当前位置:文档之家› 20高考数学平面向量的解题技巧

20高考数学平面向量的解题技巧

20高考数学平面向量的解题技巧
20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧

【命题趋向】

由2007年高考题分析可知:

1.这部分内容高考中所占分数一般在10分左右.

2.题目类型为一个选择或填空题,一个与其他知识综合的解答题.

3.考查内容以向量的概念、运算、数量积和模的运算为主.

【考点透视】

“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.

透析高考试题,知命题热点为:

1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.

2.平面向量的坐标运算,平面向量的数量积及其几何意义.

3.两非零向量平行、垂直的充要条件.

4.图形平移、线段的定比分点坐标公式.

5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.

6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】

1. 向量的概念,向量的基本运算

(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念.

(2)掌握向量的加法和减法.

(3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.

例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且

2OA OB OC ++=0u u u r u u u r u u u r

,那么( )

A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r

C.3AO OD =u u u r u u u r

D.2AO OD =u u u r u u u r

命题意图:本题考查能够结合图形进行向量计算的能力.

解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

u u u r

故选A .

例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r

r u u u r

r u u u r

u u u r

,M 为BC 的中点,则MN =u u u u r

______.(用a b r r

、表示)

命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积.

解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12

AM a b =+u u u u r r r ,

所以,3111()()4

2

4

4

MN a b a b a b =+-+=-+u u u u r r r r r r r

. 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量

=CD ( )

(A )BA BC 2

1+- (B ) BA BC 2

1--

(C ) BA BC 2

1- (D )BA BC 2

1+

命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2

1+-=+=,故选A.

例4. ( 2006年重庆卷)与向量a r =71,,22b ?

?= ???r ??

? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ??

?- ??53,5

4 (B) ??

?- ??53,5

4或??

? ??-53,54

(C )??

?- ??31,3

22 (D )??

?- ??31,3

22或??

? ?

?-

31,3

22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.

解:设所求平面向量为,c r 由433,,, 1.

555c c ????

=-= ? ?????r 4或-时5

另一方面,当222274134312525,,cos ,.

55271432255a c c a c a c ??

?+?- ??????

=-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

当7413431,,cos ,.

552a c c a c a c ?????-+? ? ????=-=- ????r r r r r r r 时 故平面向量c r 与向量a r =71,,22b ?

?= ???r ??

? ??27,21的夹角相等.故选B. 例5.(2006年天津卷)设向量a ρ与b ρ的夹角为θ,且)3,3(=a ρ

,)1,1(2-=-a b ρρ,

则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.

解:

()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-r r

r 设由 ()2311,1,2.

231 2.

x x b y y -=-=???∴=??-==??r 得

cos ,a b a b a b ?===?r

r r

r r

r

例6.(2006

年湖北卷)已知向量)a =

r ,b r 是不平行于x

轴的单位向量,且a b ?=

r

r 则b r

= ()

(A ) ?

??

? ?

?21,23 (B ) ???? ??23,21 (C )??

?

? ??433,41 (D )

()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.

解:设(),()b x y x y =≠r

,则依题意有1,y =+

1,2x y ?

=???

?=?? 故选B.

例7.设平面向量1a u r 、2a u u r 、3a u u r

的和1230a a a ++=u r u u r u u r r .如果向量1b u r 、2b u u r 、3b u r ,满足2i i b a =u r u r ,且i a u r 顺时针旋转30o 后与i b u r

同向,其中1,2,3i =,则( )

(A )1230b b b -++=u r u u r u r r (B )1230b b b -+=u r u u r u r r

(C )1230b b b +-=u r u u r u r

r

(D )1230b b b ++=u r u u r u r

r

命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.

常规解法:∵1230a a a ++=u r u u r u u r r ,∴ 1232220.a a a ++=u r u u r u u r r

故把2i a u r (i=1,2,3),分别按顺时针旋转

30ο

后与i b u r 重合,故1230b b b ++=u r u u r u r r

,应选D.

巧妙解法:令1a u r =0r ,则2a u u r =3a -u u r ,由题意知2b u u r

=3b -u r ,从而排除B ,C ,同理排除A ,故选(D).

点评:巧妙解法巧在取1a u r =0r

,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.

2. 平面向量与三角函数,解析几何等问题结合

(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.

(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.

例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点??

? ??2,4π,

(Ⅰ)求实数m 的值;

(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++g ,

由已知πππ1sin cos 2422f m ???

?=++=

? ?????

,得1m =.

(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ?

?=++=++

??

?

∴当πsin 214x ?

?+=- ??

?时,()f x 的最小值为1-

由πsin 214x ?

?+

=- ?

?

?,得x 值的集合为3ππ8x x k k ??

=-∈????

Z , 例2.(2007年陕西卷文17)

设函数b a x f 、=)(.其中向量2)2

π

(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.

(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.

解:(Ⅰ)()(1sin )cos f x m x x ==++g a b ,πππ1sin cos 2222f m ???

?=++=

? ?

???

?,得1m =.

(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ??=++=

++ ???,∴当πsin 14x ?

?+=- ??

?时,

()f x 的最小值为1

例9.(2007年湖北卷理16)

已知ABC △的面积为3,且满足06AB AC u u u r u u u r g ≤≤,设AB u u u r 和AC u u u

r 的夹角为θ.

(I )求θ的取值范围;

(II )求函数2

()2sin 24f θθθ??

=+

???

π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由

1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ??

∈????

,∴.

(Ⅱ)2

π()2sin 24f θθθ??=+

???π1cos 222θθ??

??=-+ ??????

?

(1sin 2)2θθ=+-πsin 2212sin 213θθθ?

?=-+=-+ ???.

ππ42θ??∈????

,∵,ππ2π2363θ??-∈????,,π22sin 2133θ?

?-+ ???∴≤≤.

即当5π12θ=

时,max ()3f θ=;当π

4

θ=时,min ()2f θ=. 例10.(2007年广东卷理)

已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--u u u r ,(3,4)AC c =--u u u r ,若c=5, 则(2,4)AC =-u u u r

∴cos cos ,

A AC A

B ∠=<>=u u u r u u u r sin ∠A ;

(2)∠A 为钝角,则39160,0,

c c -++,∴c 的取值范围是25

(,)3+∞

例11.(2007年山东卷文17)

在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,

(1)求cos C ;(2)若52CB CA =u u u r u u u r g ,且9a b +=,求c .

解:(1)sin tan cos C

C C

=∴=Q 又22sin cos 1C C +=Q

解得1cos 8C =±. tan 0C >Q ,C ∴是锐角. 1

cos 8

C ∴=.

(2)52CB CA =u u u r u u u r Q g , 5

cos 2

ab C ∴=, 20ab ∴=.

又9a b +=Q

22281a ab b ∴++=. 2241a b ∴+=.

2222cos 36c a b ab C ∴=+-=.

6c ∴=.

例12. (2006年湖北卷)设函数()()f x a b c =?+r

r r ,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-r

r

, ()cos ,sin ,c x x x R =-∈r .

(Ⅰ)求函数()x f 的最大值和最小正周期;

(Ⅱ)将函数()x f y =的图像按向量d r

平移,使平移后得到的图像关于坐标原点成中心对

称,求长度最小的d r

.

命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.

解:(Ⅰ)由题意得,f(x)=a r ·(b c +r r

)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx) =sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+4

3π).

所以,f(x)的最大值为2+2,最小正周期是2

2π=π.

(Ⅱ)由sin(2x+4

3π)=0得2x+4

3π=k.π,即x =8

32

ππ-k ,k ∈Z ,

于是d r

=(8

32ππ

-

k ,-2),d =r k ∈Z. 因为k 为整数,要使d r

最小,则只有k =1,此时d r =(―8

π,―2)即为所求.

例13.(2006年全国卷II )已知向量a r

=(sin θ,1),b r =(1,cos θ),-π2<θ<π2.

(Ⅰ)若a r ⊥b r

,求θ;

(Ⅱ)求|a r +b r

|的最大值.

命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力. 解:(Ⅰ)若a r ⊥b r

,则sin θ+cos θ=0,

由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π

4;

(Ⅱ)由a r

=(sin θ,1),b r =(1,cos θ)得

|a r +b r

|=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)

3+22sin(θ+π

4),

当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π

4时,|a +b |最大值为2+1. 例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --

,,AD t AB BE tBC ==u u u r u u u r u u u r u u u r ,[0,1].DM tDE t =∈u u u u r u u u r

(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。 命题意图:本小题主要考查平面向量的计算方法、三角公式、

三角函数的性质及图像和圆锥曲线方程的求法等基本知识, 考查推理和运算能力.

解法一: 如图, (Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x,y).由=t, = t ,

知(x D -2,y D -1)=t(-2,-2). ∴???x D =-2t+2y D =-2t+1 同理 ???x E =-2t y E =2t -1 . ∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)

-2t -(-2t+2) = 1-2t.

∴t ∈[0,1] , ∴k DE ∈[-1,1].

(Ⅱ) ∵=t ∴(x+2t -2,y+2t -1)=t(-2t+2t -2,2t -1+2t -1)=t(-

2,4t -2)=(-2t,4t 2-2t). ∴???x=2(1-2t)y=(1-2t)2 , ∴y=x 2

4 , 即x 2=4y. ∵t ∈[0,1], x=2(1-2t)∈[-2,2]. 即所求轨迹方程为: x 2=4y, x ∈[-2,2] 解法二: (Ⅰ)同上.

图3

(Ⅱ) 如图, =+ = + t = + t(-) = (1-t) +t, = + = +t = +t(-) =(1-t) +t, = += + t= +t(-)=(1-t) + t = (1-t 2) + 2(1-t)t+t 2 .

设M 点的坐标为(x,y),由=(2,1), =(0,-1), =(-2,1)得 ???x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]

例15.(2006年全国卷II )已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →

=λFB →

(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →

为定值;

(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.

命题意图:本小题主要考查平面向量的计算方法、和圆锥曲线方程,以及函数的导数的应用等基本知识,考查推理和运算能力. 解:(Ⅰ)由已知条件,得F (0,1),λ>0. 设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →

, 即得 (-x 1,1-y )=λ(x 2,y 2-1),

?

????-x 1=λx 2 ①1-y 1=λ(y 2-1) ② 将①式两边平方并把y 1=14x 12,y 2=1

4x 22代入得 y 1=λ2y 2 ③ 解②、③式得y 1=λ,y 2=1

λ,且有x 1x 2=-λx 22=-4λy 2=-4, 抛物线方程为y =14x 2,求导得y ′=1

2x . 所以过抛物线上A 、B 两点的切线方程分别是

y =12x 1(x -x 1)+y 1,y =1

2x 2(x -x 2)+y 2, 即y =12x 1x -14x 12,y =12x 2x -1

4x 22.

解出两条切线的交点M 的坐标为(122x x +,122x x ?)=(12

2x x +,-1).

所以FM →·AB →=(122

x x +,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0.

所以FM →·AB →

为定值,其值为0.

(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =1

2|AB ||FM |.

|FM |=(x 1+x 2

2)2+(-2)2=

14x 12+14x 22+1

2x 1x 2+4=

y 1+y 2+1

2×(-4)+4

λ+1λ+2=λ+1λ

因为|AF |、|BF |分别等于A 、B 到抛物线准线y =-1的距离,所以

|AB |=|AF |+|BF |=y 1+y 2+2=λ+1λ+2=(λ+1

λ)2.

于是 S =12|AB ||FM |=(λ+1

λ

)3,

由λ+1

λ≥2知S ≥4,且当λ=1时,S 取得最小值4.

【专题训练与高考预测】 一、选择题

1.已知x b a x b a 则且,//),,4(),3,2(==的值为 ( )

A .-6

B .6

C .

3

8 D .-

3

8 2.已知△ABC 中,点D 在BC 边上,且,,2s r +==则s r +的值是( ) A .

3

2 B .

3

4 C .-3 D .0

3.把直线02=-y x 按向量)2,1(--=平移后,所得直线与圆5

4222λ=-++y x y x 相

切,则实数λ的值为 ( A )

A .39

B .13

C .-21

D .-39

4.给出下列命题:①·=0,则=0或=0. ②若为单位向量且③

a ·a ·a =|a |3. ④若a 与

b 共线,b 与

c 共线,则a 与c 共线.其中正确的个数是

( )

A .0

B .1

C .2

D .3

5.在以下关于向量的命题中,不正确的是( ) A.若向量a =(x ,y ),向量b =(-y ,x )(x 、y ≠0),则a ⊥b B.四边形ABCD 是菱形的充要条件是=,且||=||

C.点G 是△ABC 的重心,则GA +GB +CG =0

D.△ABC 中,AB 和的夹角等于180°-A 6.若O 为平行四边形ABCD 的中心, = 4e 1,

= 6e 2,则3e 2-2e 1等于( )

A. B. C. D. 7.将函数y=x +2的图象按a =(6,-2)平移后,得到的新图象的解析式为( ) =x +10

=x -6 =x +6 =x -10

8.已知向量m =(a,b ),向量m ⊥n 且|m |=|n |,则n 的坐标为 A.(a, -b )

B.( -a,b )

C.(b, -a )

D.( -b, -a )

9.给出如下命题:命题(1)设e 1、e 2是平面内两个已知向量,则对于平面内任意向量a ,都存在惟一的一对实数x 、y ,使a =x e 1+y e 2成立;命题(2)若定义域为R 的函数f (x )恒满足|f (-x )|=|f (x )|,则f (x )或为奇函数,或为偶函数.则下述判断正确的是( ) A.命题(1)(2)均为假命题 B.命题(1)(2)均为真命题

C.命题(1)为真命题,命题(2)为假命题

D.命题(1)为假命题,命题(2)为真命题

10.若|a+b|=|a-b|,则向量a 与b 的关系是( )

A. a=→

0或b=→

0 B.|a|=|b| C. a ?b=0 D.以上都不对

11.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足

(),[0,).|||AB AC

OP OA AB AC

λλ=++∈+∞u u u r u u u r u u u r u u u r u u u

r u u u r 则P 的轨迹一定通过△ABC 的 ( ) A .外心 B .内心 C .重心

D .垂心

12. 若()1,3,2-=, (),3,0,2= ()2,2,0=, 则()

+?= ( )

A . 4

B . 15

C . 7

D . 3

二、填空题

1.已知,4||,3||==与的夹角为60°,则与-的夹角余弦为 . 2. 已知→

a =(—4,2,x ),→

b =(2,1,3),且→

a ⊥→

b ,则x = .

3. 向量()57)3(-⊥+ ,()()

274-⊥-,则和所夹角是 4. 已知A(1, 0, 0), B(0, 1, 0 ), C(0, 0, 1), 点D 满足条件:DB ⊥AC, DC ⊥AB, AD=BC, 则D 的坐标为 .

5. 设b a ,是直线,βα,是平面,βα⊥⊥b a ,,向量1a 在a 上,向量1b 在b 上,

}0,4,3{},1,1,1{11-==b a ,则βα,所成二面角中较小的一个的大小为 .

三、解答题

1.△ABC 中,三个内角分别是A 、B 、C ,向量B A B A C tan tan ),2

cos ,2

cos 2

5(?-=当

9

1

=

时,求||a . 2.在平行四边形ABCD 中,A (1,1),)0,6(=,点M 是线段AB 的中点,线段CM 与BD 交于点P . (1)若(3,5),AD =u u u r

求点C 的坐标;

(2)当||||=时,求点P 的轨迹.

3.平面内三个力1F ,2F ,3F 作用于同丄点O 且处于平衡状态,已知1F ,2F 的大小分别为1kg ,2

26+kg ,1F 、2F 的夹角是45°,求3F 的大小及3F 与1F 夹角的大小.

4.已知a ,b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角.

5.设a =(1+cos α,sin α), b =(1-cos β,sin β),c =(1,0),α∈(0,π)β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=

6π,求sin 4

β

α-. 6.已知平面向量a =(3,-1),b =(2

1,23

).

(1)证明:a ⊥b ;

(2)若存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求函数关系式k =f (t ); (3)根据(2)的结论,确定k =f (t )的单调区间.

【参考答案】 一、选择题

2.D 3.A4.A 5. 答案:C

提示:若点G 是△ABC 的重心,则有++=0,而C 的结论是++=0,显然是不成立的,选C. 10. C 11.B 12.D 二、填空题

1.13

13 2. 2 3.60° 4.(1,1,1)或),,(3

13131--- 5..arccos 153 3.解:由()(

)57=-?+, ()()

274=-?- , 有?+1672

83072

2=+?-,

解得22=,?=22

, ==∴2

1. 4.解:设D(x, y, z), 则),1,(z y x BD -=,(),1,,-=z y x CD =(x-1, y, z ),

=(-1, 0, 1), =(-1,1, 0), =(0, -1, 1). 又DB ⊥AC ?-x+z=0,

DC ⊥AB ?-x+y=0, AD=BC ?(),21222=++-z y x

联立解得x=y=z=1或x=y=z=.3

1-所以D 点为(1,1,1)或),,(3

13131---。 三、解答题

1.2

cos )2

cos 2

5(||222B A C -+=Θ,

.

4

2

3||,89||.cos cos sin sin 9.

9

1

cos cos sin sin ,91tan tan ).cos cos sin sin 99(8

1

)

sin sin 5cos cos 5sin sin 4cos cos 49(8

1

)]cos(5)cos(49[812)cos(12)cos(1452cos 2sin 452cos 2cos 45||222222==∴=∴==-+=+-++=+--+=-+++-?=-++=-+?=

∴B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

A B A B A C 故即又 2.解:(1)设点C 坐标为(),00y x ,

又)5,9()0,6()5,3(=+=+=,即)5,9()1,1(00=--y x . 6,1000==∴y x . 即点C (0,6). (2)解一:设),(y x P ,则

)1,7()0,6()1,1(--=---=-=y x y x .

).

33,93()

0,6())1(3),1(3(3)2

1(321321--=---=-=-+=+=

+=y x y x AB AP

=.

||

||AD AB Θ ABCD 为菱形.

.0)33,93()1,7(,

=--?--⊥∴y x y x AD AC 即

0)33)(1()93)(7(=--+--y y x x

)1(02221022≠=+--+∴y y x y x .

故点P 的轨迹是以(5,1)为圆心,2为半圆去掉与直线1=y 的两个交点. 解法二:|||AD =Θ

∴D 的轨迹方程为)1(36

)1()1(22≠=-+-y y x .

ΘM 为AB 中点, P 分∴的比为

2

1 . 设).23,143(,

)1,7(),

,(--∴y x D B y x P . P ∴的轨迹方程

36)33()153(22=-+-y x .

整理得)1(4)1()5(22≠=-+-y y x .

故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线1=y 的两个交点. 3.设1F 与2F 的合力为F ,则|F|=|F 3|. ∵∠F 1OF 2=45° ∴∠FF 1O=135°. 在△OF 1F 中,由余弦定理

ο135cos ||||2||||||1121212?-+=F OF F OF =324+. 13||,31||3+=+=∴F 即.

F 2

F 3

又由正弦定理,得2

1|

|sin 1

==∠OF OF F .

∴∠F 1OF=30° 从而F 1与F 3的夹角为150°. 答:F 3的大小是(3+1)kg,F 1与F 3的夹角为150°. 4..解:∵a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直, ∴(a +3b )·(7a -5b )=0,(a -4b )·(7a -2b ) =0.

即?????=+?-=-?+.

0||830||7 ,0||1516||7222

2b b a a b b a a 两式相减:a ·b =

2

1

|b |2,代入①得|a |2=|b |2. ∴cos α=|

|||b a b a ?=2

1.∴α=60°,即a 与b 的夹角为60°.

5.解:a =(2cos 22α,2sin 2αcos 2α

)

=2cos 2α (cos 2α,sin 2α)

∴θ1=2α,

b =(2sin 22β,2sin 2βcos 2β

)

=2sin 2β (sin 2β,cos 2β)

∴θ2=2β-2π,又θ1-θ2=6π?2α-2β+

2π=6π?2βα-= -3

π

∴sin 2βα-=sin(-6π)=-2

1

6.(1)证明:∵a =(3,-1),b =(21,2

3) ∴3×

2

1+(-1)×23=0∴a ⊥b

(2)解:由题意知

x =(23322-+t ,22

3332--t ),

y =(2

1t -3k ,23t +k )

又x ⊥y 故x ·y =23322-+t ×(2

1t -3k )+223332--t ×(23

t +k )=0

整理得:t 2-3t -4k =0即k =41t 3-4

3

t

① ②

(3)解:由(2)知:k =f (t )= 41t 3-4

3

t ∴k ′=f ′(t )=

43t 2-4

3

令k ′<0得-1<t <1;令k ′>0得t <-1或t >1

故k =f (t )单调递减区间是(-1,1),单调递增区间是(-∞,-1)∪(1,+∞)

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

高中数学解题方法系列:平面向量最值问题的4种方法

高中数学解题方法系列:平面向量最值问题的4种方法 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C 在以 O 为圆心的圆弧上变动.若其中 ,则的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y +与此变量的函数关系是解决最值问题的 常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,13(,)2B -,(cos ,sin )C θθ。 Q 13(cos ,sin )(1,0)(,)2x y θθ∴=+-即 cos 23sin y x y θθ?-=????= cos 3sin 2sin()6x y πθθθ∴+=+=+2(0)3 πθ≤≤。 因此,当3 π θ=时,取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP ===u u u r u u u r u u u r 点Q 为射线OP 上的一个动点,当QA QB u u u r u u u r g 取最小值时,求.OQ u u u r 分析:因为点Q 在射线OP 上,向量OQ uuu r 与OP uuu r 同向,故可以得到关于OQ uuu r 坐标的一个 关系式,再根据QA QB u u u r u u u r g 取最小值求.OQ u u u r 解:设(2,),(0)OQ xOP x x x ==≥u u u r u u u r ,则(12,7),(52,1)QA x x QB x x =--=--u u u r u u u r OA u u u r OB uuu r 120o AB u u u v ,OC xOA yOB =+u u u r u u u r u u u r ,x y R ∈x y +,OC xOA yOB =+u u u r u u u r u u u r x y +图 1 1

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

平面向量常用的方法技巧

备考方略 <3 平面向量常用的方法技文K灼 * > \i^i 北京市陈经纶中学周明芝 -- 特别提示:【解】对于①於+3 = 0 平面向量具有代數几何双重身份,从近几年对于②ASXS+S?5(XJ+ c5)a5a5o == 的高考试题看对向量的考查力度在逐年加大并且 对于③ 强调了向量的知识性与工具性,重点考查向量的四 对于④+(g 种运算 、 两个充要条件等核心知识,考查向量的几M =NP+前=〇 P 何形式与代教形式的相互转化技能有些问题的处理,综上知应填①②③④ 对变形技巧要求高,具有定的难度因此,要想在【小结】向量的加减法法则是解题的基础在运用时平面向量试题的求解中取得高分,必须在理解向量 要注意交换律和结合律的使用 熟练四种运算和两个充要条件应用的基础上 概念、 例2(2011湖南)在边长为1的正三角形ABC中 认 真梳理 常 用 的 方法 和技巧 逐 步提高解 题 能 力 设则X5? 【分析】 利用边长为1和正三角形内角度数 ? 并注意 4把和进行拆分 方法一、分解合成法 由题意沒rs技瓦&茂 【解】=j =分解是指把个向量拆成几个向量有利于处理向 量前面的系数合成是指利用向量加减运算多项合成c¥=yC^cS 项减少项数从而达到化简的目的在解题时要灵活运 用向量加法法则和首尾相连的向量和为零等技巧 例1化简下列各式①万2十否f+亡芳②疋§1=+= +節成③孩前+滅④胡+前威cJc% 2364 结果为零向量的序号是【小结】根据加、减法法则灵活地进行合理拆分是解[分析】 对于化简题,应灵活运用加法交换律,尽可题的关键 能使之变为首尾相连的向量然后再运用向量加法结合律 练习1在AABC中=cf=cf若点D满足 訪=2万P则力5=() 求和 2017 1 7cceev

平面向量解题大全

平面向量解题大全 考查内容:平面向量的线性运算,基本定理,坐标表示,数量积。 补充内容:特殊化策略、坐标法、函数建模在平面向量中的应用。 1、设向量)0,1(=a ,?? ? ??=21,21b ,则下列结论中正确的是( C ) A 、b a = B 、2 2=?b a C 、b a -与b 垂直 D 、b a // 2、平面向量a 与b 的夹角为 60,()0,2=a ,1=b ,则=+b a 2( B ) A 、3 B 、23 C 、4 D 、12 3、平面上B A O ,,三点不共线,设b OB a OA ==,,则OAB ?的面积等于( C ) A 、222)(b a b a ?- B 、222)(b a b a ?+ C 、222)(2 1b a b a ?- D 、222)(21b a b a ?+ 4、在ABC ?中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2AP PM =,则()PA PB PC ?+等于( A ) A 、49- B 、43- C 、43 D 、49 5、如图,设,P Q 为ABC ?内的两点,且2155AP AB AC =+,AC AB AQ 4132+=, 则ABP ?的面积与ABQ ?的面积之比为( B ) A 、15 B 、45 C 、14 D 、13 解析图:

解析:如图,设25AM AB =,15 AN AC =,则AP AM AN =+,由平行四边形法则 知//NP AB ,所以5 1==??AC AN S S ABC ABP ,同理可得41=??ABC ABQ S S ,故54=??ABQ ABP S S 。 6、已知P N O ,,在ABC ?所在平面内,且OC OB OA ==,0=++NC NB NA , 且PA PC PC PB PB PA ?=?=?,则点P N O ,,依次是ABC ?的( C ) A 、重心 外心 垂心 B 、重心 外心 内心 C 、外心 重心 垂心 D 、外心 重心 内心 7、已知P 是ABC ?所在平面内任意一点,且3PA PB PC PG ++=,则G 是ABC ?的( C ) A 、外心 B 、内心 C 、重心 D 、垂心 8、已知O 是ABC ?所在平面内一点,满足OA OB OB OC ?=?=OC OA ?,则点O 是ABC ?的( D ) A 、三个内角的角平分线的交点 B 、三条边的垂直平分线的交点 C 、三条中线的交点 D 、三条高的交点 9、已知O 是平面内的一个点,C B A ,,是平面上不共线的三点,动点P 满足 [)+∞∈???? ? ??++=,0,λλAC AC AB AB OA OP ,则点P 的轨迹一定过ABC ?的( B ) A 、外心 B 、内心 C 、重心 D 、垂心 10、已知两点()()1,0,1,0M N -,若直线340x y m -+=上存在点P 满足 0PM PN ?=,则实数m 的取值范围是( D ) A 、(,5][5,)-∞-+∞ B 、(,25][25,)-∞+∞ C 、[]25,25- D 、[]5,5-

高中平面向量知识点总结

平面向量 1、 向量的定义:既有大小又有方向的量叫向量 2、 向量的表示方法 (1)几何表示:以A 为起点,以B 为终点的有向线段记作AB u u u r ,如果有向线段AB u u u r 表 示一个向量,通常我们就说向量AB u u u r . (2)字母表示:印刷时 粗黑体字母 a , b , c …向量 手写时 带箭头的小写字母 a ,b r … 3、向量点的长度(模) 向量的大小叫做向量的长或模,记作|AB u u u r |、|a | 4、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 a =0 |a |=0 单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 平行向量(共线向量):方向相同或相反的非零向量称为平行向量,也叫共线向量 记作a ∥b 5、相等向量:长度相等且方向相同的向量 相等向量经过平移后总可以重合,记为b a 即大小相等,方向相同),(),(2211y x y x 21 2 1y y x x 6、 对于任意非零向量的单位向量是a |a | . 7、向量的加法 (1)三角形法则 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r 对于零向量与任意向量a 的和有a a a 00 (2)平行四边形法则 已知两个不共线的向量a ,b r ,做,AB a BC b u u u r u u u r r r ,则A 、B 、D 三点不共线,

以AB 、AD 为邻边作平行四边形ABCD ,则对角线上的向量AC u u u r =a +b r . 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. 8、向量加法的运算律 (1)交换律 a +b r =b r +a (2)结合律 (a +b )+c =a +(b +c ) 9、向量的减法 )(b a b a 即减去一个向量相当于加上这个向量的相反向量 图: 10、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量. 记作a (1))(a =a ,即a 与a 互为相反向量; (2)若a 、b 是互为相反向量,则a =b ,b =a ,a +b =0 ; (3)a +(a )=(a )+a =0 ; (4)零向量的相反向量仍是零向量 (5)对于用起点和终点表示的向量,则有AB u u u r = —BA,即AB u u u r 和- BA 互为相反向 量 11、已知向量α,b ,则| |α|-|b| |≤ |α±b |≤|α|±| b| 12、向量数乘运算 实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (1)a a ; (2)当0 时, a 与a 同向 当0 时, a 与a 异向

(推荐)高中数学平面向量知识点总结

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:AB 可表示为a 3.模的概念:向量AB 的大小——长度称为向量的模。 记作:|AB | 模是可以比较大小的 4.两个特殊的向量: 1零向量——长度(模)为0的向量,记作0。0的方向是任意的。 注意0与0的区别 2单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: a b c a + b A A A B B B C C a +b a + b a a b b b a a

强调: 1“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2可以推广到n 个向量连加 3 a a a =+=+00 4不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1向量加法的平行四边形法则(三角形法则): 2向量加法的交换律:a +b =b +a 3 向量加法的结合律:(a +b ) +c =a + (b +c ) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1“相反向量”的定义:与a 长度相同、方向相反的向量。记作 a 2 规定:零向量的相反向量仍是零向量。(a ) = a 任一向量与它的相反向量的和是零向量。a + (a ) = 0 如果a 、b 互为相反向量,则a = b , b = a , a + b = 0 3向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a b = a + (b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a b 3.向量减法做图:AB 表示a b 。强调:差向量“箭头”指向被减数 总结:1 向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a 的积,记作:λa 定义:实数λ与向量a 的积是一个向量,记作:λa 1|λa |=|λ||a | 2 λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律:结合律:λ(μa )=(λμ)a ① 第一分配律:(λ+μ)a =λa +μa ②

向量解题技巧

向量解题技巧

一、怎么样求解向量的有关概念问题 掌握并理解向量的基本概念 1.判断下列各命题是否正确 (1)若c a c b b a 则,,; (2)两向量b a 、相等的充要条件是b a 且共线、b a ; (3) b a 是向量 b a 的必要不充分条件; (1)若D C B A 、、、是不共线的四点,则C D B A 是四边形ABCD 为平行四边形的充要条件; (2) D C B A 的充要条件是A 与C 重合, D B 与重合。 二、向量运算及数乘运算的求解方法 两个不共线的向量,加法的三角形法则和平行四边形法则是一致的。两个有相同起点的向量的差是连结两向量的终点,方向指向被减向量的向量,若起点不同,要平移到同一起点;重要结论:a 与b 不共线,则 b a b a 与是以a 与b 为邻边的平行四边形两条对角线 所表示的向量。在求解向量的坐标运算问题时,注意向量坐标等终点坐标减起点坐标,即若),(),,(2 2 1 1 y x B y x A , 则 A O B O B A ) ,(),(),(12121122y y x x y x y x 。 例1 若向量_______2),1,0(),2,3(的坐标是则a b b a 例2 若向量____)2,1(),1,1(),1,1( c c b a 则 b a D b a C b a B b a A 2 123.2123.2321.2321. 例3 在平面直角坐标系中,O 为坐标原点,已

知两点),3,1(),1,3( B A 若点 满足C B O A O C O ,其中R ,且 1 ,则点 C 的轨迹为( ) 52. 02.0)2()1.( 01123.22 y x D y x C y x B y x A 例4 O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足 ) (C A C A B A B A A O P O ,),0[ ,则P 的轨迹一定过ABC 的() . A 外心 . B 内心 . C 重心 . D 垂心 例5 设G 是ABC 内的一点,试证明: (1)若G 是为ABC 重心,则0 C B B G A G ; (2)若0 C B B G A G ,则G 是为ABC 重心。 三、三点共线问题的证法 证明A,B,C 三点共线,由共线定理(共线 与C A B A ),只需证明存在实数 ,使C A B A ,,其中必须有公共点。 共线的坐标表示的充要条件,若 ) ,(),,(2211y x b y x a , 则 ) (0//12211221y x y x y x y x b a b a 例1 已知A 、B 两点,P 为一动点,且B tA A O P O ,其中t 为一变量。 证明:1.P 必在直线AB 上;2.t 取何值时,P 为A 点、

《利用平面向量的解题技巧》

利用平面向量的解题技巧 平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。 一、用向量证明平面几何定理 例1. 用向量法证明:直径所对的圆周角是直角。 已知:如图1,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°。 图1 证明:联结OP ,设向量b OP a OA =→ =→,,则a OB -=→且b a OP OA PA -=→-→=→,b a OP OB PB -=→ -→=→ 0|a ||b |a b PB PA 2222=-=-=→ ?→∴ → ⊥→∴PB PA ,即∠APB =90°。 二、用向量求三角函数值 例2. 求值:7 6cos 74cos 72cos πππ++ 解:如图2,将边长为1的正七边形ABCDEFO 放进直角坐标系中,则 ) 01(OA ,=→ , ) 7 12sin 712(cos FO )710sin 710(cos EF )78sin 78(cos DE )7 6sin 76(cos CD )74sin 74(cos BC )72sin 72(cos AB ππππππππππππ,,,,,, ,,,,,=→=→=→=→=→=→

图2 又0FO EF DE CD BC AB OA =→ +→+→+→+→+→+→ 07 12cos 710cos 78cos 76cos 74cos 72cos 1=++++++∴ππππππ 又7 2cos 712cos 74cos 710cos 76cos 78cos ππππππ===,, 2176cos 74cos 72cos 0)7 6cos 74cos 72(cos 21- =++∴=+++∴ππππ ππ 三、用向量证明不等式 例3. 证明不等式)b b )(a a ()b a b a (2 221222122211++≤+ 证明:设向量)b b (b )a a (a 2121,,,==,则222 12221b b |b |a a |a |+=+=,, 设a 与b 的夹角为θ,22 2122 21 2211b b a a b a b a | b ||a |b a cos +++=?= θ 又1|cos |≤θ 则)b b )(a a ()b a b a (2 221222122211++≤+ 当且仅当a 、b 共线时取等号。 四、用向量解物理题 例 4. 如图3所示,正六边形PABCDE 的边长为b ,有五个力 →→→→PD PC PB PA 、、、、→ PE 作用于同一点P ,求五个力的合力。

平面向量知识点归纳

平面向量 一.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如: 2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向 量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); ④三点A B C 、、共线? AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如 下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若 AB DC = ,则A B C D 是平行四边形。(4)若A B C D 是平行四边形,则AB DC = 。(5)若,a bb c == ,则a c = 。 (6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的 任一向量可表示为(),a xi y j x y =+= ,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。 如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有 一对实数1λ、2λ,使a =1λe 1+2λe 2。如 (1)若(1,1),a b == (1,1),(1,2)c -=- ,则c = ______(答:1322 a b - ); (2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213(2,3),(,)24 e e =-=- (答:B ); (3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b == ,则BC 可用向量,a b 表示为 _____(答:2433 a b + ); (4)已知ABC ?中,点D 在BC 边上,且?→??→ ?=DB CD 2,?→ ??→??→?+=AC s AB r CD ,则s r +的值是___ (答:0) 四.实数与向量的积:实数 λ与向量的积是一个向量,记作λ,它的长度和方向规定如下: ()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反, 当λ=0时,0a λ= ,注意:λ≠0。

专题七:平面向量常考题型的解题技巧

平面向量专题讲解 向量是数学中的重要概念,以向量为工具可以把几何问题(平面、空间)转化为简单的向量运算,变抽象的逻辑推理为具体的向量运算,实现形与数的结合. 题型一:考查与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“a >b ”错了,而|a |>|b |才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示). ⑸零向量0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. 题型二:与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量(对应坐标相加). ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+|b |; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 , 且|+|=||-||;

若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. ⑶围成一周首尾相接的向量(有向线段表示)的和为零向量. 如,+AB +BC 0=CA ,(在△ABC 中) +++=.(□ABCD 中) ⑷判定两向量共线的注意事项 如果两个非零向量,,使=λb (λ∈R ),那么∥; 反之,如∥,且≠0,那么=λ. 这里在“反之”中,没有指出是非零向量,其原因为=0时,与λ的方向规定为平行. ⑸数量积的8个重要性质 ①两向量的夹角为0≤θ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数. ②设、都是非零向量,是单位向量,θ是与的夹角,则 ③?⊥)1|.(cos ||==?=?e a θ0=?(∵θ=90°,)0cos =θ ④在实数运算中ab =0a ?=0或b=0.而在向量运算中b a ?=0a ?=0或b =0是错误的,故0=a 或0=b 是b a ?=0的充分而不必要条件. ⑤当a 与b 同向时b a ?=||||b a ?(θ=0,cos θ=1); 当a 与b 反向时,b a ?=-||||b a ?(θ=π,cos θ=-1),即a ∥b 的另一个充要条件是||||b a ?=?. 特殊情况有2=?=2 |a .

相关主题
文本预览
相关文档 最新文档