当前位置:文档之家› 正态总体均值假设检验教学设计

正态总体均值假设检验教学设计

正态总体均值假设检验教学设计
正态总体均值假设检验教学设计

概率论与数理统计教学设计

第五章+统计学教案(假设检验)

第五章+统计学教案(假设检验)参数估计和假设检验是统计推断的两个组成部分,它们分别从不同的角度利用样本信息对总体参数 进行推断。前者讨论的是在一定的总体分布形式下,借助样本构造的统计量,对总体未知参数作出估计 的问题;后者讨论的是如何运用样本信息对总体未知参数的取值或总体行为所做的事先假定进行验证, 从而作出真假判断。通俗地、简单地说,前者是利用样本信息估计总体参数将落在什么范围里;而后者 则是利用样本信息回答总体参数是不是会落在事先假定的某一个范围里。 通过本章学习,要求学生在充分理解有关抽样分布理论的基础上,理解掌握假设检验的有关基本概 念;明确在假设检验中可能犯的两种错误,以及这两种错误之间的联系;熟练掌握总体均值和总体成数 的检验方法,主要是 Z 检验和 t 检验;对于非参数的检验,也应有所了解,包括符号检验、秩和检验与游程检验等。 2 一、假设检验概述与基本概念 1、假设检验概述 2、假设检验的有关基本概念 二、总体参数检验 1、总体平均数的检验 2、总体成数的检验

3、总体方差的检验 三、总体非参数检验 1、符号检验 2、秩和检验 3、游程检验 一、假设检验的有关基本概念; 二、总体平均数与总体成数的检验; 三、非参数检验; 一、假设检验的基本思路与有关概念; 二、两类错误的理解及其关系; 一、假设检验概述 假设检验:利用统计方法检验一个事先所作出的假设的真伪,这一假设称为统计假设,对这一假设 所作出的检验就是假设检验。 基本思路:首先,对总体参数作出某种假设,并假定它是成立的。然后,根据样本得到的信息(统 计量),考虑接受这个假设后是否会导致不合理的结果,如果合理就接受这个假设,不合理就拒绝这个 假设。 所谓合理性,就是看是否在一次的观察中出现了小概率事件。 小概率原理:就是指概率很小的事件,在一次试验中实际上是几乎不可能出现。这种事件可以称其 为“实际不可能事件”。 二、假设检验的基本概念

一般总体均值的假设检验.

§7.4 一般总体均值的假设检验 一、一般总体均值的大样本假设检验 1. 一个总体均值的大样本假设检验 设样本12(,,,)n X X X 取自非正态总体X ,记总体均值μ=)(X E 。样本均值及样本方差分别为11n i i X X n ==∑,2211()1n i i S X X n ==--∑。 如果我们要做双侧检验:0100::μμμμ≠?=H H ,在大样本情况(样本容量30≥n )下可选 n S X Z /0 μ-=为检验统计量,由中心极限定理知,它在0H 成立时近 似服从)1,0(N 。检验的P 值近似为|))(|1(2)| |(20O O z z Z P Φ-==≥μμ,其中检验统计量Z 的观测值为 n s x z O /0 μ-=。 例7.4.1 一种机床加工的零件尺寸绝对平均误差为1.35mm 。生产厂家现采用一种新的 机床进行加工以期降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。50个零件尺寸的绝对误差数据(mm )如下所示: 1.26 1.19 1.31 0.97 1.81 1.13 0.96 1.06 1.00 0.94 0.98 1.10 1.12 1.03 1.16 1.12 1.12 0.95 1.02 1.13 1.23 0.74 1.50 0.50 0.59 0.99 1.45 1.24 1.01 2.03 1.98 1.97 0.91 1.22 1.06 1.11 1.54 1.08 1.10 1.64 1.70 2.37 1.38 1.60 1.26 1.17 1.12 1.23 0.82 0.86 利用这些数据,检验新机床加工的零件尺寸的平均误差是否显著降低?(0.01α=) 解:这里研究者所关心的是新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,也就是新机床加工的零件尺寸的误差的数学期望μ=)(X E 是否小于1.35,因此属于单左侧检验。提出的假设如下: 0: 1.35H μ≥?1: 1.35H μ< 现在50=n ,检验统计量可选为 )1,0(~/35.135.1N n S X Z =-=μ; 由数据得:215.1=x ,366.0=s ,故检验统计量Z 的观测值为608.250 /366.035 .1215.1-≈-≈O z ,所以检验的P 值近似为 0046.0)608.2()35.1608.2(=-Φ≈=-≤μZ P 。 因为01.0

统计学教案习题04总体均数的估计和假设检验

第四章 总体均数的估计和假设检验 一、教学大纲要求 (一) 掌握内容 1. 抽样误差、可信区间的概念及计算; 2. 总体均数估计的方法; 3. 两组资料均数比较的方法,理解并记忆应用这些方法的前提条件; 4. 假设检验的基本原理、有关概念(如I 、II 类错误)及注意事项。 (二) 熟悉内容 两样本方差齐性检验。 (三) 了解内容 1. t 分布的图形与特征; 2. 总体方差不等时的两样本均数的比较; 3. 等效检验。 二、教学内容精要 (一) 基本概念 1. 抽样误差 抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error )。统计上用标准误(standard error ,SE )来衡量抽样误差的大小。不同的统计量,标准误的表示方法不同,如均数的标准误用X S 表示,率的标准误用S P 表示,回归系数的标准误用S b 表示等等。均数的标准误与标准差的区别见表4-1。 表4-1 均数的标准误与标准差的区别 均数的标准误 标准差 意义 反映的抽样误差大小 反映一组数据的离散情况 记法 X σ(样本估计值X S ) σ(样本估计值S ) 计算 X σ= n σ X S = n S σ = n X 2 )(∑ -μ S= 1 )(2 --∑ n X X 控制方法 增大样本含量可减小标准误。 个体差异或自然变异,不能通过统计方法来控制。 2.可信区间 (1)定义、涵义:即按预先给定的概率确定的包含未知总体参数的可能范围。该范围称为总体参数的可信区间(confidence interval ,CI )。它的确切含义是:CI 是随机的,总体参数是固定的,所以,CI 包含总体参数的可能性是1-α。不能理解为CI 是固定随机的,总体参数是随机固定的,总体参数落在CI 范围内可能性为1-α。当0.05α=时,称为95%可信区间,记作95%CI 。当0.01α=时,称为99%可信区间,记作99%CI 。 (2)可信区间估计的优劣:一定要同时从可信度(即1-α的大小)与区间的宽度两方面来衡量。 (二) t 分布与正态分布 t 分布与标准正态分布相比有以下特点:①都是单峰、对称分布;②t 分布峰值较低,而尾部较高;③随自由度增大,t 分布趋近与标准正态分布;当ν→∞时,t 分布的极限分布是标准正态分布。 (三)总体均数的估计

单个正态总体参数的假设检验

16.3 单个正态总体参数的假设检验 设,,,12n X X X 是来自正态总体()2,N μσ的样本,考虑如下三种关于μ的检 验问题 (1) 00:H μμ≤ vs 10:H μμ> 单侧检验 (2) 00:H μμ≥ vs 10:H μμ< 单侧检验 (3) 00: H μμ= vs 10:H μμ≠ 双侧检验 ********************************************************** (1) 00: H μμ≤ vs 10:H μμ> 单侧检验 (3) 00:H μμ= vs 10:H μμ≠ 双侧检验

********************************************************** 下面给出σ已知时,上述三种检验情况的具体实现。 σ已知时的,对于单侧检验问题(1) 00:H μμ≤ vs 10:H μμ>, 2 ~, X N n σμ?? ?? ? ,故选用服从标准正态分布的检验统计量X u =, 通常称此检验为u 检验。 拒绝域选为()()?? ? ???????≥σμ-==c x n u x x W n 01:,, ,c 为临界值,简记为{}c u ≥。若显著性水平要求为α,则可确定α-=1u c 。 同理对 问题(2),00: H μμ≥ vs 10:H μμ<,水平为α的检验的拒绝域为 ()()?? ? ???????≤σμ-==αu x n u x x W n 01:,, 。 问题(3),00: H μμ= vs 10:H μμ≠,水平为α的检验的拒绝域为 ()()?? ? ???? ? ??≤σμ-= =α2-101u x n u x x W n :,, 。 ********************************************************** 例16.3.1 设某工厂生产一种产品,其质量指标服从正态分布()2 2,μN ,μ为 平均质量指标,其值越大则质量越好,10=μ是达到优级的标准。进货商店从一批产品抽取样本,, ,12n X X X ,16=n ,取显著性水平为050.=α,如何检 验这一批产品是否达到优秀。 分析: 根据工厂产品社会声誉可能的不同,分以下两种情况讨论。 情形一,按照过去长时间的记录,商店的检验人员相信该厂的产品质量很好。

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

教案_第七章 假设检验

《统计学》教案 第七章假设检验 教学目的:介绍假设检验的基本思想、步骤和规则,两类错误的概念,以及重要总体参数的检验方法。 基本要求:通过本章学习要求同学们理解假设检验的基本思想、规则和两类错误的概念,掌握假设检验的步骤和总体均值、成数、方差的检验方法。 重点和难点:假设检验的基本思想、规则和两类错误的概念。 教学内容:§1假设检验的一般问题§2 一个正态总体的参数检验§3二个正态总体的参数检验§4假设检验中的其它问题 学时分配:4学时 主要参考书目: 1、陈珍珍等,统计学,厦门:厦门大学出版社,2003年版 2、于磊等,统计学,上海:同济大学出版社,2003年 3、徐国强等,统计学,上海:上海财经大学出版社,2001年版 思考题: 1、请阐述假设检验的步骤 2、假设检验的结果是接受原假设,是否表明原假设是正确的? 3、如何构造检验统计量? §1假设检验的一般问题 教学内容 一、假设检验的概念 1.概念 ?事先对总体参数或分布形式作出某种假设 ?然后利用样本信息来判断原假设是否成立 2.类型 ?参数假设检验----检验总体参数 ?非参数假设检验----检验总体分布形式 3.特点 ?采用逻辑上的反证法

?依据统计上的小概率原理----小概率事件在一次试验中不会发生 二、假设检验的步骤 ?提出原假设和备择假设 ?确定适当的检验统计量 ?规定显著性水平α ?计算检验统计量的值 ?作出统计决策 三、假设检验中的小概率原理 在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设。因为我们拒绝发生错误的可能性至多是α 四、假设检验中的两类错误 1. 第一类错误(弃真错误) ?原假设为真时,我们拒绝了原假设 ?第一类错误的概率为α 2. 第二类错误(取伪错误) ?原假设为假时,我们接受了原假设 ?第二类错误的概率为 β ?比第一类错误更容易发生 即接受原假设很容易发生 五、Neyman和Pearson检验原则 在控制犯第一类错误的概率α条件下, 尽可能使犯第二类错误的概率β减小。 该原则的含义是, 原假设要受到维护, 使它不致被轻易否定, 若要否定原假设, 必须有充分的理由---小概率事件发生了; 接受原假设, 只说明否定它的理由还不充分 六、双侧检验和单侧检验 教学方法 采用课堂教学方法 提问与讨论 1.在假设检验中显著性水平α有什么意义? 2.显著性水平α相同时,双侧检验和单侧检验的拒绝域是否相同? 板书设计 主要运用多媒体课件展示。重要内容采用书写板书

总体均值的假设检验

总体均值的假设检验 一、正态总体均值的检验 设n X X X ,, , 21为总体),(2 N 的一个容量为n 的样本. 1.方差2 已知, 的检验——u 检验法. 当2 02 已知时, 假设检验问题:0100 :;:H H . 选择检验统计量n X U /00 ,当0H 成立时,)1,0(~N U . 给定显著性水平 ,由标准正态分布分位点的定义, 有 }|{|2/u U P , 故拒绝域}{}{}|{|2/2/2/ u U u U u U W , 这种利用服从正态分布的检验统计量的检验方法称为u 检验法. 有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值 是小于等于原来的均值0 ,还是大于0 , 即检验假设 0100 :;:H H . 可以证明,在显著性水平 下,上述假设检验问题和 检验假设0100 :;:H H 有相同的拒绝域, 因此,遇到形如00 :H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100 :;:H H 的检验问题, 可归结为检验假设 0100 :;:H H . 这都是单边检验问题.给定显著性水平 ,求得的临界值点是上 分位点或上 1分位点.

例1 某厂生产的某种钢索的断裂强度X 服从),(2 N ,其中 40 (kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值 x 较以往正常生产的 大20(kg/cm 2 ),设总体方差不变,问在1.00 下,能否 认为这批钢索质量有显著提高? 解 依题意,检验假设0100 :;:H H , 由于40 已知,选择检验统计量n X U /0 因为0H 中的 全部都比1H 中的 要小,从直观上看,当0H 成立时,X 的取值 x 不应比 大很多,若偏差0 x 过大,则拒绝0H 而接受1H . 因为 0100 :;:H H 的拒绝域为}{ u U W , 故在显著性水平1.00 下原假设的拒绝域为 }{}{0n u X u U W . 本题中,9 n ,40 ,200 x ,33.201.0 u , 计算U 的值33.25.1/0 n x u 因此在显著性水平1.00 下不能拒绝0H ,即认为这批钢索质量没有显著提高. 2.方差2 未知, 的检验——t 检验法. 检验假设0100 :;:H H . 因为2 未知,而样本方差2S 是总体方差2 的无偏估计量,用S 代替 . 选择检验统计量 n S X T /0 , 当0H 成立时,)1(~ n t T .给定显著性水平 ,由t 分布分位点的定义, 有 )}1(|{|2/n t T P ,

正态总体参数的假设检验matlab处理

正态总体参数的检验 1 总体标准差已知时的单个正态总体均值的U检验 某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。从该切割机切割的一批金属棒中随机抽取15根,测得长度为: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103 假设总体的方差不变,试检验该切割机工作是否正常,即检验总体均值是否等于100?,取显著性水平a=0.05。 分析: 这是总体标准差已知时的单个正态总体均值的检验,根据题目要求可写出如下假设: H0:u=u0=100,H1=u /=u0(u不等于u0) H0称为原假设,H1称为被择假设(或对立假设) MATLAB统计工具箱中的ztest函数用来做总体标准差已知时的单个正态总体均值的检验 调用格式ztest [h,p,muci,zval]=ztest(x,mu0,Sigma,Alpha,Tail) x:是输入的观测向量 mu0:假设的均值 Sigma:总体标准差 Alpha:显著性水平,默认0.05

Tail:尾部类型变量,‘both’双侧检验(默认),u不等于uo;‘right’右侧检验,u>u0; ‘left’左侧检验,uAlpha时,接受原假设H0;p<=Alpha 时,拒绝原假设H0. muci:总体均值u的置信水平为1-Alpha的置信区间 zval:检验统计量的观测值 %定义样本观测值向量 x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103]; mu0=100; %原假设中的mu0 sigma=2; %总体标准差 Alpha=0.05; %显著性水平 %调用ztest函数做总体均值的双侧检验(默认), %返回变量h,检验的p值,均值的置信区间muci,检验统计量的观测值zval [h,p,muci,zval]=ztest(x,mu0,sigma,Alpha) h = 1 p =

正态总体均值及方差的假设检验表

正态总体均值及方差的假设检验表: 单正态总体均值及方差的假设检验表(显著性水平α) 1 a n ~N (0,1)2 01 a S n ~t 2 2 02 1 0n i n i a ~ 2或 2 21 2 n 2 2n 2 21 n 20 ~ 22 21 1 2 n 2 21n 21 1 n

2 212 12 n n ~N (0,1) 2 1 2 11W S n n ~ 2 , 22 1122 122 n S n S n n 22 22 21112 2 1 2 1i i n i i a a n ~12,F n n 2 或 2 2 221 n S n ~21,1n 1 2或 2

Z =ξ-η~N (a 1-a 2,21σ+2 2σ),Z i =ξi -ηi . 2 21 2 Z n ) 2 1 S n ~ 2

单正态总体均值及方差的区间估计(置信度1-α) 已知 1 a n ~N (0,1)0 1 1 , n n u u n n 1 a S n ~t , 1 1 t t n n 2 02 1 n i n i a ~ 001 122, 12 2 i i i i n n a a 20 ~ 21 ,12 2 n

2个正态总体均值差及方差比的区间估计(置信度1-α) 12 212 12 a n n ~N (0,1) 2212 12 u n n 112 11W a S n n 22 n t 1 22 12 11W n n t S n n )2 a ξ-12 ,1 ,2 2 n n A F A 2 112 222 2 11n S n S ~ 2 2 21112W n S n S n n 212 1212 2 2 1 n i i n i i n a A n a ,2 122 2 21111n n S B n n S . (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

单个正态总体的假设检验

学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2.2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他.也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举.但现今德国10马克的印有高斯头像的钞票,其上还印有正态

第六章 假设检验习题及答案教案资料

第六章假设检验习题 及答案

假设检验习题及答案 填空题 1.原假设与备择假设是一个__________,也就是说在假设检验中原假设与备择假设只有一个成立,且必有一个成立。(完备事件组) 2.我们在检验某项研究成功与否时,一般以研究目标作为__________,如在研究新管理方法是否对销售业绩(周销售量)产生影响时,设原周销售量为A元,欲对新管理方法效果进行检验,备择假设为__________。 (备择假设H1:μ>A) 单选题 从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断的过程称为( ) A.参数估计 B.统计推断 C.区间估计 D.假设检验 答案:d 2.假设检验的概率依据是( )。 A.小概率原理 B.最大似然原理 C.大数定理 D.中心极限定理 答案:a 多选题

1.统计推断包括以下几个方面的内容( )。 A.通过构造统计量,运用样本信息,实施对总体参数的估计 B.从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断 C.相关分析 D.时间序列分析 E.回归分析 答案:a, b 2.假设检验的基本思想是( )。 A.先对总体的参数或分布函数的表达式做出某种假设,然后找出一个在假设成立条件下出现可能性甚小的(条件)小概率事件。 B.如果试验或抽样的结果使该小概率事件出现了,这与小概率原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设。 C.若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时称假设也实验结果是相容的,或者说可以接受原来的假设。 D.如果试验或抽样的结果使该小概率事件出现了,则不能否认这个假设。 E.若该小概率事件在一次试验或抽样中并未出现,则否定这个假设。 答案:a, b, c 3.假设检验的具体步骤包括( )。 A.根据实际问题的要求,提出原假设及备择假设;

第三节-两正态总体的假设检验

第三节 两个正态总体的假设检验 上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题. 1.两正态总体数学期望假设检验 (1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22 已知,要检验的是 H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 怎样寻找检验用的统计量呢从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…, 1n X 及Y 1,Y 2,…,2n Y ,由于 2111~,X N n σμ?? ??? ,2222~,Y N n σμ?? ???, E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )= 22 121 2 n n σσ+, 故随机变量X -Y 也服从正态分布,即 X -Y ~N (μ1-μ2, 22 121 2 n n σσ+). 从而 X Y ~N (0,1). 于是我们按如下步骤判断. (a ) 选取统计量 Z X Y , () 当H 0为真时,Z ~N (0,1). (b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使 P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. () (c ) 由两个样本观察值计算Z 的观察值z 0: z 0 x y . (d ) 作出判断: 若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0. 例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

第五章统计学教案(假设检验)

第五章假设检验 参数估计和假设检验是统计推断的两个组成部分,它们分别从不同的角度利用样本信息对总体参数进行推断。前者讨论的是在一定的总体分布形式下,借助样本构造的统计量,对总体未知参数作出估计的问题;后者讨论的是如何运用样本信息对总体未知参数的取值或总体行为所做的事先假定进行验证,从而作出真假判断。通俗地、简单地说,前者是利用样本信息估计总体参数将落在什么范围里;而后者则是利用样本信息回答总体参数是不是会落在事先假定的某一个范围里。 本章的目的与要求 通过本章学习,要求学生在充分理解有关抽样分布理论的基础上,理解掌握假设检验的有关基本概念;明确在假设检验中可能犯的两种错误,以及这两种错误之间的联系;熟练掌握总体均值和总体成数的检验方法,主要是Z 检验和t检验;对于非参数的检验,也应有所了解,包括符号检验、秩和检验与游程检验等。 本章主要内容(计划学时2 ) 一、假设检验概述与基本概念 1、假设检验概述 2、假设检验的有关基本概念 二、总体参数检验 1、总体平均数的检验 2、总体成数的检验 3、总体方差的检验 三、总体非参数检验 1、符号检验 2、秩和检验 3、游程检验 学习重点 一、假设检验的有关基本概念; 二、总体平均数与总体成数的检验; 三、非参数检验; 学习难点 一、假设检验的基本思路与有关概念; 二、两类错误的理解及其关系; 第一节统计检验的基本概念 一、假设检验概述

基本思路:首先,对总体参数作出某种假设,并假定它是成立的。然后,根据样本得到的信息(统计量),考虑接受这个假设后是否会导致不合理的结果,如果合理就接受这个假设,不合理就拒绝这个假设。 所谓合理性,就是看是否在一次的观察中出现了小概率事件。 小概率原理:就是指概率很小的事件,在一次试验中实际上是几乎不可能出现。这种事件可以称其为“实际不可能事件”。 二、假设检验的基本概念 (一)原假设与对立假设 1、原假设:用“H0:”表示(也称“零假设”、“虚无假设”) 这是研究者对总体参数事先提出的假设。通常以总体没有发生显著变化为原假设。 2、对立假设:用“H1:”表示 对立假设也称“备择假设” 这是与原假设完全对立的、矛盾的假设,假设总体发生了显著的变化。 (二)显著性水平与显著性差异 1、显著性水平: 在统计检验中,判断假设是否合理,是根据一定的标准来确定的,这个标准是在检验之前由研究者事先主观选定的一个小概率值,用α表示.这个α就是显著性水平。 常用的α有0.1、0.05或0.01等 2、显著性差异: 如果统计量和假设的参数值存在差距,有两种可能: (1)差距不是很大(即不在小概率范围内出现),即可认为总体没发生显著变化。可接受原假设。 (2)差距很大(即出现在小概率范围内),即可认为总体发生了显著变化。说明存在着显著性差异,故拒绝原假设。 (三)双侧检验与单侧检验 1、双侧检验(双尾检验): 双侧检验要求同时注意估计值偏高和偏低的倾向,这时,差距不分正负, 给出的显著水平α 2、单侧检验(单尾检验):(有左单侧和右单侧两种) 单侧检验只注意估计值是否偏高(或偏低),它是单方向的,给出的显著性水平α集中在同一侧。偏高时,差距为正,为右单侧检验;偏低时,差距为负,为左单侧检验。 (四)两种类型的错误 1、第一类错误——以真为假

§8.2总体均值的假设检验

§8.2总体均值的假设检验 一、正态总体均值的检验 设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当2 02σσ=已知时, 假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量n X U /00 σμ-= ,当0H 成立时,)1,0(~N U . 给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P , 故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= , 这种利用服从正态分布的检验统计量的检验方法称为u 检验法. 有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ, 即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和 检验假设0100μμμμ>=:;:H H 有相同的拒绝域, 因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H . 这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点. 例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?

正态分布教案1

2.4正态分布 教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 教具准备:多媒体、实物投影仪。 教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化 6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质 教学过程: 学生探究过程: 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

第六章 估计与假设检验教案资料

第六章 参数估计与假设检验 第一节 参数估计 一、参数估计概述 在许多实际问题中,总体被理解为我们所研究的那个统计指标,它在一定范围内取数值,而且是以一定的概率取各种数值的,从而形成一个概率分布,但是这个概率分布往往是未知的。例如为了制定绿色食品的有关规定,我们需要研究蔬菜中残留农药的分布状况,对这个分布我们知之甚少,以致它属于何种类型我们都不清楚。有时我们可以断定分布的类型,例如在农民收入调查中,根据实际经验和理论分析如概率论中的中心极限定理,我们断定收入服从正态分布,但分布中的参数取何值却是未知的。这就导致统计估计问题。统计估计问题专门研究由样本估计总体的未知分布或分布中的未知参数。直接对总体的未知分布进行估计的问题称为非参数估计;当总体分布类型已知,仅需对分布的未知参数进行估计的问题称为参数估计。本节我们研究参数估计问题。本节及以后假定抽样方法为放回简单随机抽样,样本的每个分量都与总体同分布,它们之间相互独立。 二、参数估计的基本方法 (一)估计量与估计值 1.参数估计就是用样本统计量去估计总体参数 2.用来估计总体参数的统计量的名称称为估计量,如样本均值、样本比例、样本方差等都可以是一个估计量。 3.估计量的具体数值称为估计值 (二)点估计与区间估计 参数估计方法有点估计与区间估计两种方法。 1.参数估计的点估计法 (1)设总体X 的分布类型已知,但包含有未知参数θ,从总体中抽取一个简单随机样本12(,,,)n X X X L ,欲利用样本提供的信息对总体未知参数θ进行估计。构造一个适当的统计量 ?T θ=12(,,,)n X X X L 作为θ的估计,称?θ为未知参数θ的点估计量(Point estimate )。当有了一个具体的样本 观察值12(,,,)n x x x L 后,将其代入估计量中就得到估计量的一个具体观察值 T 12(,,,)n x x x L ,称为参数θ的一个点估计值。今后点估计量和点估计值这两个名词将不 强调它们的区别,通称为点估计,根据上下文不难知道此处的点估计究竟是点估计量还是点 估计值。 通俗地说,用样本估计量的值直接作为总体参数的估计值称为点估计。 常用的点估计量有:X μ∧= p P ∧ = 2 2 2() 1 X X s n σ∧-== -∑ 2、估计的评价标准: (1)无偏性: 设?T θ=12(,,,)n X X X L 是未知参数θ的一个点估计量,若?θ满足

《独立性检验的基本思想及其初步应用》教学设计

河南省高中数学优质课评选 教学设计 课题: 独立性检验的基本思想及其初步应用执教人: 朱海红 单位: 濮阳外国语学校

《独立性检验》教学设计 一、教学目标 1、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题. 2、过程与方法: 通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力. 3、情感态度价值观: 通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。 二、教学重点 理解独立性检验的基本思想及实施步骤. 三、教学难点 1.了解独立性检验的基本思想; 2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。 四、教学方法 以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容.

五、教学过程设计 教 学环节教学内容 师生 互动 设计 意图 创 设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。 情境引入、提出问题:1、吸烟与患肺癌有关系吗? 2、你有多大程度把握吸烟与患肺癌有关? 组织引 导学生 课下预 习问题 背景, 初步明 确定要 解决 “吸烟 与患肺 癌”之 间的关 系问题. 好的课 堂情景 引入, 能激发 学生求 知欲, 是新问 题能够 顺利解 决的前 提条件 之一. 初步探索、展示内涵 变量有定量变量、分类变量,定量变量—回归分析;分类变量 —独立性检验,引出课题。 问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些 量呢? 列联表:分类变量的汇总统计表(频数表). 一般我们只研 究每个分类变量只取两个值,这样的列联表称为2*2列联表. 如 吸烟与患肺癌的列联表: 不患肺癌患肺癌总计 不吸烟7775 42 7817 吸烟2099 49 2148 总计9874 91 9965 问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在 不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比 例为________. 1,教师 通过举 例,引 入分类 变量这 个新概 念.引出 课题2, 组织学 生填表 讨论问 题,初 步得到 问题的 结论. 从实际 问题出 发引入 概念, 提出问 题有利 于学生 明白我 们要学 习这节 课的必 要性。。 教 学环教学内容 师生 互动 设计 意图

单个正态总体均值和方醚的假设检验

§2 一.已知方差2σ, 检验假设::H μμ=o o (1)提出原假设::H μμ=o o ( μo 是已知数) (2)选择统计量: 2 X U n μσ-= o (3 )求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (0,1)U N : (4)选择检验水平 α,查正态分布表(附表1),得临界值12 u α- ,即 2 12 ( )X P u n α μα σ- ->=o (5) 根据样本值计算统计量的观察值u o ,给出拒绝或接受H 。的判断: 当 12 u u α - >o 时, 则拒绝H 。; 当 12 u u α - ≤o 时, 则接受H 。. 【例1】 某厂生产干电他,根据长期的资料知道,干电他的寿 解:

现取0.05 α=,即 ( 1.96)0.05 5/10 X P>= 因而,拒绝原假设,即这批干电他的平均寿命不是200小时. 【例2】P.191 ――例2.1(0.05 α=,0.01) P.193――例2.2 二.未知方差2σ, 检验假设:: Hμμ = o o : (1)提出原假设:: Hμμ = o o ( μ o是已知数) (2)选择统计量:2 X T S n - =o (3)求出在假设H o成立的条件下,确定该统计量服从的概率分布: (1) T t n- : (4)选择检验水平 α,查自由度为1 n-的t-分布表(附表2),得临界值λ,即 2 () X P S n μ λα - >= o

(5) 根据样本值计算统计量的观察值t o ,且给出拒绝或接受H 。的判断: 当t λ> o 时, 则拒绝H 。; 当 t λ≤o 时, 则接受H 。. 【例2】 某糖厂用自动打包机包装糖,每包重量服从正态分布,其标准重量μo =100斤.某日开工后测得9包重量如下: 99.3, 98.7, 100.5,101.2, 98.3, 99.7, 99.5, 102.1,100.5, 问:这一天打包机的工作是否正常?(检验水平α=5%) 解: (0)计算样本均值与样本均方差: 1.21S = (1)提出原假设::100H μ=o (2)选择统计量: 2 9 X T S = (3)求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (8)T t : (4)检验水平 α=0.05,查自由度为8的t -分布表(附表2),得临界值 2.36λ= ,即

相关主题
文本预览
相关文档 最新文档