当前位置:文档之家› 初中数学代数几何解题技巧

初中数学代数几何解题技巧

初中数学代数几何解题技巧
初中数学代数几何解题技巧

如何用好题目中的条件暗示

有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。

【例1】直线与x轴、y轴分别交于B、A两点,如图1。

图1

(1)求B、A两点的坐标;

(2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。

解析:(1)容易求得,A(0,1)。

(2)如图2,

图2

∵,A(0,1),

∴OB=,OA=1。

∴在Rt△AOB中,容易求得∠OBA=30°

∵把△AOB以直线AB为轴翻折,

∴∠OBC=2∠OBA=60°,BO=BC。

∴△OBC是等边三角形

以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。

反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。

图3

(1)求三解形ABC的面积。

(2)证明不论a取任何实数,三角形BOP的面积是一个常数;

(3)要使得△ABC和△ABP的面积相等,求实数a的值。

解析:(1)容易求得:A(,0),B(0,1),

∴。

(2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。

图4

(3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得:

∴,

∵,

∴,∴。

②如图5,当点P在第一象限时,用类似的方法可求得a=。

图5

反思:由第(1)小题中求得的和第(2)小题中证明所得的结论:三角形BOP的面积是一个常数,实质上暗示着第(3)小题的解题思路:利用

来解。

通过这两道题目的分析可以发现,在解题过程中,如果经常回头看一看、想一想,我们往往会发现,很多题目的解题思路原来就在题目之中。

分式运算的几点技巧

分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。

一. 分段分步法

例1. 计算:

解:原式

说明:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分

段分步法,则可使问题简单化。

同类方法练习题:计算

(答案:)

二. 分裂整数法

例2. 计算:

解:原式

说明:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。

同类方法练习题:有一些“幸福”牌的卡片(卡片数目不为零),团团的卡片比这些多6张,圆圆的卡片比这些多2张,且知团团的卡片是圆圆的整数倍,求团团和圆圆各多少张卡片?(答案:团团8张,圆圆4张)

三. 拆项法

例3. 计算:

解:原式

说明:对形如上面的算式,分母要先因式分解,再逆用公式,各个分式拆项,正负抵消一部分,再通分。在解某些分式方程中,也可使用拆项法。

同类方法练习题:计算:

(答案:)

四. 活用乘法公式

例4. 计算:

解:当且时,

原式

说明:在本题中,原式乘以同一代数式,之后再除以同一代数式还原,就可连续使用平方差公式,分式运算中若恰当使用乘法公式,可使计算简便。

同类方法练习题:计算:

(答案:)

五. 巧选运算顺序

例5. 计算:

解:原式

说明:此题若按两数和(差)的平方公式展开前后两个括号,计算将很麻烦,一般两个分式的和(差)的平方或立方不能按公式展开,只能先算括号内的。

同类方法练习题:解方程

(答案:)

六. 见繁化简

例6. 计算:

解:原式

说明:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。同类方法练习题:解方程

(答案:)

在分式运算中,应根据分式的具体特点,灵活机动,活用方法。方能起到事半功倍的效率。

多边形内角和问题的求解技巧

1、多边形的每个内角与和它相邻的外角互为补角。这个条件在题目中一般不会作为已知条件给出,因此,在解题时应根据需要加以利用。

例1 一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,求此正多边形的边数。

分析:由于这个正多边形的每个外角与和它相邻的内角互为邻补角,根据题意,可先求出外角的大小,再求边数。

解:设每个外角的大小为x°,则与它相邻的内角的大小为(3x+20)度。根据题意,得

解得,即每个外角都等于40°。

所以,即这个正多边形的边数为9。

2、利用多边形内角和公式求多边形的边数时,经常设边数为n,然后列出方程或不等式,利用代数方法解决几何问题。

例2 已知一个多边形的每个内角都等于135°,求这个多边形的边数。

解法1:设多边形的边数为n,依题意,得

解得n=8,即这个多边形的边数为8。

解法2:依题意知,这个多边形的每个外角是180°-135°=45°。

所以,多边形的边数,即这个多边形的边数为8。

3、正多边形各内角相等,因此各外角也相等。有时利用这种隐含关系求多边形的边数,比直接利用内角和求边数简捷(如上题解法2)。解题时要注意这种逆向思维的运用。

例3 一个多边形除去一个内角后,其余内角之和是2570°,求这个多边形的边数。

分析:从已知条件可知这是一个与多边形内角和有关的问题。由于除去一个内角后,其余内角之和为2570°,故该多边形的内角和比2570°大。又由相邻内、外角间的关系可知,内角和比2570°+180°小。可列出关于边数n的不等式,先确定边数n的范围,再求边数。

解:设这个多边形的边数为n,则内角和为(n-2)·180°。依题意,得

解这个不等式,得。

所以n=17,即这个多边形的边数为17。

说明:这类题都隐含着边数为正整数这个条件。

4、把不规则图形转化为规则图形是研究不规则图形的常用方法,其解题关键是构造合适的图形。

1+∠2+∠3+∠4+∠5+∠6+∠7的大小。

图1

分析:解题关键是把该图形与凸多边形联系起来,从而利用多边形内角和定理来解决,因此可考虑连接CF。

解:连接CF。

∵∠COF=∠DOE

∴∠1+∠2=∠OCF+∠OFC

∴∠1+∠2+∠3+∠4+∠5+∠6+∠7

=∠OCF+∠OFC+∠3+∠4+∠5+∠6+∠7

=(5-2)×180°

证明三角形全等的一般思路

一、当已知两个三角形中有两边对应相等时,找夹角相等(SAS)或第三边相等(SSS)。

例1. 如图1,已知:AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、D在同一条直线上。求证:AD=BE

分析:要证AD=BE

注意到AD是△ABD或△ACD的边,BE是△DEB或△BCE的边,只需证明△ABD≌△DEB或△ACD ≌△BCE,显然△ABD和△DEB不全等,而在△ACD和△BCE中,AC=BC,CD=CE,故只需证它们的夹角∠ACD=∠BCE即可。

而∠ACD=∠ACE+60°,∠BCE=∠ACE+60°

故△ACD≌△BCE(SAS)

二、当已知两个三角形中有两角对应相等时,找夹边对应相等(ASA)或找任一等角的对边对应相等(AAS)

例2. 如图2,已知点A、B、C、D在同一直线上,AC=BD,AM∥CN,BM∥DN。

求证:AM=CN

分析:要证AM=CN

只要证△ABM≌△CDN,在这两个三角形中,由于AM∥CN,BM∥DN,可得

∠A=∠NCD,∠ABM=∠D

可见有两角对应相等,故只需证其夹边相等即可。

又由于AC=BD,而

故AB=CD

故△ABM≌△CDN(ASA)

三、当已知两个三角形中,有一边和一角对应相等时,可找另一角对应相等(AAS,ASA)或找夹等角的另一边对应相等(SAS)

例3. 如图3,已知:∠CAB=∠DBA,AC=BD,AC交BD于点O。

求证:△CAB≌DBA

分析:要证△CAB≌△DBA

在这两个三角形中,有一角对应相等(∠CAB=∠DBA)

一边对应相等(AC=BD)

故可找夹等角的边(AB、BA)对应相等即可(利用SAS)。

四、已知两直角三角形中,当有一边对应相等时,可找另一边对应相等或一锐角对应相等例4. 如图4,已知AB=AC,AD=AG,AE⊥BG交BG的延长线于E,AF⊥CD交CD的延长线于F。

求证:AE=AF

分析:要证AE=AF

只需证Rt△AEB≌Rt△AFC,在这两个直角三角形中,已有AB=AC

故只需证∠B=∠C即可

而要证∠B=∠C

需证△ABG≌△ACD,这显然易证(SAS)。

五、当已知图形中无现存的全等三角形时,可通过添作辅助线构成证题所需的三角形

例5. 如图5,已知△ABC中,∠BAC=90°,AB=AC,BD是中线,AE⊥BD于F,交BC于E。求证:∠ADB=∠CDE

分析:由于结论中的两个角分属的两个三角形不全等,故需作辅助线。注意到AE⊥BD,∠BAC=90°,有∠1=∠2,又AB=AC。故可以∠2为一内角,以AC为一直角边构造一个与△ABD 全等的直角三角形,为此,过C作CG⊥AC交AE的延长线于G,则△ABD≌△CAG,故∠ADB =∠CGA。

对照结论需证∠CGA=∠CDE

又要证△CGE≌△CDE,这可由

CG=AD=CD,∠ECG=∠EBA=∠ECD,CE=CE而获证。

计算线段长度的方法技巧

线段是基本的几何图形,是三角形、四边形的构成元素。初一同学对于线段的计算感到有点摸不着头绪。这是介绍几个计算方法,供同学们参考。

1. 利用几何的直观性,寻找所求量与已知量的关系

例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

图1

分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11

所以

又因为CD=10cm,所以AB=96cm

2. 利用线段中点性质,进行线段长度变换

例2. 如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB =14cm,求PA的长。

图2

分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14

所以PB=2NB=2×14=28

又因为AP=AB-PB,AB=80

所以AP=80-28=52(cm)

说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 根据图形及已知条件,利用解方程的方法求解

例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?

图3

分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观

察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以

因为,即

由<1>、<2>可得:

即BC=3AB

例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

图4

分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。

解:若设AC=2x,则

于是有

那么

解得:

所以

4. 分类讨论图形的多样性,注意所求结果的完整性

例5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。

分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。

(完整版)初中数学公式大全

初中数学公式 大全

初中数学定理、公式汇编 一、数与代数 1. 数与式 (1) 实数 实数的性质: ①实数a 的相反数是—a ,实数a 的倒数是a 1 (a ≠0); ②实数a 的绝对值: ?????<-=>=) 0()0(0) 0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。 二次根式: ①积与商的方根的运算性质: b a ab ?=(a ≥0,b ≥0); b a b a =(a ≥0,b >0); ②二次根式的性质: ???<-≥==)0() 0(2a a a a a a (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=?(m 、n 为正整数);

②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 n m n m a a a -=÷(a ≠0,m 、n 为正整数,m>n ) ; ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数); ④零指数:10=a (a ≠0); ⑤负整数指数:n n a a 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))(( b a b a b a -=-+; ⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±; 分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ??=;m b m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bd ac d c b a =?; ③分式的除法法则:)0(≠=?=÷c bc ad c d b a d c b a ; ④分式的乘方法则:n n n b a b a =)((n 为正整数); ⑤同分母分式加减法则: c b a c b c a ±=±; ⑥异分母分式加减法则:bc c d ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:

初中数学经典几何难题及答案39256

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4 题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 第1题图 第2题图 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 第3题图 第4题图 F

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

初中数学各种公式(完整版)

数学各种公式及性质 1. 乘法与因式分解 ①(a +b )(a -b )=a 2-b 2;②(a ±b )2=a 2±2ab +b 2;③(a +b )(a 2-ab +b 2)=a 3+b 3; ④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab 。 2. 幂的运算性质 ①a m ×a n =a m +n ;②a m ÷ a n =a m -n ;③(a m )n =a mn ;④(ab )n =a n b n ;⑤(a b )n =n n a b ; ⑥a -n = 1n a ,特别:()-n =()n ;⑦a 0 =1(a ≠0)。 3. 二次根式 ①( )2=a (a ≥0);② =丨a 丨;③ = × ;④ = (a >0,b ≥0)。 4. 三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a ,b 分别为向量a 和向量b ) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|; -|a|≤a≤|a|; 5. 某些数列前n 项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n -1)=n 2 ; 2+4+6+8+10+12+14+…+(2n)=n(n+1); 12+22+32+42+52+62+72+82+…+n 2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n 3=n 2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6. 一元二次方程 对于方程:ax 2 +bx +c =0: ①求根公式是x =2b a -,其中△=b 2-4ac 叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第 4题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

长线交MN于E、F.求证:∠DEN=∠F. 经典难题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 第1题图第2题图 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及 D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题: 设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)

第3题图 第4题图 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 第1题图 第2题图 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中数学旋转解题几何

旋转基础练习一 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有 () A.6个B.7个C.8个 D.9个 2.从5点15分到5点20分,分针旋转的度数为 () A.20°B.26°C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于 () A.70°B.80°C.60° D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.

(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1 2 AB. (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置? (2)指出如图7所示中的线段BE与DF之间的关系. 2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少? 旋转基础练习二 一、选择题 1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于() A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是 () A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点转动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学旋转解题几何之令狐文艳创作

旋转基础练习一 令狐文艳 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有() A.6个B.7个C.8个D.9个 2.从5点15分到5点20分,分针旋转的 度数为() A.20° B.26° C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心, 将△ABC旋转到△A′B′C的位置,其中 A′、B′分别是A、B的对应点,且点B 在斜边A′B′上,直角边CA′交AB于 D,则旋转角等于() A.70° B.80° C.60°

D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着 某个方向转动一个角度,这样的图形运动 称 为________,这个定点称为________,转 动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三 角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重 合,那么旋转中心是点_________;旋转 的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC 内一点,△ABD经过旋转后到达△ACP的 位置,则,(1)旋转中心是________; (2)旋转角度是________;(3)△ADP

是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段 BC的长度,可以变到△ECD的位置. 如图5,以BC为轴把△ABC翻折180°, 可以变到△DBC的位置. (图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转 90°,可以变到△AED的位置,像这样,其 中一个三角形是由另一个三角形按平行移 动、翻折、旋转等方法变成的,这种只改变 位置,不改变形状和大小的图形变换,叫做 三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中 AB. 点,F是BA延长线上一点,AF=1 2

(完整版)初中数学代数知识大全

初中数学代数知识大全 一、有理数的运算 1、 相反数:::0:0a a a a --的相反数为的相反数为的相反数为 2、 绝对值: 3、 倒数:1ab =,.a b 和互为倒数 或 1a b = 4、 有理数的加法:(||||)a b a b ++=++ ()(||||)a b a b -+-=-+ (||||)a b a b -+=-- ()(||||)(||||)a b a b a b +-=+-> 5、 有理数的减法:()a b a b -=+- 6、 有理数的乘法:||||a b a b ?=+? ||||a b a b -?=-? (0,0)a b ≥≥ 7、 有理数的除法:||||a b a b ÷=+÷ ||||a b a b -÷=-÷ (0,0)a b ≥≥ 8、 有理数的乘方: ()n a a a a n a a =????L 个 22() n n a a =- 21 21 () n n a a ++=-- (0)a ≥ 二、整式的运算 1、 整式的加减: (1) 非同类项的整式相加减:ab mn ab mn ±=±(不能合并!) (2) 同类项的整式相加减:()ab an b n a ±=±(合并同类项,只把系数相加减) 2、 整式的乘除: (1) 幂的八种计算 (a ) 同底数幂相乘:m n m n a a a +?= (b ) 同底数幂相除:(0)m n m n a a a a -÷=≠ (c ) 零指数:0 1(0)a a =≠ (d ) 负指数: 1 (0)p p a a a -= ≠ (e ) 积的乘方: () m m m ab a b =?

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

初中数学九大几何模型解题思路

九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2

(3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC= ∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; O C O C D E O B C D E O A C D

②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中数学公式大全

初中数学常用公式 一?代数: 1.1绝对值运算 2.1平面几何:角 1.2有理数的运算 2.2 三角形 1.3整式的乘法运算 2.3四边形 1.4整式乘法公式 2.4比例性质 1.5整式除法公式 2.5三角函数 1.6分式的运算公式 2.6与圆有关的公式1.7 一兀二次方程 2.7点与圆的位置1.8因式分解 2.8直线与圆的位置1.9不等式 2.9两圆的位置 1.10二次根式 1.1绝对值运算 1.2有理数的运算 1.3整式的乘法运算

1.4 整式乘法公式 1.5 整式除法公式 1.6 分式的运算公式 1.7 一元二次方程:的解1.8 因式分解

1.9 不等式若,则 若,则 若,则 1.10 二次根式 2.1 角 1周角=360 ° 1 平角=180 ° 1 直角=90 ° 1°= 60 ;1 = 60”若,则/ A与/ B互为余角。 若,则/ A与/ B互为补角。 2.2 三角形 若,则 若,则 若,则为直角三角形

正弦定理: 余弦定理: 2.3 四边形 (a为底边长,h为底边上的高)(ab 为两邻边长) (ab 为菱形的两条对角线) 2.4 比例性质 若,则 若,则 2.5 三角函数

2.6 与圆有关的公式 圆周长 圆面积 弧长 扇形面积 2.7 点与圆的位置 设P点到圆心的距离为d,圆的半径长为r,则点P 在圆上 点P 在圆内 点P 在圆外 2.8 直线与圆的位置 设圆心到直线的距离为d,圆半径长为r,则

直线与圆相切 直线与圆相离 直线与圆相交 2.9 两圆的位置 设两圆半径分别为R和r,圆心距为d,则 两圆外离 两圆外切 两圆相交 两圆内切 两圆内含

初中数学必背公式归纳整理

初中数学必背公式归纳整理 很多初中同学想要初中的公式,所以整理了一些,希望大家多多理解并进行记忆,以便考个好的数学成绩。 初中数学必背公式归纳乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式V=s*h 圆柱体V=pi*r2h 常见的初中数学公式 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正 方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC , M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . D 2 C 2 B 2 A 2 D 1 C 1 B 1 C D A A 1 A N F E C D M B

经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初 二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) · A D H E M C B O · G A O D B E C Q P N M

C G D E 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边, 在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. · O Q P B D E C N M · A

初中数学:常用几何题的原理及解题思路

初中数学:常用几何题的原理及解题思路 几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助! 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: 1.正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 2.逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如:

可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去… 这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 3.正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。 给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键… 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…

证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

相关主题
文本预览
相关文档 最新文档