当前位置:文档之家› ABAQUS减少计算时间

ABAQUS减少计算时间

ABAQUS减少计算时间
ABAQUS减少计算时间

ABAQUS/Standard与ABAQUS/Explicit各自的适用范围

ABAQUS/Explicit如何降低计算时间

对于光滑的非线性问题,ABAQUS/Standard更有效,而ABAQUS/Explicit适于求解复杂的非线性动力学问题,特别是用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题。

有些复杂的接触问题(例如模拟成形),使用ABAQUS/Standard要进行大量的迭代,甚至可能难以收敛,而使用ABAQUS/Explicit就可以大大缩短计算时间。

如果一个准静态分析以它的自然时间进行,其解几乎跟它的真实静态解相同。

经常需要使用load rate scaling 或 mass scaling 获得一个准静态解,这样使用的CPU时间更短。这两种办法是缩短explicit下计算时间的加速办法。

loading rate 经常可以适当增加,只要这个解不局部化(localize)。如果loading rate增加的太多,惯性力会极大第影响求得的解的准确性;

MASS scaling 可以替代“增加loading rate”来使用,其减少计算时间的功能一样。当使用率相关材料时,mass scaling更好,因为增加loading rate 人为地改变了材料属性;对于不是与率相关的材料,这两种办法都可以,但相同的缩放因子的值所引起的speedup是平方根的关系。

质量缩放因子(mass scaling factor)100等同于加载速率因子(loading rate scaling factor)10产生的计算时间的下降效果。

静态分析中,结构的最低阶模态决定了其响应,知道最小的自然频率,并且相应地,最低阶模态的周期也就知道了,可以估计能够获得合适的静态响应所要求的时间。只要时间大于最低阶模态周期,即可满足准静态响应的条件。

有必要运行一序列不同的loading rate的分析,以此来确定一个可以接受的loading rate。既要实现降低cpu求解时间的目的,又不能引起显著的动态效应。

在模拟计算的大部分过程中,变形材料的动能不应超出其内能的5%-10%。注意这两者的比值要足够小。

在准静态分析中,使用光滑的分析步幅值曲线(smooth step amplitude curve)定义位移是最高效的方式。

对于精度和效率,准静态分析要求加载尽可能地光滑。突变的、抽筋的运动会引起应力波,这可能导致噪音或不准确的解。

使用smooth step amplitude curve实现光滑地加载力或光滑地加载位移。评价结果可接受的初始标准是动能与内能相比为很小。表格(tabular)定义的幅值曲线加载,尽管也可以满足使得动能与其内能相比很小,但是光滑的加载可以减小动能的波动,产生一个满意的准静态的响应。

从Abaqus/Explicit中将模型导入到Abaqus/Standard进行高效的回弹分析。

计算非线性程度不高、或不太复杂,或接触不复杂的问题,使用Abaqus/Explicit与Abaqus/Standard相比,计算时间并无优势,甚至更长。而Abaqus/Explicit计算,加载速率loading rate越高往往计算时间越短。否则,对于较小的loading rate计算时间相当长。稳定时间增量步(stable time increment)很小,从而增量步特别多。

增加 MAass scaling 与loading rate 具有相同的减少计算时间的效果,但是该值过大,会使得惯性效应更大,从而不是准静态分析,得到错误的结果。实际上,增加mass

scaling 和 laoding rate 都是使得稳定时间增量增大,从而减少增量步的数目,达到减少计算时间的目的。

mass scaling 是涉及到率相关材料或率相关阻尼的模拟分析中减少求解时间的唯一选项。这类模拟中增加loading rate不是一个正确的选项,因为材料应变速率会随着loading rate相同的比例因子增加而增加,当模型属性随着应变速率的增加而改变,人为增加loading rate,即人为地改变了这个过程。

加载速率loading rate——物理过程所经历的实际时间称为它的自然时间,通常,假定以自然时间进行分析一个准静态过程将产生准确的静态结果。毕竟,如果真实周期的事件实际以速度为零的自然时间刻度发生,那么动力学分析应当可以捕捉到这样一种事实,即分析事实上达到一个稳态。你可以增加loading rate 以致相同的物理事件以更短的时间发生,只要其解仍旧保持几乎与真实的静态解相同并且动态效应不显著。

以默认的光滑参数创建一个表格幅值曲线(类型为tabular),以及选择幅值类型为smooth step,对于EXPLICIT作准静态分析建立幅值曲线最好选择smooth step 而不用tabular 类型。 loading rate是通过幅值曲线Amplitude curve来定义的。

mass scaling(质量缩放因子)在step的定义中有一选项(选项卡)。use scaling definition below----creat---semi-automatic mass scaling(默认选项)---set--选中对应的几何体,scale by factor中输入因子数值5、10、25之类的,合适的因子值需要多试几次,找到一个临界点,质量缩放因子太大,动态效应太显著,结果不准,质量缩放因子太小,加速计算效果不明显。加速效果是缩放因子的平方根,即mass scaling factor=5,则带来speedup of sqrt(5)。通过不同的质量缩放因子的计算,可以发现,随着质量缩放因子的增加求解的计算时间在下降,但结果的质量也在下降。因为动态效应变得越来越显著,然而通常会有某个范围的因子,可以既能缩短计算时间又不损害结果的质量。显然,speedup of 5太大而不能产生一个准静态的结果(这里是摘录一个分析中对不同的几个mass scaling factor计算结果的评价)

EXPLICIt作准静态分析,评价解的准确性,一般看Kinetic and internal energy histories曲线。动能曲线尽可能光滑。the ratio of kinetic energy to internal energy尽可能小。

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

ABAQUS模拟预应力筋的方法

ABAQUS模拟预应力筋的方法 1.降温法 这是目前很多人采用的方法。即在预应力筋施加温度荷载(降温),使预应力筋收缩,从而使混凝土获得预应力。 2.ABAQUS自带的初始应力法 直接用*Initial conditions, type=stress可以直接模拟先张法,能获得预应力筋和混凝土的后期应力增量,但无法获得预应力筋的真实应力。 3.Rebar element single 法 利用ABAQUS提供的rebar功能,模拟预应力束,给出rebar与相关实体单元的信息,通过在rebar上施加初始应力即可模拟先张法和后张法。 4. MPC法 分别定义预应力筋(比如truss单元)和混凝土,采用MPC将预应力筋与混凝土联系起来,对预应力筋施加初始应力,即可模拟预应力效应。 5.Rebar Layer法 利用ABAQUS提供的rebar layer功能,将rebar layer定义到surface,membrane或shell基上,通过对rebar施加初始应力,即可模拟先张法和后张法。 经过一段时间的使用和尝试,发现实体内施加预应力还存在不少

缺陷: 1.无法模拟早期的预应力损失,如摩擦损失,锚具回弹损失等; 2.无法准确模拟后张法中在张拉阶段净截面参与计算的问题,这 在截面高度较小,预应力筋较多时,对计算结果影响会比较大; 3.无法模拟换算截面的问题,尽管帮助文件中多次提到rebar layer的刚度被添加到surface section等中,由于surface section没有内在刚度,多次测试发现rebar layer的刚度无法添加到结构中。后尝试用shell section的方式来实现。帮助文件中没有直接提到用shell section带rebar layer埋于solid 单元的方式可以模拟预应力。经多次测试发现是可以考虑shell 和rebar layer的附加刚度,但结算结果不稳定。 几个要点: 1>.shell section能自动采用换算截面,其但 换算系数为N而不是N-1。 2>.shell section采用换算截面时,其附属的rebar layer面积也一并参与换算。 3>.若考虑预应力作用,其作用仅限于rebar layer 部分,而不及于shell section本身。 本次新增的inp文件中可对比测试shell section和surface section。见文件中相关数据行提示。 注意新问题:当rebar layer面积较大时,误差很大,需进一步解决,这也许是ABAQUS帮助文件中没直接推荐shell section with rebar

Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

abaqus系列教程-13ABAQUSExplicit准静态分析

13 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit 在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型成为很大时,显式过程比隐式过程需要较少的系统资源。关于隐式与显式过程的详细比较请参见第2.4节“隐式和显式过程的比较”。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 13.1 显式动态问题类比 为了使你能够更直观地理解在缓慢、准静态加载情况和快速加载情况之间的区别,我们应用图13-1来类比说明。

ABAQUS减少计算时间

ABAQUS/Standard与ABAQUS/Explicit各自的适用范围 ABAQUS/Explicit如何降低计算时间 对于光滑的非线性问题,ABAQUS/Standard更有效,而ABAQUS/Explicit适于求解复杂的非线性动力学问题,特别是用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题。 有些复杂的接触问题(例如模拟成形),使用ABAQUS/Standard要进行大量的迭代,甚至可能难以收敛,而使用ABAQUS/Explicit就可以大大缩短计算时间。 如果一个准静态分析以它的自然时间进行,其解几乎跟它的真实静态解相同。 经常需要使用load rate scaling 或 mass scaling 获得一个准静态解,这样使用的CPU时间更短。这两种办法是缩短explicit下计算时间的加速办法。 loading rate 经常可以适当增加,只要这个解不局部化(localize)。如果loading rate增加的太多,惯性力会极大第影响求得的解的准确性; MASS scaling 可以替代“增加loading rate”来使用,其减少计算时间的功能一样。当使用率相关材料时,mass scaling更好,因为增加loading rate 人为地改变了材料属性;对于不是与率相关的材料,这两种办法都可以,但相同的缩放因子的值所引起的speedup是平方根的关系。 质量缩放因子(mass scaling factor)100等同于加载速率因子(loading rate scaling factor)10产生的计算时间的下降效果。 静态分析中,结构的最低阶模态决定了其响应,知道最小的自然频率,并且相应地,最低阶模态的周期也就知道了,可以估计能够获得合适的静态响应所要求的时间。只要时间大于最低阶模态周期,即可满足准静态响应的条件。 有必要运行一序列不同的loading rate的分析,以此来确定一个可以接受的loading rate。既要实现降低cpu求解时间的目的,又不能引起显著的动态效应。 在模拟计算的大部分过程中,变形材料的动能不应超出其内能的5%-10%。注意这两者的比值要足够小。 在准静态分析中,使用光滑的分析步幅值曲线(smooth step amplitude curve)定义位移是最高效的方式。 对于精度和效率,准静态分析要求加载尽可能地光滑。突变的、抽筋的运动会引起应力波,这可能导致噪音或不准确的解。 使用smooth step amplitude curve实现光滑地加载力或光滑地加载位移。评价结果可接受的初始标准是动能与内能相比为很小。表格(tabular)定义的幅值曲线加载,尽管也可以满足使得动能与其内能相比很小,但是光滑的加载可以减小动能的波动,产生一个满意的准静态的响应。 从Abaqus/Explicit中将模型导入到Abaqus/Standard进行高效的回弹分析。

Abaqus-中显示动力学分析步骤

Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

ABAQUS中的损伤模型

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD

损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η=?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。 Johnson-Cook损伤需要输入五个失效参数D1-D5、熔点θmelt、转变温度

ABAQUS中的损伤模型

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4]Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。

abaqus损伤准则总结

ABAQUS中有四种初始断裂准则: 在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍) 对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shear criteria) 对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD 对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。 损伤的感念如下图所示:

1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率 要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系: 公式中::应力三轴度。即平均应力和屈服应力的比值; 为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;

为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变, 力三轴度,其值为-2/3; 因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出 和参数三个参数即可。根据方程已得到不同应力三轴度下的断、裂应变。 、和在一个应变速率下只需要三组数据,就可以求出方程中的 。帮助文件中的建议:ABAQUS ==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?) =此时,通过对进行杯突实验的板料印制网格,可以得

Abaqus损伤总结

Abaqus损伤总结 初始损伤 初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则: Maxs Damage 最大名义应力准则: Quads Damage 二次名义应变准则: Quade Damage 二次名义应力准则: 其中σ1 层间正应力σ2 σ3 层间剪应力对应的分别是有实验测的极限正应力第一二剪应力 ε1 层间正应变ε2 ε3 层间剪应变对应的分别是有实验测的极限正应变第一二剪应变 1、三维空间中任一点应力有6个分量,在ABAQUS中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以表示,按代数

值排列(有正负号)为。其中在ABAQUS中分别对应Max. Principal、Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不变量。 在ABAQUS中对应变的部分理解 1、E—总应变;Eij—应变分量 2、EP---主应变;EPn----分为Minimum, intermediate, and maximum principal strains (EP1 EP2 EP3) 3、NE----名义应变;NEP---主名义应变; 4、LE----真应变(或对数应变);LEij---真应变分量;LEP---主真应变; 5、EE—弹性应变; 6、IE---非弹性应变分量; 7、PE---塑性应变分量; 8、PEEQ---等效塑性应变---在塑性分析中若该值〉0,表示材料已经屈服;描述整个变形过程中塑性应变的累积结果; 若单调加载则PEEQ=PEMAG ; 9、PEMAG----塑性应变量(幅值Manitude)---描述变形过程中某一时刻的塑性应变,与加载历史无关; 10、THE---热应变分量; 损伤曲线

abaqus计算回弹的方法

Abaqus回弹计算过程 回弹分析我倒是做过两个,说下简要步骤吧,同样是仅供参考啊 1.首先用·explicit做成型过程的分析,加载方式选位移加载比较好,加载的幅值选smooth step(平滑变化) 2.可适当的用质量放大来加快这一准静态分析的过程 3.分析完成后可用standard观察工件的回弹,具体做法是: 1.Model-Copy Model 2.在新复制的模型中仅留下成型件,删除其他一切无关的边界条件以及上下模,包括在Explicit中定义的接触属性 3.在step模块中创建predefine field request-others-initial state-last frame/last step(导入的job名称为之前做成型分析的那个job的名称) 4.删除原来所有的后续分析步,并新建一个static,general的分析步 5.创建一个新的作业提交分析,并观察回弹 大致就是这样吧,希望对你有用! 回弹分析,从explicit导入standard计算。先copy explicit中模型进入standard模块,然后做一下改进,删除各个part、set和surface等,只留下需要回弹分析的变形体。删除分析步,删除接触和属性。然后在step中建立一个static分析步骤。设置计算为非线性。然后定义居于前面成形结果的回弹分析,在Model Tree中打开Predefined Fields,选择Initia 作为分析步,Other最为类别,选择Initial State,然后在视窗中选择需要分析的回弹体,然后点击done,然后Edit Predefined Field,选择你成形分析的job名字。然后一致ok下去,对称的边界哦条件还要施加。 你可以在amplitude中设置,比如说你分析步设置时间为6s,然后在amplitude中设置0,0;4,1(也就是在4秒时冲头应景达到了要求的位移,也就是液晶冲完,那么剩下的2秒就是停留的时间了),然后在另外设置一个分析步把冲头往回移就可以了 小弟这些天正好在做冲压回弹,刚做成功,从simwe论坛上学了很多东西。 在此讲讲小弟个人经验,回报论坛: 1.在原模型中设置restart。 2.将原model,copy另取名字 3.删除不需要的instance(以回弹分析来讲只要留下欲做回弹的instance即可) 4.重设分析步,一般改用静态隐式。(小弟把之前的分析步都删了,新建了分析步) 5.在load 模组中除去无用的边界条件,并添一个固定点或固定线。 6.在predefined field中建立initial state,选择欲做回弹的instace,job name选择原分析之odb档名(不用再加.odb),step及frame一般是选择Last. 7.再执行分析即可. 注:若想观察的是回弹量,可在initial state中勾选update reference configuration即可. 另外,多做几次,不成功的原因有时不是步骤有问题,而是自己忽略了某个小地

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

19.Abaqus累积损伤与失效解析

总结 本章主要讲解累积损伤与失效的概论、塑性金属材料的累积损伤与失效和纤维增强复合材料的累积损伤与失效。其中重点内容有: ●塑性金属材料损伤萌生准则,包括有:塑性准则、Johnson-Cook准则、剪切 准则、成形极限图准则、成形极限应力图准则、M-K准则和M-S成形极限图准则,其中M-K准则较难理解。 ●塑性金属材料的演化规律,包括有:基于有效塑性位移的损伤演化规律和基 于能量耗散理论的损伤演化规律。 ●塑性金属材料失效后网格中单元的移除,其中壳单元的移除较难理解。 ●纤维增强复合材料损伤萌生准则,包括有:纤维拉伸断裂、纤维压缩屈曲和 扭结、基体拉伸断裂和基体压缩破碎。 ●纤维增强复合材料损伤的演化,四种失效模式(纤维拉伸失效、纤维压缩失 效、基体拉伸断裂失效和基体压缩破碎失效)均基于能量耗散理论,并对应不同的损伤变量,其中损伤变量的求解比较繁琐。

目录 19 累积损伤与失效分析 (3) 19.1累积损伤与失效概述 (3) 19.1.1 累积损伤与失效 (3) 19.2 金属塑性材料的损伤与失效 (6) 19.2.1 金属塑性材料损伤与失效概论 (6) 19.2.2 金属塑性材料损伤初始阶段 (8) 19.2.3 塑性金属材料的损伤演化与单元的移除 (24) 19.3 纤维增强复合材料的损伤与失效 (35) 19.3.1纤维增强复合材料的损伤与失效:概论 (35) 19.3.2 纤维增强复合材料的损伤初始产生 (38) 19.3.3 损伤演化与纤维增强复合材料的单元去除 (41)

19 累积损伤与失效分析 19.1累积损伤与失效概述 19.1.1 累积损伤与失效 Abaqus提供了以下材料模型来预测累积损伤与失效: 1)塑性金属材料的累积损伤与失效:Abaqus/Explicit拥有建立塑性金属材料的累积损伤与失效模型的功能。此功能可以与the Mises, Johnson-Cook, Hill, 和Drucker-Prager等塑性材料本构模型一起使用(塑性材料的损伤与失效概论,19.2.1节)。模型中提供多个损伤萌生的参数标准,其中包括塑性准则、剪切准则、成形极限图(FLD)、成形极限压力图(FLSD),MSFLD和M-K等标准。根据以往的损伤规律可知,损伤开始形成后,材料的强度会越来越弱。累积损伤模型对于材料刚度的平滑减弱是允许的,这在准静态和动态环境中都允许,这也是优于动态失效模型的有利条件(动态失效建模,18.2.8节)。 2)纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金

ABAQUS中的损伤模型精选文档

A B A Q U S中的损伤模 型精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型

延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD 损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η= ?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES 等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。

Abaqus常用损伤分析模型

Abaqus常用损伤分析模型 内聚力模型准则 cohesive element 中失效位移(能量)的计算是一个比较复杂的过程, 它反映材料在复杂应力状态下的断裂能量释放率。在这个过程中, 通常用到两个重要的准则,指数准则与BK ( Benzeggagh-Kenane) 准则。 abaqus损伤变量计算 dk:degradation中设置为multiplicative的损伤变量 dj:degradation中设置为maximum的损伤变量 损伤演化 当定义了材料开始损伤的初始情况,而材料的最终失效是当材料的损伤值达到1的时候发生的。这是就需要用户自己来定义材料的损伤演化了(damage evolution),具体定义材料损伤演化的方式较多,可以在damage的suboption中看到,一般的类型包括displacement与energy,如果是脆性材料,那肯定是线性下降,如果是金属等塑性很好的材料,肯定是抛物线下降。直线、抛物线、正弦等这些模型是abaqus或者是断裂力学中用理论去接近实际 裂纹扩展

当材料的能量释放率超过材料自身的断裂能时,裂纹扩展,材料将发生呢个断裂。 Cohesive element 一般的cohesive element,厚度为0,对于厚度为0的单元,实际上是不存在stress和strain这样的概念的,所以一般都是叫traction 和separation,但是Abaqus为了使这两个概念和stress和strain联系起来,就又引入了thickness这个概念, traction/thickness = stress, separation/thickness=strain,这样当你定义thickness-=1的时候,traction=stress,separation=strain,就容易理解一点,可以将材料试验里面的结果放进去。对于0厚度单元的elastic 性质,理论上说,其Knn,Kss,Ktt都应该取无限大,但是取得太大,收敛就很困难,所以一般都将其当作一个罚因子。 厚度方向:由于cohesive element划分网格时必须用sweep,一般规定cohesive element 的厚度方向就是sweep 的方向。 abaqus中如何根据损伤云图看出裂缝走向 答:Following Lubliner et. al. (1989), we can assume that cracking initiates at points where the tensile equivalent plastic strain is greater than zero, , and the maximum principal plastic strain is positive. The direction of the vector normal to the crack plane is assumed to be parallel to the direction of the maximum principal plastic strain. This direction can be viewed in the Visualization module of Abaqus/CAE.”即沿着最大主应力方向扩展。 Drucker-Prager

相关主题
文本预览
相关文档 最新文档