当前位置:文档之家› 变电站常见电压异常归纳分析

变电站常见电压异常归纳分析

变电站常见电压异常归纳分析
变电站常见电压异常归纳分析

变电站常见电压异常归纳分析

邓邝新

(湖南郴电国际发展股份有限公司)

在变电运行中,我们经常会遇到各种各样电压异常的情况。而且随着配电网络对地电容的增大以及系统短路水平的提高,电压的变化更为复杂多样。就比如在10KV系统上发生单相接地短路时系统的耐受时间比以前更短,而10 kV系统单相接地故障的判定通常只有依靠10 kV二次电压(三相绝缘监测表)来反映,这就需要值班人员能够及时准确地判断故障并断开故障线路。同时对系统通常出现的二次电压异常的各种原因进行归纳分析,给出判断和处理的方法。

在变电站实际运行过程中,系统二次电压异常可能由多种因素造成,包括:电压互感器高压保险熔断、低压保险熔断、一次系统接地故障、二次系统接地、耦合传递、负载不对称、三相TV伏安特性不一致、铁磁谐振、接线错误等等。下面对不接地系统的电压异常做一个简单的归纳,以方便运行人员能够及时、准确的判断故障。

1系统单相接地故障

我们知道,系统单相接地故障时,由于系统的对地电容和绝缘电阻相对固定,系统电压变化情况将随接地电阻的不同而有所不同。当系统发生金属性接地,接地电阻等于0时,接地相与大地同电位,产生严重的中性点位移,中性点位移电压的方向与接地相电压在同一直线上,与接地相电压方向相反,大小相等,系统中性点与故障相电压重合,故障相电压为0,非故障相电压则上升为√3倍相电压即上升为线电压;当系统发生非金属性接地时,接地电阻R≠0,此时,由于零序电压向量值将随接地电阻的大小变化而变化,可能出现的情况包括:①故障相电压与滞后相电压大小相等,但小于另外一相电压。②故障相电压小于滞后相电压,滞后相电压小于故障超前相电压。③故障相电压大于滞后相电压,但小于超前相电压。

由此可见,当系统发生金属性接地时,故障特征较为明显,可以准确地判断出故障类型,而在系统发生非金属性接地时,由于接地电阻的不确定性,二次电压异常具有较大的隐蔽性,容易与TV保险熔断或二次回路接线错误等故障混淆,仔细分析可以发现,这种情况下至少有一相电压超过了相电压,这是保险熔断时不会出现的。

特别值得注意的是接地并不单指线路接地,当线路拉路检查后仍未能消除接地故障,则应考虑到可能所内设备有接地,例如避雷器、电压互感器,甚至变压器接地。

2系统铁磁谐振

由于配电线路中用户电压互感器、电子控制电焊机、调速电机等设备的增加,使得系统的电气参数发生了很大变化,再加上变电站的电磁式电压互感器本身励磁特性不好,发生谐振的机会也随之增大。在系统谐振时,电压互感器将产生过电压,使电流激增,此时除了造成一次侧熔断器烧毁之外,还将导致电压互感器烧毁,个别情况下,会造成避雷器、变压器导管等设备发生闪络爆炸事故。

当电压互感器的感抗和系统电容的容抗满足条件XL=XC 时,系统便会发生谐振。例如在变电站送电时,当空载母线对地电容的容抗和电压互感器的感抗相近时,即很有可能出现谐振,导致电压互感器烧毁。在此情况下,应增加10kV送出线路和站用变压器来改变系统参数,避免谐振的发生。

由于各相对地参数不平衡,以及投入互感器瞬间各相的接触电阻、相位角等差异,谐振过电压可能在一相或三相中同时发生,从而导致各相电压严重不平衡。如果发生的是低频谐振,电压表往往有周期性振动,但由于此时感抗小,电压互感器励磁电流很大,很容易将电压互感器烧毁。

系统发生铁磁谐振的原因较多,除开空送母线时的母线对地电容和电压互感器行程的谐振较易判断并消除外,其他的都较难判断。不过,整体上看,铁磁谐振一般表现为一相、二相甚至三

相对地电压升高,部分情况下电压表会发生低频摆动。如果出现电压异常升高,而没有任何一相电压降低的情况出现,则应该考虑是否是由于铁磁谐振造成的,采用断开部分较长的线路等方式改变系统参数,消除谐振条件。

3电压互感器高压保险熔断

当电压互感器高压保险熔断时,受电压二次回路的负载影响,熔断相电压降低,由于TV还会有一定的感应电压,所以其电压并不为零,此时其他两相电压应保持为正常相电压或稍低,其向量角为120°。同时由于断相出现在互感器高压侧造成三相电压不平衡,互感器低压侧开口三角形处也会产生不平衡电压,即会出现零序电压,其大小通常高于接地信号限值,起动接地装置,发出接地信号。

4电压互感器低压保险熔断

电压互感器低压保险熔断时,在二次侧的反映和高压保险基本类似,但是由于保险熔断发生在低压侧,影响的将只是某一个绕组的电压,即一次侧三相电压仍平衡,故开口三角形开口处没有电压,就不会出现零序电压,因而不会发出接地信号。在这种情况下,通过用电压表检查电压回路熔断器两侧电压可以快速地确定故障原因。如果某相低压保险两侧电压不等,可以确认为该低压保险熔断,否则,应判断为互感器高压保险熔断。

5系统电压不平衡

在变电站投运时经常会发生中性点出现偏移的情况,有时候甚至会发出接地报警信号,这通常是由于变电站投运时,主变压器空载运行,低压侧母线桥和空母线的对地电容不相等造成的,对于空母线,此对地电容即是其主要负荷,其不平衡因素对母线电压的影响较为明显,此时如果能够及时地让变压器带上出线或站用变压器,减少电容不平衡对母线电压的影响,电压通常会回复到正常状态。

6其他故障分析

对于由于互感器三相负载不对称、接线错误、TV三相伏安特性不一致等原因造成的二次回路电压异常,通常会在变电站送电的时候即可得到反映。在变电站送电之前应采取相应的措施防止此类情况发生,如:对于由单台TV组成的互感器组,应采用励磁特性相同的TV并认真做好TV比角相差试验及伏安特性试验。对于投运前的试验更不可因为部分回路由厂家保证而减少试验项目,不作升压试验。

变电所TV电压经常出现不平衡。往往把电压不平衡总认为是一次系统接地。若并非一次接地,便可能在查找时,分、合断路器造成对用户的短时停电,另一方面也可能因为未能及时找到接地点,而引起事故扩大。这里对中性点不接地系统常见的单相

接地、一次和二次保险熔断进行列表,以便直观查找对照:这里先说一下电压指示,绝缘监测表指示的是相电压,其正常值为:母线电压/√3。例如10KV母线电压为11KV时,其显示的就是11KV/√3=6.35KV。

以上归纳了中性点不接地系统较为常见的一些电压异常情况。希望能够作为运行值班人员的参考,以此减少查找故障、消除故障的时间,避免由于故障处理不及时引起事故扩大,保证电力设施的安全稳定运行。

35kV变电站消弧线圈常见故障及处理

35kV变电站消弧线圈常见故障及处理 发表时间:2019-01-14T11:03:42.360Z 来源:《防护工程》2018年第30期作者:李玉哲 [导读] 本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障 李玉哲 国网山东省电力公司菏泽市定陶区供电公司山东菏泽 271400 摘要:本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障、电压互感器故障以及消弧线圈等故障原因进行分析,对变电站日常检修维护过程中消弧线圈出现自身故障的技术处理措施进行了详细分析研究,提出了相应的解决办法,具有一定的参考价值。 关键词:35kV变电站;消弧线圈;故障及处理 引言:我国3kV、6kV、10kV、以及35kV等中低压配电网系统中,绝大多数是按小电流接地系统进行设计,即系统中性点是不接地系统。在进行35kV变电站系统设计时,通常按照中性点不接地系统进行,这种变电站运行方式,其在系统发生单相接地故障时,其电流值将大于系统允许安全运行值(对于3kV~10kV系统而言,其单相接地电流值应不大于30A),此时故障电流产生的电弧将不能自行熄灭。为了降低电弧电流以满足系统安全运行需求,在工程中通常采用在中性点和大地间接入相应容量的消弧线圈,利用消弧线圈的补偿电流对系统进行动态补偿,这样就可以帮助系统熄灭故障接地点处故障电流产生的电弧,保证系统运行可靠性。 一、35kV变电站的常见故障 1.线路电缆故障分析 1.1接地点电阻值过高。通常情况下,为了避免感应过电压过高,交联电缆一般设有两个接地点,这样使得接地的电阻值小于规定的值,以起到保护电缆的作用。但是如果因为电缆的接头的金属屏蔽效果不好,导致接地的电阻值过高,超过标准值很多时候就会很容易产生更高的过电压,当电缆绝缘胶老化的时候,就很容易被烧穿。 1.2电缆长期负重导致出现故障。一般用在25℃的特定温度下的载流量来确认电缆是否负重运行,电缆在长期负重运行的情况下很容易出现故障,特别是在夏天由于本身的环境气温就高,长时间高温下负重运行导致电缆的绝缘层老化,增加了故障的几率。 1.3安装电缆不达标导致故障。在电缆的铺设和安装中,一般是通过往电缆沟里铺垫软土或者填水泥来保护电缆,但是如果没有忽略了这些措施,或者做的不到位的话就很容易导致电缆机械性的损伤,而这些损伤也常常是导致故障的隐患。 1.4厂家的质量问题。一些厂家制造的电缆间的连接接头不注意质量问题,导致连接头和终端头出现种种故障,还有劣质的电缆中会掺杂一些气体、液体和杂质等,这样就很容易导致杂质在高强度的电场下发生电离,使得电缆的绝缘层在老化的过程中提前被击穿而引发电缆故障。 2真空断路器故障分析 2.1真空泡的真空度降低。在35kV变电站的长期运行中,真空泡的真空度下降也是导致故障的常见原因,因为真空泡的真空度降低会使其使用寿命大大缩短,甚至严重到导致真空断路器的损坏和爆炸。 2.2真空断路器分闸失灵。真空断路器的分闸失灵会导致事故越级,事故范围波及广,常见的真空断路器失灵情况有遥控分闸不能自动断开分断路器、继电器保护动作失灵和人工分闸不能使用。 3电压互感器故障分析 在35kV电力系统中存在着很多储能元件,比如线性电容和非线性的铁心线圈。如果铁心的饱和引起电感量发生变化,那么当线路对地容抗XC与铁心感抗XL十分接近或者相等时,就会引发并联铁磁谐振,而电路中的非线性电感元件是产生铁磁共振的必要条件,所以在发生铁磁谐振的时候,电压互感器承受了更多的过电压,铁心的磁通就会成倍的增加,铁心迅速达到了饱和状态,频率的降低将导致绕组过热而烧毁甚至爆炸。 4消弧线圈故障分析 35kV变电站通常具有一种自动保护的功能叫做消弧线圈,而这种保护功能在消弧线圈发生故障时会自动启动。如果消弧线圈自身的中性点位移电压值和补偿电流偏大的时候就会产生警报,如果不能及时发现排除警报就很容易导致故障。 二、消弧线圈自身故障处理 1铁心故障处理 消弧线圈是一个具有铁心的电感线圈,其自身电感电流与系统故障电容电流间进行补偿,从而降低变电站系统发生单相接地故障电流值。虽然消弧线圈自身电阻很小,但其电抗值却相当大。消耗线圈的铁心与线圈等均浸在变压器油中。从外观看,消弧线圈的外部结构与单相变压器极为相似,但消弧线圈内部结构却不是简单的单相变压器。在设计制造过程中,为了避免消弧线圈内部铁心快速饱和,通常在消弧线圈内部铁心柱上留很多间歇,并在间隙中用绝缘纸板进行完善填充,这样可以让消耗线圈拥有一个较为稳定的电抗值,使消弧线圈所产生的补偿电流能够与系统电压间存在稳定的比例特性,进而使消弧线圈能够根据变电站故障实际情况需求,合理选择调解线圈以期获得一个较为理想的感性电流值,从而与变电站系统故障时的电容电流值进行抵消,达到明显的消弧作用。但是在日常运行过程中,也会发现有消弧线圈烧损事故发生,大多数是由产品制造、运输不当、以及调试合理等引起。因此,为了提高35kV变电站运行可靠性,对消弧线圈的运行维护和预防性试验工作就显得十分重要。结合大量文献资料和实际工作经验,对提高消弧线圈运行可靠性常见检修维护措施归纳总结如下建议。 1.1严格检测电缆。要通过使用专业的检测仪器对电缆和接头的定期检测及时分析出接地电阻的变化规律。然后根据变化的趋势判断如果接地的电阻值高于设计的标准值,那么一方面可能是电缆和地面连接不稳定,另一方面则有可能是因为接头处被氧化了。 1.2确保安装电缆全过程的质量。对于电缆的质量监控就要从工厂、材料、工人施工等多方面进行把关,要严格要求技术工人的技术素质,技术要精细以保证电缆的制作质量。采用达到IEC标准的新型硅橡胶预置式接头以克服热缩电缆头的缺点。

110KV变电站设计,110kv,35kv,10kv,三个电压等级

第1章原始资料及其分析 绪论 电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。 由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电站使电厂或上级电站经过调整后的电能输送给下级负荷,是电能输送的核心部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电站系统中某一环节发生故障,系统保护环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电站在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。 变电站是汇集电源、升降电压和分配电力场所,是联系发电厂和用户的中间环节。变电站有升压变电站和降压变电站两大类。升压变电站通常是发电厂升压站部分,紧靠发电厂,降压变电站通常远离发电厂而靠近负荷中心。这里所设计得就是110KV降压变电站。它通常有高压配电室、变压器室、低压配电室等组成。 变电站内的高压配电室、变压器室、低压配电室等都装设有各种保护装置,这些保护装置是根据下级负荷的短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全有利于延长使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件等。可见,变电站的设计是工业效率提高及国民经济发展的必然条件。 原始资料 待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。 电压等级 变电站的电压等级分别为110kV、35kV、10kV。 110kV :2回 35kV :5回(其中一回备用) 10kV :12回(其中四回备用) 变电站位置示意图:

变电站异常与事故处理方法

变电站异常与事故处理方法 一、事故处理规定 1、事故处理的原则 1) 迅速限制事故的发展,消除事故的根源,解除对人身和设备的威胁。 2)及时隔离故障设备。 3)尽一切可能保持或立即恢复站用电及重要线路的供电。 4)尽快对已停电的线路、用户恢复供电,并恢复原运行方式。 (2、尽一切可能保持电网稳定运行;3、调整系统运行方式,使其恢复正常;) 2、变电站发生事故时,当值值班员必须做到: 1)发生事故时,运行值班人员应坚守岗位,加强与值班调度员的联系,随时听候调度指挥。 2)发生事故时无关的人员应退出现场,与处理事故的无关的电话一律停止。发生事故时应通知现场工作人员停止一切工作,撤离工作现场,待事故处理完毕或告一段落后方可进行工作。如与调度失去联系暂时无法恢复通信时,应按通信中断的方法处理。 3)事故处理时,必须严格执行发令、复诵、汇报、录音及记录制度,必须使用规范的调度术语和操作术语,指令与汇报内容应简明扼要,汇报工作应由变电站当值值班负责人担任。 4)应立即检查并记录开关的位置、电流、母线电压的指示、监控机显示的信息,检查保护装置信号灯指示情况及故障信息,打印故障报告和录波图。 5)迅速对设备进行检查,判明故障性质、地点和范围。 6)对事故处理的每一阶段,应及时地将情况向值班调度员汇报。 3、系统运行出现异常时,如系统振荡、较大的潮流突变、设备过负荷、发现设备紧急缺陷及其它影响电网的安全稳定运行情况等,值班员应立即汇报调度并加强监视。如果系统发生振荡,应将振荡发生的时间、母线电压、开关电流及功率变化情况在运行日志上记录。 4、为了防止事故的扩大,下列情况允许先操作设备,事后尽快向值班调度员和管理所领导汇报

10kV电压异常原因分析及处理措施

10kV电压异常原因分析及处理措施

10kV电压异常原因分析及处理措施 摘要:本文对电网实际运行中时常出现的10kV电压异常现象的原因进行分类,并逐一研究分析其产生机理,从而引出处理10kV电压异常措施的思路。 关键词:电压异常;负荷;接地;断线;消弧线圈;谐振 0 前言 电压的异常直接影响设备的运行技术指标、经济指标,甚至导致用户的用电设备无法正常工作,电网的安全与经济运行遭至破坏。10kV母线是调度部门可以进行电压调控的最后一级母线,也是最直接影响用户电压质量的母线。因此对10kV电压异常产生的根本原因进行分析研究,对消除电压异常和保障电网安全运行具有十分重要的意义。 1 负荷变化引起的电压偏移 根据相关调压原则要求:变电站和直调电厂的10kV母线正常运行方式下的电压允许偏差为系统额定电压的0%―+7%。而在实际电网运行中,在白天用电高峰时段,10kV母线可能低于10.0kV下限,在深夜用电低谷时段,10kV母线也可能高于10.7kV上限。 造成电网正常运行中电压偏移的原因是不同大小的功

率在电网元件中传输会产生不同的电压降落。功率由系统通过110kV降压变压器经变压后到达10kV母线,其等值电路图和相量图如图1所示。 在上图中,为归算到110kV变压器10kV侧的一次电压,为110kV变压器的二次电压,即10kV母线电压,S为传输的视在功率,为归算到110kV变压器10kV侧的传输电流,φ为与的相位差,XT为110kV变压器归算到二次侧的等值电抗,RT为110kV变压器归算到二次侧的等值电阻。 图中,就是电压降相量,即(RT+XT),将电压降相量分解为与二次电压同方向和相垂直的两个分量和。称为电压降落的纵分量,称为电压降落的横分量。而在电网实际计算中,由于电压降横分量很小,可以忽略不计,因此,其电压降可以省略简化成仅为电压降落的纵分量,以ΔU表示。由图3可得ΔU的模值为, 将、、代入上式可得, 因此可以得出,10kV母线电压与传输功率的关系公式为: 由上式可知,通过减少传输的有功负荷P、无功负荷Q、电阻RT和电抗XT,或者提高110kV侧电压U1的方法,可以减少电压降落,提高10kV电压;反之则降低10kV电压。 由此可以得出负荷变化引起的电压偏移的处理措施: (1)通过增减无功功率Q,如投退并联电容器、并联电

变电站基础知识

变电站基础知识 1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着电机制造工艺的提高,10 kV 电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。供 电系统以10 kV、35 kV为主。输配电系统以110 kV以上为主。发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电 网为0.4 kV(220V/380V)。 发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV 为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器 (变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。 枢纽站电压等级一般为三个(三圈变压器),550kV /220kV /110kV。区域站一般 也有三个电压等级(三圈变压器),220 kV /110kV /35kV或110kV /35kV /10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV /10 kV

10KV母线电压异常情况分析及处理 徐成华

10KV母线电压异常情况分析及处理徐成华 发表时间:2017-08-02T11:42:08.157Z 来源:《电力设备》2017年第9期作者:徐成华 [导读] 摘要:本文主要就小电流接地系统中,10KV母线电压出现的非正常情况来做出探究和讨论,分别说明出现某些故障的原因以及表现出的现象,在最后根据相应的出现非正常状况的故障的原因来进行分析得出处理的方法和举措,为处理现实生活中出现的母线电压异常提供出一些参考意见。 (国网河南省沈丘县供电公司 466300) 摘要:本文主要就小电流接地系统中,10KV母线电压出现的非正常情况来做出探究和讨论,分别说明出现某些故障的原因以及表现出的现象,在最后根据相应的出现非正常状况的故障的原因来进行分析得出处理的方法和举措,为处理现实生活中出现的母线电压异常提供出一些参考意见。 关键词:10KV母线;异常处理;电压异常 前言:作为对电能优劣程度的一个量度的电压而言,其稳定程度,安全可靠性与用电能否做到快捷安全,是息息相关的。调度部门能够去进行调控的最后一个母线就是10KV母线,他的能否正常使用,是之间与其负责区域的居民或者企业的正常生活、生产是相关的。但10KV母线在当今社会中,仍旧具有复杂的运行条件,相对而言电压发生问题的概率仍然处于高几率。快速,高效的处理其非正常状态是当今社会的一个需求。 一、电压异常情况 (一)单相接地下的10KV系统 在电网的正常运行下,10KV系统中理论上中性点处于零点位的的状态。在单相完全接地的情况下,显示的电压为接地相的电压,理论上说其相应的电压值为零,而另外的两相电压则达到了线电压的大小。在单相不完全接地的状态下,电压则变为了接地项会降低,外两项则会有所上涨。其相应的开口三角电压也均有所上涨,但单相完全接地下可达到100KV,而不完全接地则上涨较少。造成单相完全接地的原因一般为,线路或则配单器件,由于天气,人为,非人力的生物因素,自然灾等变为断线接地。造成单相不完全接地的情况是,配电烧毁,电缆出现问题等。 (二)PT出现问题而导致的电压异常 常用的电压的测量装置就是PT,电压出现异常的可能因素之一可能就是由于PT出现了问题,并且这种问题是发生频率较高的一类问题,超过10KV PT高压保险的即可作为母线电压出现异常的情况来处理,低于其的可以按照低压保险熔断的方式来进行处理,因为低于其的将导致相应的开关跳闸,或者保险熔断等。其断线时电压的读数值所受多种因素影响,例如PT的类别不同所对应的电压的读数可能存在差异,不同的接线方式也可能导致不同的电压读数。PT出现问题与与出现接地的问题就是通过电压数值波动来判定的,在出现接地问题中,在其所有的相中没有一个的电压是在常态下的,而PT出现问题中,可能存在的状态就是三相的电压全部为零或者是最低有一相的电压是没有出现问题的。 (三)消弧线圈动作出现问题 消弧线圈有着当系统出现了故障将自动的将电容电流进行补偿,以达到稳定的目的,一般而言这种故障就是指系统发生单相接地。在该问题得到解决后,补偿电流将自动的消失。可是,有的时候,可能存在线路检测不灵敏或者其他问题,消弧线圈没有能够做到在问题得到解决的同时退出对电容电流的补偿,消弧线圈所形成的补偿电流就会使得系统中产生串联谐振,而串联谐振的产生,往往将进一步的引发工频的过电,所以对于消弧线圈应当在合适的时间尽快结束其动作。 (四)在电网处于常态下电压出现偏离 在现实中,电压会因为有无功的输出,有无电荷的定向移动,电荷定向移动的速率,系统所处状态的电阻等而进行波动,甚至有时会出现母线的电压超出了电压的限定值,进而会对电网所负责的区域造成用电的困难。出现这样的事故,仅需要简单的进行对电网的调节,就可以快速的使得其变为正常值。 二、相应的解决方案 (一)单相接地下的10KV系统的问题处理 对于单相接地而言,主要有以下三个方法能够对不同的情况分别进行确认。一是对于SCADA系统是否存在着相应的线路出现接地的信号,如果存在则将其状态告知相关单位,进而远程操作断开存在故障线路的出线开关,如果此时检测发现母线电压回到正常状态,就说明选中的线路出现问题。二是,如果系统不存在着相应的接地信号,则通知相关单位后,选择“瞬停法”进行检测,如果存在某条线路被断开的时候母线电压恢复了正常的状态,那么就是这条线路存在问题。三是对于以上两种方法均未找出故障所在,那么问题则应当出现在运行的设备上或者母线接地与多条出线同名接地。 (二)PT出现问题而导致的电压异常的问题处理 当出现这种情况时,应当让在场的负责运行的相关人员去查验电力设备的高低压保险丝是否出现熔断的状况,如果出现了高压侧的熔断状况,则应当将母线进行转供电,并同时将出现了问题的PT设备送到负责检修的部门进行整修。如果出现的是低压侧熔断的现象,那么可以将相应的开关进行重新打开,将保险丝进行更换,并将出现问题的PT同样的送到负责检修的部门。在进行相关工作时也应当做好具体情况的了解,如了解低压侧的复合电压过流保护等一系列的保护是否均以进行了推出,在出现问题之前,如果存在母线的分列运行情况,那么是否可以选择让母线进行并列运行的举措来对与其是否存在故障进行相应的分析。 (三)消弧线圈动作出现问题的问题处理 出现了消弧线圈动作出现问题而导致的故障时,可以采用以下几个方法。一是对于接地消弧线圈暂停使用,待选择更换消弧线圈或者消弧线圈的问题排除之后继续让其加入工作任务。二是,将母线进行分并列,有效的使得部分不影响整体电力系统的运行,方便进行排查。三是对于母线上的电容器进行处理,这是油消弧线圈的主要作用方法所决定的。四是,处理母线进行处理,使得其三相电压达到一个动态的稳定状态。 (四)在电网处于常态下电压出现偏离的问题处理 对于在电网处于常态下电压出现偏离的问题处理,主要有以下几种简单的方式,一是,安置利用合理容值得电容,合理阻值的电阻等

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

电力系统电压等级与变电站种类

1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。随着电机制造工艺的提高,10kV电动机已批量生产,所以3kV、6kV已较少使用,20kV、66kV也很少使用。供电系统以10kV、35kV为主。输配电系统以110kV以上为主。发电厂发电机有6kV与10kV两种,现在以10kV为主,用户均为220/380V(0.4kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500kV、330kV、220kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6kV,低压配电网为0.4kV(220V/380V)。 发电厂发出6kV或10kV电,除发电厂自己用(厂用电)之外,也可以用10kV电压送给发电厂附近用户,10kV供电范围为10Km、35kV为20~50Km、66kV为30~100Km、110kV 为50~150Km、220kV为100~300Km、330kV为200~600Km、500kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV/220kV/110kV。区域站一般也有三个电压等级(三圈变压器),220kV/110kV/35kV或110kV/35kV/10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV/10kV或35kV/10kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV 为最多。 3.变电站一次回路接线方案 1)一次接线种类:变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。 2)线路变压器组:变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。 3)桥形接线:有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。 4)单母线:变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。 5)单母线分段:有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。出线分别接到两段母线上。 单母线分段运行方式比较多。一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。备用电源容量较小时,备用电源合上后,要断开一些出线。这是比较常用的一种运行方式。 对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。 单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。 6)双母线:双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检

变电站常见电压异常归纳分析

变电站常见电压异常归纳分析 邓邝新 (湖南郴电国际发展股份有限公司) 在变电运行中,我们经常会遇到各种各样电压异常的情况。而且随着配电网络对地电容的增大以及系统短路水平的提高,电压的变化更为复杂多样。就比如在10KV系统上发生单相接地短路时系统的耐受时间比以前更短,而10 kV系统单相接地故障的判定通常只有依靠10 kV二次电压(三相绝缘监测表)来反映,这就需要值班人员能够及时准确地判断故障并断开故障线路。同时对系统通常出现的二次电压异常的各种原因进行归纳分析,给出判断和处理的方法。 在变电站实际运行过程中,系统二次电压异常可能由多种因素造成,包括:电压互感器高压保险熔断、低压保险熔断、一次系统接地故障、二次系统接地、耦合传递、负载不对称、三相TV伏安特性不一致、铁磁谐振、接线错误等等。下面对不接地系统的电压异常做一个简单的归纳,以方便运行人员能够及时、准确的判断故障。

1系统单相接地故障 我们知道,系统单相接地故障时,由于系统的对地电容和绝缘电阻相对固定,系统电压变化情况将随接地电阻的不同而有所不同。当系统发生金属性接地,接地电阻等于0时,接地相与大地同电位,产生严重的中性点位移,中性点位移电压的方向与接地相电压在同一直线上,与接地相电压方向相反,大小相等,系统中性点与故障相电压重合,故障相电压为0,非故障相电压则上升为√3倍相电压即上升为线电压;当系统发生非金属性接地时,接地电阻R≠0,此时,由于零序电压向量值将随接地电阻的大小变化而变化,可能出现的情况包括:①故障相电压与滞后相电压大小相等,但小于另外一相电压。②故障相电压小于滞后相电压,滞后相电压小于故障超前相电压。③故障相电压大于滞后相电压,但小于超前相电压。 由此可见,当系统发生金属性接地时,故障特征较为明显,可以准确地判断出故障类型,而在系统发生非金属性接地时,由于接地电阻的不确定性,二次电压异常具有较大的隐蔽性,容易与TV保险熔断或二次回路接线错误等故障混淆,仔细分析可以发现,这种情况下至少有一相电压超过了相电压,这是保险熔断时不会出现的。 特别值得注意的是接地并不单指线路接地,当线路拉路检查后仍未能消除接地故障,则应考虑到可能所内设备有接地,例如避雷器、电压互感器,甚至变压器接地。

智能变电站的网络结构优化

0引言 智能变电站由一次设备和二次设备2个层面构成,其基本 的组成单元和普通数字化变电站并没有本质区别。 智能变电站的优势主要体现在一次设备的智能化控制以及利用网络化来组织二次设备上,加之一次设备与二次设备之间采用了高速网络通信,因此二者之间的联系得以加强。从智能变电站组成的层次结构来看,从一次设备(互感器、断路器)开始,往下是过程层设备(主要是户外柜组件和过程层交换机),其次是隔离层设备(如各类保护装置和测控装置),最后是由以太网MMS 、监控系统和远控装置构成的站控层设备。而从智能变电站的发展趋势来看,有向系统层和设备层2层结构简化的趋势。但这种2层简化结构需要依赖于大量的计算机和网络控制技术,因此短时间内还难以实现。 当前的智能变电站多数仍采用传统的3层结构形式,该种结构框架的过程层设备和间隔层设备是通过过程层的网络连接来实现的。网络连接在过程层中承担着智能变电站主要数据的通信任务,这些传输数据来自于变电站运行中的状态实时数据,以及变电站的模拟量采样信息、网络中传输的设备管理信息和事件警告信息等。因此, 在研究智能变电站的网络结构优化时,主要是考虑网络中数据传输的优化。 1智能变电站网络结构形式分析 智能变电站自动化系统分为站控层、间隔层和过程层3个 大层次,通信连接一般都是靠站控总线和过程总线完成。其中站控总线处理站控层与间隔层各控制设备之间的通信,而过程总线处理间隔层与过程层中各种智能一次设备的通信。 从逻辑上讲,在设计时,通常可依据需要将站控总线设置为独立于过程总线,或将站控总线与过程总线合并的形式。这2种不同的布线方式各有优缺点。如果将站控总线与过程总线合并,可能会因数据时效性属性不同(实时性、非实时性)、数据控制属性不同(控制性、非控制性)而导致数据间的互相影响,降低网络资源的利用效率和网络的安全性。但这种布线方式能够提高硬件资源的利用效率,在条件允许的情况下,可通过以太网的优先级排队技术或虚拟局域网技术来实现对各类重要等级不同的数据进行分析处理。 不论是采用站控总线和过程总线合并的形式还是单独布设的形式,从网络结构上看,都可以分为5个基本的层级结构:层级1(站控单元、站运行支持单元、路由器、远程控制中心)、层级2(一级交换机)、层级3(监控单元、保护单元)、层级4(二级交换机)、层级5(执行机构、传感器)。如果是站控总线和过程总线独立布设的形式,则各个层次的组成单元依次与下一层级的组成单元相连,同一层级的组成单元互不影响,形成从一级交换机开始的若干条独立的数据传输线路,此时一级交换机和二级交换机之间没有直接的线路连接,而是要经过层次3中的监控单元和保护单元。如果是站控总线和过程总线合并布设的形式,则在一级交换机和二级交换机之间直接存在直接的连接线路,但一级交换机所接收到的数据既有直接来自于二级交换机的数据,也有通过监控单元和保护单元的数据,这是这一布线方式可能存在数据干扰的根本原因。 2智能变电站网络结构优化 在本节中,将从某智能变电场升压站的组网结构优化及其 网络的流量优化2个方面来展开讨论。该升压站的原系统结构如图1所示。 2.1 原系统结构特点分析 由图1可知,其网络结构为典型的“三层两网”式结构,站控层、间隔层和过程层的层次结构很明显,过程层和站控层这2级网络为独立式布置。在本例中,网络采用高速以太网搭建,过程层的网络采用了2类网络形式来分别处理上行数据和下行数据,其中电流和电压实时数据的上传、开关量的上传均由SV 采样值网络完成,而分合闸控制量的下行则由GOOSE 网络完成。站控层网络采用MMS /GOOSE 通信方式来完成全站信息的汇总和处理。 在原站控层的组网方案中,采用的是双星型拓扑结构,冗余网络采用双网双工方式运行。而过程层的网络结构为单星型的以太网结构,保护装置由2套独立的单网配置提供,因此能够使过程层网络具有双重化的特点,且2套网络互相物理隔离。过程层中的网络采样值按点对点传输的方式完成,以直接跳闸的方式来实现对间隔层设备的保护。 采用上述组网结构后,可以实现GOOSE 和SV 以太网口的独立传输,在信息传输时交换机所承担的任务明确,能够有效避免数据之间的干扰。原过程层GOOSE 网络承担着繁重的数据采样任务,但网络仅具备100M 的流量承载力,影响了数据的传输效率,加之网络接口独立设置,因此不便于网络结构的维护。 浅谈智能变电站的网络结构优化 丁文树 (泰州供电公司,江苏泰州225300) 摘要:介绍了智能变电站的层级构成以及各个层级的特点,在此基础上,对当前智能变电站主要的网络结构形式进行了分析,最后 以某智能变电站的网络结构改造和优化为例,阐述了网络结构优化后的具体形式以及网络流量优化时所采用的优化方法。 关键词:智能变电站;网络结构优化;流量优化 图1升压站原系统结构示意图 站控层设备 站控层网络 间隔层设备 过程层网络 过程层设备 合并单元 测控装置 录波装置 计量装置 智能单元 保护装置 设计与分析◆Sheji yu Fenxi 134

5kV母线电压异常现象分析比较

5kV母线电压异常现象分析比较 作者:论文作者:hns5408 发布时间:2006/6/21 2728 来源:本站原创 【字体:】 摘要:中性点不接地和经消弧线圈接地的系统称小电流接地系统。小电流系统中常见的故障是单相接地。发生单相接地时电流较小,单相接地时不形成短路回路,电力系统安全运行规程规定接地故障后可继续运行1至2小时,但整个系统非故障相对地电压升高倍。若不及时处理,极易发展成二相短路,使故障扩大。 关键词:35kV母线电压异常 2006年5月13日,城关变35kv母线电压发生异常现象。当时城关变全站失压,后由城东变10kv翠城线与城关变10kv城关三路联络,当合上城关三路911开关时,出现城关变35kv母线失地信号,同时监视母线电压表发现表计指示异常:a相相电压偏低,b、c两相相电压升高,但低于线电压。经检查,电压异常发生在35kv母线上(母线上各馈线已退出运行)。检测母线设备及母线pt高低压熔丝都正常。最后更换母线pt高压熔丝,由#1主变35kv侧向35kv母线送电后,母线失地信号消失,电压指示正常。 从以上现象分析来看,城关变35kv母线可能出现空载母线虚假接地的现象。当时城关变由#1主变10kv侧向35kv母线倒送电时,35kv母线处于空载运行状态,就可能会出现空载母线虚假接地,三相电压不平衡并且发出接地信号,若当送上一条线路后接地现象会自行消失。建议今后在查找母线失地信号故障时,应带上一条馈线。 以下将几种单相接地故障的特征及处理方法的有关资料提供给同仁们参考: 中性点不接地和经消弧线圈接地的系统称小电流接地系统。小电流系统中常见的故障是单相接地。发生单相接地时电流较小,单相接地时不形成短路回路,电力系统安全运行规程规定接地故障后可继续运行1至2小时,但整个系统非故障相对地电压升高倍。若不及时处理,极易发展成二相短路,使故障扩大。

变电站运行常见故障成因分析及解决办法 张跃鹏

变电站运行常见故障成因分析及解决办法张跃鹏 发表时间:2019-12-06T12:09:09.070Z 来源:《电力设备》2019年第16期作者:张跃鹏 [导读] 摘要:随着电力系统的不断升级,变电站的运行程序也越来越复杂,很多都涉及多个设备联合运行,若某一环节出现失误,将会牵连更多的设备,导致变电站出现故障,进而造成巨大的经济损失。 (国网山西省电力公司天镇县供电公司山西大同 038200) 摘要:随着电力系统的不断升级,变电站的运行程序也越来越复杂,很多都涉及多个设备联合运行,若某一环节出现失误,将会牵连更多的设备,导致变电站出现故障,进而造成巨大的经济损失。因此,了解变电站运行故障原因是非常必要的,在此基础上才能找到出现故障的源头,做好变电站运行的日常维护工作。 关键词:变电站运行;常见故障;成因分析;解决办法 1变电站运行常见故障成因分析 1.1电压互感器 在电压互感器的使用中,一次侧保险和二次侧保险熔断问题经常发生。如果电压互感器出现断线故障,则警报系统会发出警报信息,监视面板上的控制灯熄灭,仪表指数出现异常。在面对电压互感器的断线故障时,要先暂停电压互感器的自动保护设备,防止系统出现误操作,再利用高压验电器进行验电。如果是一次侧保险熔断,可以直接更换;如果是二次侧保险熔断,则需要检查人员先查明故障原因,再进行更换处理,避免直接更换保险可能带来的严重事故。 1.2真空断路器 真空断路器储能电机的连转或不转故障的主要原因为:变电站设备大都长期连续运行,在使用过程中,由于部分机械结构的磨损导致内部变形位移、储能电机开关凸轮脱落,此外还存在出点拉弧烧坏的问题,因此造成开关触点熔断,无法断开电机电源。针对此故障,应当及时更换新的行程开关,采取合适的电容器添加方法,以解决开关可能烧毁的问题。 1.3变压器故障 从故障的类型上来看,变压器的故障可以分为2个类型,分别是内部故障以及外部故障,在内部故障上包括了绕组故障、分接开关故障等,这些内部故障多发生于变压器油箱内部;而外部的故障大多发生于变压器的油箱套管上以及引线上,多表现为铁芯故障的形式。在绕组故障当中最为常见的故障类型是设备长期高负荷状态运行,并且整体散热条件不足,加上设备应用时间已经很长,因此变压器的绝缘会由于老化而脆裂,而出现短路问题。与此同时,油温会异常升高,电流增大,并且出现冒泡声音,导致瓦斯保护误动作;而绕组相间短路问题的出现大多是由于其中有杂物落入,而导致绕组内部的温度过高,从而导致绝缘老化;绕组出现断线问题导致故障,套管之上的端帽封闭松动,因此进水,绝缘受潮,也可能由于变压器上缺油,因此油箱内部的线材被直接暴露在空气当中。对于分接开关来说,其主要的类型为变压器表现为分接头放电;铁芯故障也较为常见,其由于铁芯和螺杆接触环节上的绝缘损坏,从而导致铁芯烧毁。 2变电站运行故障进行分析的重要性 我国人口基数世界第一,因此对于居民生活而言,电力的供应必不可少,要想保持社会的正常运转和居民的正常生活,必须对电力供应系统进行及时维护,同时需要确保电力供应系统的正常运转。根据实际工作数据显示,导致电力供应系统出现运行故障的重要原因之一就是变电站运行故障,因此加强对变电站运行过程的监督管理,加强对变电站运行故障的研究,进而提出解决运行故障的有效措施对于变电站的正常运行具有重要意义,同时对电力供应系统的正常运转具有重要作用。此外,除了生活用电之外,我国工农业以及第三产业的发展都需要电力支持,因此保障电力系统的正常运行对于国民经济的正常运行也有重要意义。 3变电站运行故障的解决办法 3.1建立健全安全管理制度,注重变电站的日常管理 为了维护变电站的正常运行,首先,要建立健全变电站的安全管理制度,结合变电站的实际运行情况,可以从值班制度、交接班制度、交接班标准化制度、接班检查标准、倒闸操作制度以及设备维护制度等方面建立健全制度,从而使变电站设备管理人员在日常巡视过程中能够有制可依,将每一个步骤都做到精准化,及早地发现变电站设备存在的隐患或者薄弱环节。与此同时,还需要加强对变电站电力设备的日常管理和巡视检查,安排相应的值班人员。根据变电站的气候环境、电力系统运行方式以及电力设备的负荷情况,选择适宜的管理方式和巡查内容,以便于变电站的正常维护。因此,根据变电站设备运行的实际情况,不断地完善其安全管理制度,注重变电站的日常管理,减少设备故障的发生率。 3.2网络系统建设 在变电站各类设备运行中,出现故障时运行参数会发生变化,为了能够实现对各类设备运行状态的精确检测,可以通过建成检测网络的方式达成这一目的。检测网络设计中,首先需要完成对各类传感器的选型工作,要根据线路发挥的功能选择正确的传感器,例如对于配电箱柜来说,选用的传感器包括温度传感器、烟雾传感器及核心设备的运行参数传感器;对于变压器的配电端,应用传感器为电压传感器,这类传感器将信号传回到数据分析系统。其次为通信系统的建设,考虑到变电站中的电磁干扰效果较为明显,所以可以应用光纤通信技术完成通信,防止电磁干扰对通信系统带来的负面影响。最后为控制系统的构建,控制系统可发挥两项功能,其一为对系统中各类参数的比较和分析,当发现测量的参数与设定的标准值差距过大时,可确定相关线路出现故障,一方面该系统通过对相关开关运行状态的控制,隔离故障电路,另一方面在控制系统中显示故障信息,及时发出警报。 3.3具体故障的解决 3.3.1电压互感器故障解决措施 电压互感器发生的故障基本在设备内部,需要采用经验法和仪器检查法相结合对实际状况进行排查。设备质量问题是首要关心问题,应先检查每个设备单元各组件的合格情况。其次电压互感器引线是否破损,如果破损互感器内电压会持续上升导致电压失衡。再次检查防雷措施是否得当,避免出现避雷设备被击穿,造成损坏。最后还应考虑防潮散热维护工作是否到位。工作人员结合以往经验排除干扰因素后,确定大体故障位置应使用红外热成像仪详细了解设备内部受损元件情况及位置,以便对其进行准确维修。 3.3.2真空断路器故障解决措施 根据上文的论述可以得知,之所以真空断路器故障造成的危害比较大的一个因素就是在变电站当中难以及时对真空断路器进行有效的

变电站主要设备

输变电系统就是一系列电气设备组成的。发电站发出的强大电能只有通过输变电系统才能输送到电力用户。 图1-2给出了变电站主要设备的示意图。图中除了所示的变压器、导线、绝缘子、互感器、避雷器、隔离开关与断路器等电气设备外,还有电容器、套管、阻波器、电缆、电抗器与继电保护装置等,这些都就是输变电系统中必不可缺的设备。 图1-2 变电站主要设备示意图 1—变压器;2—导线;3—绝缘子;4—互感器;5—避雷器;6—隔离开关;7—断路器 下面,对输变电系统的主要电气设备及其功能进行简单介绍。 (1)输变电系统的基本电气设备主要有导线、变压器、开关设备、高压绝缘子等。 1)导线。导线的主要功能就就是引导电能实现定向传输。导线按其结构可以分为两大类:一类就是结构比较简单不外包绝缘的称为电线;另一类就是外包特殊绝缘层与铠甲的称为电缆。电线中最简单的就是裸导线,裸导线结构简单、使用量最大,在所有输变电设备中,它消耗的有色金属最多。电缆的用量比裸导线少得多,但就是因为它具有占用空间小、受外界干扰少、比较可靠等优点,所以也占有特殊地位。电缆不仅可埋在地里,也可浸在水底,因此在一些跨江过海的地方都离不开电缆。电缆的制造比裸导线要复杂得多,这主要就是因为要保证它的外皮与导线间的可靠绝缘。输变电系统中采用的电缆称为电力电缆。此外,还有供通信用的通信电缆等。 2)变压器。变压器就是利用电磁感应原理对变压器两侧交流电压进行变换的电气设备。为了大幅度地降低电能远距离传输时在输电线路上的电能损耗,发电机发出的电能需要升高电压后再进行远距离传输,而在输电线路的负荷端,输电线路上的高电压只有降低等级后才能便于电力用户使用。电力系统中的电压每改变一次都需要使用变压器。根据升压与降压的不同作用,变压器又分为升压变压器与降压变压器。例如,要把发电站发出的电能送入输变电系统,就需要在发电站安装变压器,该变压器输入端(又称一次侧)的电压与发电机电压相同,变压器输出端(又称二次侧)的电压与该输变电系统的电压相同。这种输出电压比输入电压高的变压器即为升压变压器。当电能送到电力用户后,还需要很多变压器把输变电系统的高电压逐级降到电力用户侧的

相关主题
文本预览
相关文档 最新文档