当前位置:文档之家› 生物信息学名词解释(原创)

生物信息学名词解释(原创)

生物信息学名词解释(原创)
生物信息学名词解释(原创)

名词解释(笔者承认偷了点懒,只是把能在网上找到的都整合在一张上面了,此整理仅适合开卷考试)

基因表达(gene expression):基因通过转录和翻译,产生蛋白质产物和直接转录RNA参与生物功能的过程。

基因调控:涉及基因的启动关闭、活性的增加或减弱,发生在转录阶段、转录后加工阶段和翻译阶段。

负调控(Negative control):阻遏蛋白(repressor protein)结合在受控基因上时不表达,不结合时就表达的形式。

正调控(Positive control):基因表达的活化物( activators )结合在受控基因上时,激活基因表达,不结合时就不表达的形式。

一次数据库:记录实验的结果和一些初步的解释。

二次数据库:对一次数据库的数据进行分析和提炼加工后形成的、便于使用的数据库。

空位罚分 (gap penalty ):序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空位并进行罚分,以控制空位插入的合理性。

Consensus sequence:共有序列,指多种原核基因启动序列特定区域内,通常在转录起始点上游-10及-35区域存在一些相似序列。

FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。

Similarity相似性:是直接的连续的数量关系,是指序列比对过程中用来描述检测序列和目标序列之间相同DNA碱基或氨基酸残基顺序所占比列的高低。

genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。

模体(motif):短的保守的多肽段,含有相同模体的蛋白质不一定是同源的,一般10-20个残基。

查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。

打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。

空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。

PDB:PDB中收录了大量通过实验(X射线晶体衍射,核磁共振NMR)测定的生物大分子的三维结构,记录有原子坐标、配基的化学结构和晶体结构的描述等。PDB数据库的访问号由一个数字和三个字母组成(如,4HHB),同时支持关键词搜索,还可以FASTA程序进行搜索。

Prosite:是蛋白质家族和结构域数据库,包含具有生物学意义的位点、模式、可帮助识别蛋白质家族的统计特征。 PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;PROSITE还包括根据多序列比对而构建的序列统计特征,能更敏感地发现一个序列是否具有相应的特征。

PIR:是一个集成了关于蛋白质功能预测数据的公共资源的数据库,其目的是支持基因组蛋白质研究。SWLSS—MODE:是目前最著名的蛋白质三级结构预测服务器,建立在已知生物大分子结构基础上,利用同源建模的方法对未知序列的蛋白质三级结构进行预测。

E值:衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。

点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。

多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在

结构上的异同,来回答大量的生物学问题。

MEGA:是一款免费的构树软件,它提供了序列比对、格式转换、数据修订、距离计算、系统树重建和可信度评估等全套功能,能对DNA、mRNA氨基酸序列及遗传距离进行系统发生分析以及基因分化年代的分析。BioEdit:BioEdit是一个序列编辑器与分析工具软件。功能包括:序列编辑、外挂分析程序、RNA分析、寻找特征序列、支持超过20000个序列的多序列文件、基本序列处理功能、质粒图绘制等等。

GSS:基因组勘测序列,是基因组DNA克隆的一次性部分测序得到的序列。包括随机的基因组勘测序列、cosmid/BAC/YAC末端序列、通过Exon trapped获得基因组序列、通过Alu PCR获得的序列、以及转座子标记序列等。

coiled coil:卷曲螺旋,是蛋白质中由2~7条α螺旋链相互缠绕形成类似麻花状结构的总称。卷曲螺旋是控制蛋白质寡聚化的元件,在机体内执行着分子识别、代谢调控、细胞分化、肌肉收缩、膜通道等生物学功能。

密码子偏好性(codon bias):氨基酸的同义密码子的使用频率与相应的同功tRNA的水平相一致,大多数高效表达的基因仅使用那些含量高的同功tRNA所对应的密码子,这种效应称为密码子偏好性。

基因预测的从头分析:依据综合利用基因的特征,如剪接位点,内含子与外显子边界,调控区,预测基因组序列中包含的基因。 31.结构域(domain):保守的结构单元,包含独特的二级结构组合和疏水内核,可能单独存在,也可能与其他结构域组合。相同功能的同源结构域具有序列的相似性。

一致序列:这些序列是指把多序列联配的信息压缩至单条序列,主要的缺点是除了在特定位置最常见的残基之外,它们不能表示任何概率信息。

超家族:进化上相关,功能可能不同的一类蛋白质。 33.模体(motif):短的保守的多肽段,含有相同模体的蛋白质不一定是同源的,一般10-20个残基。

GenPept:是由GenBank中的DNA序列翻译得到的蛋白质序列。数据量很大,且随核酸序列数据库的更新而更新,但它们均是由核酸序列翻译得到的序列,未经试验证实,也没有详细的注释。 41.折叠子(Fold):在两个或更多的蛋白质中具有相似二级结构的大区域,这些大区域具有特定的空间取向。

TrEMBL:是与SWISS-PROT相关的一个数据库。包含从EMBL核酸数据库中根据编码序列(CDS)翻译而得到的蛋白质序列,并且这些序列尚未集成到SWISS-PROT数据库中。 43.MMDB(Molecular Modeling Database):是(NCBI)所开发的生物信息数据库集成系统Entrez的一个部分,数据库的内容包括来自于实验的生物大分子结构数据。与PDB相比,对于数据库中的每一个生物大分子结构,MMDB具有许多附加的信息,如分子的生物学功能、产生功能的机制、分子的进化历史等,还提供生物大分子三维结构模型显示、结构分析和结构比较工具。

SCOP数据库:提供关于已知结构的蛋白质之间结构和进化关系的详细描述,包括蛋白质结构数据库PDB中的所有条目。SCOP数据库除了提供蛋白质结构和进化关系信息外,对于每一个蛋白质还包括下述信息:到PDB的连接,序列,参考文献,结构的图像等。可以按结构和进化关系对蛋白质分类,分类结果是一个具有层次结构的树,其主要的层次依次是类(class)、折叠子(fold)、超家族(super family)、家族(family)、单个PDB蛋白结构记录。

表谱(PSSM):指一张基于多序列比对的打分表,表示一个蛋白质家族,可以用来搜索序列数据库。

比较基因组学:是在基因组图谱和测序的基础上,利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科。 49.简约信息位点:指基于DNA或蛋白质序列,利用最大简约法构建系统发育树时,如果每个位点的状态至少存在两种,每种状态至少出现两次的位点。其它位点为都是非简约性信息位点。

DDBJ:日本DNA数据库,主要向研究者收集DNA序列信息并赋予其数据存取号,信息来源主要是日本的研究机构,也接受其他国家呈递的序列。 4. BLAST:基本局部比对搜索工具的缩写,是一种序列类似性检索工具。BLAST采用统计学几分系统,同时采用局部比对算法, BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明。

BLASTn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序

列比对。

BLASTp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。

Clustsl X:是CLUSTAL多重序列比对程序的Windows版本,是用来对核酸与蛋白序列进行多序列比较的程序,也可以对来自不同物种的功能或结构相似的序列进行比对和聚类,通过重建系统发生树判断亲缘关系,并对序列在生物进化过程中的保守性进行估计。

SRS:序列查询系统,是EBI提供的多数据库查询工具之一。有与Entrez类似的功能外,还提供了一系列的序列分析工具,可以直接进行在线序列分析处理。

Ab initio prediction:蛋白质三级结构预测方法—从头预测法,在既没有已知结

构的同源蛋白质、也没有已知结构的远程同源蛋白质的情况下,只能采用从头预测方法,即(直接)仅仅根据序列本身来预测其结构。

分子进化树:精确地反映物种间或群体间在进化过程中发生的极微细的遗传变异,而且借助化石提供的大分子类群的分化年代能定量地估计出物种间或群体间的分化年代。

gene tree:基因树,表示一组基因或一组DNA顺序进化关系的系统发生树。

MP:最大简约法基于进化过程中所需核苷酸(或氨基酸)替代数目最少的假说,对所有可能正确的拓扑结构进行计算并挑选出所需替代数最小的拓扑结构作为最优系统树。

heptad repeat:七肽重复区是典型的卷曲螺旋结构类型之一,由多个七肽单元连接而成的重复序列。structure domain:结构域,是在蛋白质三级结构中介于二级和三级结构之间的可以明显区分但又相对独立的折叠单元,每个结构域自身形成紧实的三维结构,可以独立存在或折叠,但结构域与结构域之间关系较为松散。

PubMed:是一个免费的生物医学文摘数据库,提供部分论文的摘要及指向全文的链接。作为 Entrez 资讯检索系统的一部分。

PSI-BLAST:位点特异性迭代比对。是一种专门化的的比对,通过调节序列打分矩阵(scoring matrix)探测远缘相关的蛋白。 38.RefSeq:给出了对应于基因和蛋白质的索引号码,对应于最稳定、最被人承认的Genbank序列。

计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。

油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。

双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。代表测序方法:solid 测序。

焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。例如:454测序仪

tblastn:用蛋白质序列查找核苷酸序列。

STS:STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp-500bp。它可用PCR方法加以验证。将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。

EST:表达序列标签技术(EST,Expressed Sequence Tags) EST技术直接起源于人类基因组计划。

Unigene:生物信息学数据库。UniGene试图通过计算机程序对GeneBank中的序列数据进行适当处理,剔除冗余部分,将同一基因的序列,包括EST序列片段搜集到一起,以便研究基因的转录图谱。UniGene除了包括人的基因外,也包括小鼠、大鼠等其它模式生物的基因。

ORF:开放阅读框(ORF,open reading frame )是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。编码一个蛋白质的外显子连接成为一个连续的ORF。

分子钟检验:只有分子钟的,没听过分子钟检验。一种关于分子进化的假说,认为两个物种的同源基因之间的差异程度与它们的共同祖先的存在时间(即两者的分歧时间)有一定的数量关系

算法:是对解决问题的方法的一种精确描述。

聚类分析:就是将数据分成若干簇(cluster),簇内最大程度相似,簇间最大程度相异。

某一状态的出现概率仅取决于其前驱的k个状态,k阶马尔可夫模型

数据结构:被计算机加工的数据彼此间存在着某些逻辑上的联系,这些联系需要在对数据进行存储和加工时反映出来。

程序:是对所要解决问题的各个对象和处理规则的描述,或者说是数据结构和算法的描述。

序列的比对:是一种关于序列相似性的定性描述:在什么区域相似,在什么区域存在差别。最优比对:揭示两条序列的最大相似程度。(又叫序列联配,其意义在于从核酸、氨基酸的层次分析序列的相似性,推测其结构功能及进化上的联系,是基因识别、分子进化、生命起源研究的基础。)

相似性(similarity):是可以量化的参数,是一种直接的数量关系,是量的判断,可多可少,如百分之几。

同源性 (homology) :是指从一些数据库中推断出序列在进化上曾具有共同的祖先的结论,属于质的判断。直系同源(orthology):(1)在进化上起源于一个始祖基因并垂直传递(vertical descent)的同源基因;

(2)分布于两种或两种以上物种的基因组;(3)功能高度保守乃至于近乎相同,甚至于其在近缘物种可以相互替换; (4)结构相似; (5)组织特异性与亚细胞分布相似。

旁系同源(paralogy)

同一基因组(或同系物种的基因组)中,由于始祖基因的加倍而横向(horizontal)产生的几个同源基因。马尔可夫特性(无后效性):若已知现在的状态,将来与过去无关。即根据当前的状态即可完全确定将来的状态。

马尔可夫链: 具有马尔可夫特性的离散状态随机过程。

顺式调控元件:位于起始点上游(基因5‘端)控制转录的DNA序列, 靠近它所调控的编码序列 ; 其结构是模块化的,即DNA序列能被分成各个单元。

反式调控元件:远离所调控的编码序列,通常位于不同的染色体上。

单基因回路:蛋白质与DNA启动子和增强子的相互作用。

启动子:识别DNA分子上的起始信号. 启动子能调控基因转录,分为: 转录因子,抑制因子。

蛋白质活性位点(active site)/结合位点(binding site):指蛋白质在具有生理活性时,与其他物质相结合并起重要作用的区域。

分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或其他性状,可以研究推断不同物种或基因之间的进化关系。

除权配对算法(UPGMA):最初,每个序列归为一类,然后找到距离最近的两类将其归为一类,定义为一个节点,重复这个过程,直到所有的聚类被加入,最终产生树根。 23.邻接法(neighbor-joining method):是一种不仅仅计算两两比对距离,还对整个树的长度进行最小化,从而对树的拓扑结构进行限制,能够克服UPGMA算法要求进化速率保持恒定的缺陷。

一致树(consensus tree):在同一算法中产生多个最优树,合并这些最优树得到的树即一致树。

自举法检验(Bootstrap):放回式抽样统计法。通过对数据集多次重复取样,构建多个进化树,用来检查给定树的分枝可信度。

生物信息学作业

生物信息学试题 1、构建分子系统树得主要方法有哪些?并简要说明构建分子进化树 得一般步骤。(20分) 答:(1)构建进化树得方法包括两种:一类就是序列类似性比较,主要就是基于氨基酸相对突变率矩阵(常用PAM250)计算不同序列差异性积分作为它们得差异性量度(序列进化树);另一类在难以通过序列比较构建序列进化树得情况下,通过蛋白质结构比较包括刚体结构叠合与多结构特征比较等方法建立结构进化树 (2)序列比对——选取所需序列——软件绘制 具体如下: a测序获取序列或者在NCBI上搜索所需得目得序列 b在NCBI上做blast:比对相似度较高得基因,并以fast格式下载,整合在*txt文档中。 c比对序列,比对序列转化成*meg格式 d打开保存得*meg格式文件,构建系统进化树 2、氨基酸序列打分矩阵PAM与BLOSUM中序号有什么意义?它们各自 得规律就是什么?(10分) (1)PAM矩阵:基于进化得点突变模型,如果两种氨基酸替换频繁,说明自然界接受这种替换,那么这对氨基酸替换得分就高。一个PAM就就是一个进化得变异单位, 即1%得氨基酸改变。 BLOSUM矩阵:首先寻找氨基酸模式,即有意义得一段氨基酸片断,分别比较相同得氨基酸模式之间氨基酸得保守性(某种氨基酸对另一种氨基酸得取代数据),然后,以所有60%保守性得氨基酸模式之间得比较数据为根据,产生BLOSUM60;以所有80%保守性得氨基酸模式之间得比较数据为根据,产生BLOSUM80。

(2)PAM用于家族内成员相比,然后把所有家族中对某种氨基酸得比较结果加与在一起,产生“取代”数据(PAM-1 );PAM-1自乘n次,得PAM-n。 PAM-n中,n 越小,表示氨基酸变异得可能性越小;相似得序列之间比较应该选用n值小得矩阵,不太相似得序列之间比较应该选用n值大得矩阵。PAM-250用于约 20%相同序列之间得比较。 BLOSUM-n中,n越小,表示氨基酸相似得可能性越小;相似得序列之间比较应该选用 n 值大得矩阵,不太相似得序列之间比较应该选用n值小得矩阵。BLOSUM-62用来比较62%相似度得序列,BLOSUM-80用来比较80%左右得序列。 3、蛋白质三维结构预测得主要方法有哪些?试选择其中得一种方 法,说明蛋白质三维结构预测得一般步骤。(10分) (1) a同源建模(序列相似性低于30%得蛋白质难以得到理想得结构模型 b折叠识别(已知结模板得序列一致率小于25%) c从头预测得方法(无已知结构蛋白质模板)。 (2) 4、您所熟悉得生物信息学软件有哪些?请选择其中得至少一种软 件,结合自己得研究课题,谈谈您所选择软件得基本原理,使用

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学作业1实验2

上海师范大学实验报告 实验二 一、实验原理 答:利用Blast全球联网数据库,对输入的序列进行生物信息学分析,给出与输入序列相关性最大的对应的基因信息,比较两者的同源性。 二、操作步骤 答:(1)先打开网址https://www.doczj.com/doc/1614757228.html,/ (2)点击右边的Blast链接,打开Blast数据库,进入Blast界面 (3)在Basic Blast中选择nucleotide blast (4)在对话框中输入核苷酸序列,在choose search set下的Database选项中选择Others (nr etc.) (5)把网页拉到最下方,点击Blast按钮 (6)在Descriptions 栏下找到Max ident 百分率最高的序列名称 (7)再往下拉,找到Alignments项下第一个序列,可以找到输入序列相关信息 (8)点击Accession,即能找到更多输入序列的相关信息。 1. tttcactcca tagttactcc ccaggtga 1.1它属于哪类生物? 答:属于Hepatitis C virus (丙型肝炎病毒) 1.2它属于哪类基因? 答:属于non-structural protein 5B gene 1.3它在该基因的什么位置? 答:它在该基因的第749-776这个位置。 1.4它与你搜索到的序列的同源性(Identities)是多少? 答:同源性100% 2.(1)ccacccactg aaactgcaca gacaaatttg tacataagag 1.1它属于哪类生物? 答:属于Influenza A virus (A/chicken/Iran261/01(H9N2)) hemagglutinin (HA) gene (A型流感病毒,A型伊朗型261鸡流感病毒,H9N2病毒,血细胞凝集素抗原基因为依据) 1.2它属于哪类基因? 答:属于ssRNA negative-strand viruses Orthomyxoviridae (单链RNA,负义链病毒,正粘病毒科) 1.3它在该基因的什么位置? 答:它在该基因的第1-40这个位置 1.4它与你搜索到的序列的同源性(Identities)是多少?

生物信息学复习题及答案

生物信息学复习题 名词解释 1. Homology (同源):来源于共同祖先的序列相似的序列及同源序列。序列相似序列并不一定是同源序列。 (直系同源):指由于物种形成的特殊事件来自一个共同祖先的不同物种中的同源序列,它们具有相似的功能。 (旁系(并系)同源):指同一个物种中具有共同祖先,通过基因复制产生的一组基因,这些基因在功能上的可能发生了改变。基因复制事件是促进新基因进化的重要推动力。 (异同源):通过横向转移,来源于共生或病毒侵染而产生的相似的序列,为异同源。 Score:The sum of the number of identical matches and conservative (high scoring) substitutions in a sequence alignment divided by the total number of aligned sequence characters. Gap总是不计入总数中。 6.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 7. E值:得分大于等于某个分值S的不同的比对的数目在随机的数据库搜索中发生的可能性。衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义,E值越接近零,越不可能找到其他匹配序列。 值:得分为所要求的分值比对或更好的比对随机发生的概率。它是将观测得到的比对得分S,与同样长度和组成的随机序列作为查询序列进行数据库搜索进行比较得到的HSP(高分片段对)得分的期望分布联系起来计算的。通常使用低于来定义统计的显著性。P=1-e-E 9.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法,是序列相似性分析的基础,其不同的选择将会出现不同的分析结果。 10.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。 :美国国家生物技术信息学中心,属于美国国立医学图书馆的一部分,具有BLAST, Entrez ,GenBank等工具,还具有PubMed文献数据库。另外还具有Genome, dbEST, dbGSS , dbSTS, MMDB, OMIM, UniGene, Taxonomy, RefSeq, etc. 序列格式:是将DNA或者蛋白质序列表示为一个带有大于号(>)开始的核苷酸或者氨基酸序列的新文件,其中大于号后可以跟上序列的相关信息,其他无特殊要求。 13genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释,主要包含生物功能或数据库信息;第三部分是feature,对序列的注释;第四部分是序列本身,以“统发生树(Phylogenetic tree )是研究生物进化和系统发育过程中的一种用树状分支图来概括各种生物之间亲缘关系,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。是用来研究物种进化与多样性的基础,是相近物种相关生物学数据的来源。17.基因树与物种树:物种树反映一组物种进化历程的系统树,其中每一个内部节点就代表一个物种形成的过程,而基因树则是代表来源于不同物种的单个同源基因的差异构建的系统树,而其内部的一个节点则代表一个祖先基因分化为两个新的独特的基因序列的事件。基因

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

生物信息学课程作业

生物信息学作业 1. Align the leghemoglobin protein from soy bean and myoglobin from human with global and local alignment software (ex. needle and water) respectively and interpret the results. ANSWER: (1)Use Needle to Align the two sequence: Aligned_sequences: 2 # 1: CAA38024.1 # 2: NP_001157488.1 # Matrix: EBLOSUM62 # Gap_penalty: 10.0 # Extend_penalty: 0.5 # Length: 203 # Identity: 43/203 (21.2%) # Similarity: 58/203 (28.6%) # Gaps: 90/203 (44.3%) # Score: 30.0 (2)Use Water to Align the two sequence: Aligned_sequences: 2 # 1: CAA38024.1 # 2: NP_001157488.1 # Matrix: EBLOSUM62 # Gap_penalty: 14 # Extend_penalty: 4 # Length: 32 # Identity: 11/32 (34.4%) # Similarity: 15/32 (46.9%) # Gaps: 0/32 ( 0.0%) # Score: 35 两种软件虽然使用同一罚分标准但得分不同。因为Needle程序实现标准pairwise全局比对,而Water则是局部比对。全局比对因为是比对全长序列,所以空位罚分多,得分较局部比对低。

生物信息学名词解释资料

1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。 5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI 的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。 6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。P94 7.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影 响,序列中的空位的引入不代表真正的进化事件,所以要对其进行 罚分,空位罚分的多少直接影响对比的结果。P37 11.E值:衡量序列之间相似性是否显著的期望值。E值大小说明了 可以找到与查询序列(query)相匹配的随机或无关序列的概率,E 值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的 相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意 义。P95 12.低复杂度区域:BLAST搜索的过滤选项。指序列中包含的重复 度高的区域,如poly(A)。 13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列, Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y) 加点,如果两条序列完全相同则会形成一条主对角线,如果两条序 列相似则会出现一条或者几条直线;如果完全没有相似性则不能连 成直线。 14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这 些序列做一个总体的比对,以观察它们在结构上的异同,来回答大 量的生物学问题。 15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而 可以通过分子进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或 其他性状,可以研究推断不同物种或基因之间的进化关系。 17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个 父分支都只能被分成两个子分支。 系统发育图:用枝长表示进化时间的系统树称为系统发育图,是 引入时间概念的支序图。 18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中 的同源序列,具有相似或不同的功能。(书:在缺乏任何基因复制 证据的情况下,具有共同祖先和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重 复产生的一组基因,这些基因在功能上可能发生了改变。(书:由于 基因重复事件产生的相似序列。) 20.外类群:是进化树中处于一组被分析物种之外的,具有相近亲缘 关系的物种。 21.有根树:能够确定所有分析物种的共同祖先的进化树。 22.除权配对算法(UPGMA):最初,每个序列归为一类,然后找 到距离最近的两类将其归为一类,定义为一个节点,重复这个过程, 直到所有的聚类被加入,最终产生树根。 23.邻接法(neighbor-joining method):是一种不仅仅计算两两比 对距离,还对整个树的长度进行最小化,从而对树的拓扑结构进行 限制,能够克服UPGMA算法要求进化速率保持恒定的缺陷。 24.最大简约法(MP):在一系列能够解释序列差异的的进化树中 找到具有最少核酸或氨基酸替换的进化树。 25.最大似然法(ML):它对每个可能的进化位点分配一个概率, 然后综合所有位点,找到概率最大的进化树。最大似然法允许采用 不同的进化模型对变异进行分析评估,并在此基础上构建系统发育 树。 26.一致树(consensus tree):在同一算法中产生多个最优树,合并 这些最优树得到的树即一致树。 27.自举法检验(Bootstrap):放回式抽样统计法。通过对数据集多 次重复取样,构建多个进化树,用来检查给定树的分枝可信度。 精品文档

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

《生物信息学》上机作业

《生物信息学》上机作业 题目:对人血红蛋白(HBA1)编码基因序列的生物信息分析

目录 引言 .............................................................................................................................................. - 1 -1 正文......................................................................................................................................... - 2 - 1.1 NCBI上对相关核苷酸序列的查找............................................................................ - 2 - 1.2 BLAST运行及其结果.................................................................................................. - 2 - 1.3 BLASTX运行及其结果................................................................................................ - 6 - 2 其他软件的运行及其结果..................................................................................................... - 8 - 2.1 Clustal W运行及其结果 ............................................................................................. - 9 - 2.2 MEGA4.0运行及其结果............................................................................................. - 10 -结论 ............................................................................................................................................ - 10 -

生物信息学名词解释(原创)

名词解释(笔者承认偷了点懒,只是把能在网上找到的都整合在一张上面了,此整理仅适合开卷考试) 基因表达(gene expression):基因通过转录和翻译,产生蛋白质产物和直接转录RNA参与生物功能的过程。 基因调控:涉及基因的启动关闭、活性的增加或减弱,发生在转录阶段、转录后加工阶段和翻译阶段。 负调控(Negative control):阻遏蛋白(repressor protein)结合在受控基因上时不表达,不结合时就表达的形式。 正调控(Positive control):基因表达的活化物( activators )结合在受控基因上时,激活基因表达,不结合时就不表达的形式。 一次数据库:记录实验的结果和一些初步的解释。 二次数据库:对一次数据库的数据进行分析和提炼加工后形成的、便于使用的数据库。 空位罚分 (gap penalty ):序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空位并进行罚分,以控制空位插入的合理性。 Consensus sequence:共有序列,指多种原核基因启动序列特定区域内,通常在转录起始点上游-10及-35区域存在一些相似序列。 FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 Similarity相似性:是直接的连续的数量关系,是指序列比对过程中用来描述检测序列和目标序列之间相同DNA碱基或氨基酸残基顺序所占比列的高低。 genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。 模体(motif):短的保守的多肽段,含有相同模体的蛋白质不一定是同源的,一般10-20个残基。 查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。 打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。 空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。 PDB:PDB中收录了大量通过实验(X射线晶体衍射,核磁共振NMR)测定的生物大分子的三维结构,记录有原子坐标、配基的化学结构和晶体结构的描述等。PDB数据库的访问号由一个数字和三个字母组成(如,4HHB),同时支持关键词搜索,还可以FASTA程序进行搜索。 Prosite:是蛋白质家族和结构域数据库,包含具有生物学意义的位点、模式、可帮助识别蛋白质家族的统计特征。 PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;PROSITE还包括根据多序列比对而构建的序列统计特征,能更敏感地发现一个序列是否具有相应的特征。 PIR:是一个集成了关于蛋白质功能预测数据的公共资源的数据库,其目的是支持基因组蛋白质研究。SWLSS—MODE:是目前最著名的蛋白质三级结构预测服务器,建立在已知生物大分子结构基础上,利用同源建模的方法对未知序列的蛋白质三级结构进行预测。 E值:衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。 点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

生物信息学作业

CDK2基因和蛋白质序列的生物信息学分析 姓名: 学号: 专业: 1前言 细胞周期蛋白依赖激酶2(cyclin-dependent kinase 2,CDK2),又名细胞分裂激酶2(cell division kinase 2)或p33蛋白激酶(p33 protein kinase),其基因定位于人类基因组的12号染色体上的q13染色带上。CDK2基因全长6013bp,这部分中有7个外显子和6个内含子,7个外显子的长度依次为353bp、78bp、121bp、171bp、102bp、204bp、1264bp(可依次记为外显子1-7)。在翻译过程中,该基因转录成的mRNA的外显子1的前137bp和外显子7的后1159bp不进行翻译,属于调控序列。mRNA上只有中间的部分编码蛋白质。 CDK2基因可以转录为两种mRNA。其中,变体1长度为2325bp,编码298个氨基酸;变体2长度为2223bp,编码264个氨基酸。这两种蛋白质为CDK2的同型蛋白,功能相同,具有调控细胞分裂的功能,主要在G1期到S期和S期到G2期这两个阶段起作用。CDK2广泛分布在生物体的各种细胞的胞质溶胶和细胞核质中,但只在进行分裂的细胞中行使功能,这是因为CDK2只有与不同的细胞周期蛋白(cyclin)结合后才具有活性。CDK2可以与细胞周期蛋白A、B1、B3、E等结合后,参与细胞周期调控。由于CDK2在细胞内的数量变化有可能导致细胞周期异常而产生癌症,故CDK2基因可以被看作癌基因,其活性和表达量可以作为衡量癌症的指标。CDK2与周期蛋白E的复合体不仅能直接参与中心体复制的起始调控,还能与类Rb蛋白p107或转录因子E2F结合,促进细胞从G1期向S期转化或调控DNA复制有关的基因转录。而CDK2与周期蛋白A的复合体可以增强DNA复制因子RF-A的活性。 在CDK2分子中,被称为T环的氨基酸环阻断了活性部位,妨碍激酶履行它的酶功能,而且活性部位的氨基酸形成一种难于为蛋白质结合的形状。CDK2与周期蛋白结合时,周期蛋白将T环转出2nm以上,又将CDK2中的PSTAIRE螺旋部分转了, 并把活性部位氨基酸变成能与底物蛋白结合的正确构象。CDK2的活性不仅与周期蛋白有关,还与其上的Thr-15、Tyr-15、Thr-160三个位点是否磷酸化有关。一般情况下,与周期蛋白结合的CDK2的上述三个位点被Wee/Mik1和CAK激酶磷酸化,但此时复合体还没有活性,只有当Cdc25c将Thr-15、Tyr-15两个位点去磷酸化后,复合体才有活性。细胞中存在多种因子对CDK2进行修饰调节,此外还存在对其活性起负性调控的蛋白质,即CDK激酶抑制物,例如p21CIP/WAF1、p27KIP2等。 前面提到,CDK2基因转录的产物有两种。这两种mRNA的不同之处在于变体1由全部7个外显子组成,而变体2缺失外显子5,由剩余的6个外显子组成。这样翻译成的两种同型蛋白的长度就相差34个氨基酸。 2 材料和方法: 2.1序列数据来源 采用蛋白质名称对NCBI非冗余蛋白质数据库进行检索,CDK2蛋白的记录有1013个。而采用基因名称对NCBI非冗余核酸数据库进行检索,CDK2蛋白的记录有680个。 采用人(Homo sapiens)的CDK2蛋白序列进行BLAST搜索。 2.2序列分析方法

生物信息学名词解释(0001)

生物信息学名词解释

1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。 5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI 的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。 6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。P94 7.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影 响,序列中的空位的引入不代表真正的进化事件,所以要对其进行 罚分,空位罚分的多少直接影响对比的结果。P37 11.E值:衡量序列之间相似性是否显著的期望值。E值大小说明了 可以找到与查询序列(query)相匹配的随机或无关序列的概率,E 值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的 相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意 义。P95 12.低复杂度区域:BLAST搜索的过滤选项。指序列中包含的重复 度高的区域,如poly(A)。 13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列, Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y) 加点,如果两条序列完全相同则会形成一条主对角线,如果两条序 列相似则会出现一条或者几条直线;如果完全没有相似性则不能连 成直线。 14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这 些序列做一个总体的比对,以观察它们在结构上的异同,来回答大 量的生物学问题。 15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而 可以通过分子进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或 其他性状,可以研究推断不同物种或基因之间的进化关系。 17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个 父分支都只能被分成两个子分支。 系统发育图:用枝长表示进化时间的系统树称为系统发育图,是 引入时间概念的支序图。 18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中 的同源序列,具有相似或不同的功能。(书:在缺乏任何基因复制 证据的情况下,具有共同祖先和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重 复产生的一组基因,这些基因在功能上可能发生了改变。(书:由于 基因重复事件产生的相似序列。) 20.外类群:是进化树中处于一组被分析物种之外的,具有相近亲缘 关系的物种。 21.有根树:能够确定所有分析物种的共同祖先的进化树。 22.除权配对算法(UPGMA):最初,每个序列归为一类,然后找 到距离最近的两类将其归为一类,定义为一个节点,重复这个过程, 直到所有的聚类被加入,最终产生树根。 23.邻接法(neighbor-joining method):是一种不仅仅计算两两比 对距离,还对整个树的长度进行最小化,从而对树的拓扑结构进行 限制,能够克服UPGMA算法要求进化速率保持恒定的缺陷。 24.最大简约法(MP):在一系列能够解释序列差异的的进化树中 找到具有最少核酸或氨基酸替换的进化树。 25.最大似然法(ML):它对每个可能的进化位点分配一个概率, 然后综合所有位点,找到概率最大的进化树。最大似然法允许采用 不同的进化模型对变异进行分析评估,并在此基础上构建系统发育 树。 26.一致树(consensus tree):在同一算法中产生多个最优树,合并 这些最优树得到的树即一致树。 27.自举法检验(Bootstrap):放回式抽样统计法。通过对数据集多 次重复取样,构建多个进化树,用来检查给定树的分枝可信度。

浅谈生物信息学在生物方面的应用

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

相关主题
文本预览
相关文档 最新文档