989,全国初中联赛)

分析:答案是PB=42㎝.怎样得到的呢?连接OA ,OB.易知O ,P ,A ,B 四点共圆,有∠APB=∠AOB=90°. 故PA 2+PB 2=AB 2=1989.由于PA:PB=5:14,可求PB.

(5)其他

例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论

断).(1978,全国高中联赛)

分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上.

作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆?

∠KDE=∠KGE=60°.同理,∠KAE=60°.故△KAD 也是一个正三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S=4

3也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S=23-3也最大.

例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q.求证:RS >MQ.(1991,江苏省初中竞赛)

分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR=∠MPR=∠SPQ=∠SNQ.

根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称?MQ ′=MQ.

又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS=90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ=MQ ′,所以,RS >MQ.

练习题

1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2

四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)

2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.

·

·

P O A B C

D

(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.)

3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.

4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD.

(提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)

5.AD ,BE ,CF 是锐角△ABC 的三条高.从A 引EF 的垂线l 1,从B 引FD 的垂线l 2,从C 引DE 的垂线l 3.求证:l 1,l 2,l 3三线共点.(提示:过B 作AB 的垂线交l 1于K ,证:A ,B ,K ,C 四点共圆)

第五讲 三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N.作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP=MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点

N 是△P ′PC 的外心.有 ∠BP ′P=21∠BMP=21∠BAC , ∠PP ′C=21∠PNC=21∠BAC. ∴∠BP ′C=∠BP ′P+∠P ′PC=∠BAC. 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上.

由于P ′P 平分∠BP ′C ,显然还有 P ′B:P ′C=BP:PC.

例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S.证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)

分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S=2∠A , ∠QO 2P=2∠B ,∠SO 3Q=2∠C. ∴∠PO 1S+∠QO 2P+∠SO 3Q=360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360° 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.

∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S+∠SO 1K)=21(∠O 2O 1S+∠PO 1O 2)=2

1∠PO 1S=∠A ; 同理有∠O 1O 2O 3=∠B.故△O 1O 2O 3∽△ABC.

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的

和.(第26届莫斯科数学奥林匹克) 分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′,D ′,E ′,F ′. A

B C P P M N 'A B C Q K P O O O ....S 123A A 'F F 'G E E 'D 'C 'P

C B D

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中数学竞赛专题讲座:三角函数与向量

高中数学竞赛专题讲座:三角函数与向量 一、三角函数部分 1.(集训试题)在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且 A C , A B sin sin 都是方程log b x=log b (4x-4)的根,则△ABC (B ) A .是等腰三角形,但不是直角三角形 B .是直角三角形,但不是等腰三角形 C .是等腰直角三角形 D .不是等腰三角形,也不是直角三角形 解:由log b x=log b (4x-4)得:x 2-4x+4=0,所以x 1=x 2=2,故C=2A ,sinB=2sinA , 因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A ,∴3sinA-4sin 3A=2sinA , ∵sinA(1-4sin 2A)=0,又sinA ≠0,所以sin 2A= 41,而sinA>0,∴sinA=2 1. 因此A=30°,B=90°,C=60°。故选B 。 2.(2006吉林预赛)已知函数y=sinx+acosx 的图象关于x=5π/3对称,则函数y=asinx+cosx 的图象的一条对称轴是(C ) A .x=π/3 B .x=2π/3 C .x=11π/6 D .x=π 3.2006年南昌市)若三角形的三条高线长分别为12,15,20,则此三角形的形状为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不确定 4.(2006年南昌市)若sin tan a θθ=+,cos cot b θθ=+,则以下诸式中错误的是( B ) A .sin θ= 11+-b ab B .cos θ=1 1+-a ab C .tan cot θθ+=) 1)(1(21)1(2++-+++b a ab b a D .tan cot θθ-=)1)(1()2)((++++-b a b a b a 5.(2006安徽初赛)已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间, ∠DCE = 45°,则以AD 、DE 、EB 为边长构成的三角形的最大角是 ( ) A .锐角 B .钝角 C .直角 D .不能确定 6.(2006陕西赛区预赛)若3 3sin cos cos sin ,02θθθθθπ-≥-≤<,则角θ的取值范围是(C) A .[0, ]4 π B .[,]4 ππ C .5[, ]4 4ππ D .3[,)42 ππ 7.(2006年江苏)在△ABC 中,1tan 2A =,310 cos 10 B =.若△AB C 的最长边为1,则最短边的长为 ( D ) A .455 B .355 C .255 D .5 5 8.(2005年浙江)设2)(1=x f ,x x x f 2cos sin )(2+=,x x x f 2cos 2 sin )(3+=,24sin )(x x f =,上述函数中,周期函数的个数是( B ) A .1 B .2 C .3 D .4 【解】: 2)(1= x f 是以任何正实数为周期的周期函数;)(2x f 不是周期函数。 因为x sin 是以π21=T 为周期 的周期函数, x 2cos 是以222π =T 为周期的周期函数, 而1T 与2T 之比不是有理数,故)(2x f 不是周期函数。 )(3x f 不是周期函数。 因为2sin x 是以π221=T 为周期的周期函数, x 2cos 是以2 22π =T 为周期的周期函数,

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

高中数学竞赛专题讲座数列

高中数学竞赛专题试题讲座——数列 一、选择题部分 1.(2006年江苏)已知数列{}n a 的通项公式2 2 45 n a n n =-+,则{}n a 的最大项是( B ) ()A 1a ()B 2a ()C 3a ()D 4a 2(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( ) A 、98 B 、99 C 、100 D 、101 3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A ) A. 2007 B. 2008 C. 2006 D. 1004 4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125 1 的最小整数n 是 ( ) A .5 B .6 C .7 D .8 解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为- 3 1 的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)= 3 11] )31 (1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1 >250,∴满足条件的最小整数n=7,故选C 。 5.(集训试题)给定数列{x n },x 1=1,且x n+1= n n x x -+313,则 ∑=2005 1 n n x = ( ) A .1 B .-1 C .2+3 D .-2+3 解:x n+1= n n x x 3 3 133 - +,令x n =tan αn ,∴x n+1=tan(αn +6 π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3, x 6=2-3, x 7=1,……,∴有 ∑===2005 1 11n n x x 。故选A 。 6、(2006陕西赛区预赛)已知数列{}{}n n a b 、 的前n 项和分别为n A ,n B 记

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

高中数学竞赛专题讲座---复数

复 数 专题一 复数与数列 复数数列的题目主要体现对复数运算的规律性的把握. 例1 设数列 ,,,,21n z z z 是首项为48,公比为)26(4 1 i +的等比复数列. (1)求4z . (2)将这个数列中的实数项,不改变原来的次序,从首项开始,排成 ,,,,21n a a a ,试求3a . (3)求无穷级数 ++++n a a a 21的和. 解:(1))6sin 6(cos 2 1)26(41ππi i r +=+= .i r z 2124834==. (2)使r 为实数的最小自然数是6,数列 ,,,,21n a a a 是首项为48,公比为6 r 的等比数列.所以 4 3 3= a . (3)这个级数是公比8 1 6 - ==r 的无穷等比级数,从而和3 128 ) 8 1(148= --=. 例2 今定义复数列 ,,,,21n a a a 如下,n n ka a a i a i a +=+=+=+1121,31,1()2≥n ,k 为正的常数.问复数n a 的辐角的正切与哪一个值最接近?(当∞→n 时) 分析:寻求n a 的一般式,再注意取极限的方法以及相关讨论. 解:1+n a 的辐角记作θ,212111)1(a k k k a ka a a n n n n --+++++=+= . (1)当1=k 时,i n n a a n a n )31()1(211+-+=+-=+,所以)(13 1tan ∞→→+-=n n n θ. (2)当1≠k 时,21111 1)1(a k k k a a n n n --++--=k k k k k n n n ---++ --=-13)13(1111 ∴)()10(1)1(1 3313)13(1tan 1∞→?? ? ??<<>+-→---+=-n k k k k k k k n n n θ. 例3 (1)设在复数列 ,,,,10n z z z 之间有如下关系:),3,2,1)((11 =-=--+n z z z z n n n n α,其中)1(≠αα是常复数.当1,010==z z 时,试将n z 的值用α表示. (2)若(1)中的i 31+=α,求在圆10||=z (z 是复数)的内部总共含有n z 的个数. 解:(1)αα=-=-)(0112z z z z ,2 1223)(αα=-=-z z z z (1) 211)(----=-=-n n n n n z z z z α α 于是,从1≠α得,α α--=11n n z .

高中数学竞赛讲义-同余

§27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:)(mod m a a ≡; 2).对称性:)(mod )(mod m a b m b a ≡?≡; 3).若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡; 4).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ±≡± 特别是)(mod )(mod m k b k a m b a ±≡±?≡; 5).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡; 特别是)(m od ),(m od m bk ak Z k m b a ≡?∈≡则 )(m od ),(m od m b a N n m b a n n ≡?∈≡则; 6).)(mod )(m ac ab c b a +≡+; 7).若)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当 )(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当; 8).若)(m o d 1m b a ≡, )(m od 2m b a ≡ )(mod 3m b a ≡ ……………… )(mod n m b a ≡,且)(m od ],,[21M b a m m m M n ≡??=,则 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数0≥k ,1532 6161 6+++++k k k 能被7整除;

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

相关主题
文本预览
相关文档 最新文档