当前位置:文档之家› 航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电)
航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电)

1.3 航天器的基本系统组成及各部分作用?

航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正

常工作。

1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么?

概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的

再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中,

可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。

1.5 阐述姿态稳定的各种方式, 比较其异同。

姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天

器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在

某一参考空间的方向。

1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。

主动控制与被动控制的主要区别是航天器的控制力和力矩的来

源不同。被动控制: 其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制: 包括测量航天器的姿态和轨道, 处理测量数据,

按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控

制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。

2.1 利用牛顿万有引力定律推导、分析航天器受N 体引力时的运动方程, 并阐述简化为二体相对运动的合理性。

(1)解:牛顿万有引力定律:??r Fg??GMm

2

式中,Fg为由于质量引起的作用在质量m上的力矢量;r为从到m的距离矢量。万有引力常数G的值为

G =6.670×10-13 N·cm2/g2。

如下图,对于N体问题,

作用在第i个物体(假设即为航天器)上的合力称为F总,其表达式为

?

?????其中:F其他?F阻力?F推力?F太阳压力?F干扰??

应用牛顿第二运动定律:

???F总?Fg?F其他?d(mivi)?dt?F总

把对时间的导数展开,得到???dvdmii mi?vi?F总dtdt n?mj??? ri??G(rji)3rj?1ji j?i???rmi,就得出第i个物体的一般运动方程为?式两边各项除以i??F总

mi?i?r?m?imi

上面方程是一个二阶非线性矢量微分方程,这种形式的微分方程是很难求解的。假定第i个物

?i),同时还假定阻力和其他外力也不存在。这样,惟体的质量保持不变(即无动力飞行,=0m

一存在的力为引力,于是方程简化成

nmj??G(ji) i3rj?1ji j?i

(2)分析下表中的数据容易看出, 围绕地球运行的航天器受到

地球的引力占有主导地位, 因此进一步简化运动方程式, 简化N 体问题是可能和合理的,这就是简化为二体相对运动的合理性。

???r??r

?FgGMmr??2?

2. 4 比较航天器各种圆锥曲线轨道的参数a, c, e, p 的特点, 分析它们与轨道常数h 和E之间的关系。

所有的圆锥曲线均有两个焦点F和F。主焦点F代表中心引力体所在的位置,第二个焦点(或称虚焦点) F′,在轨道力学中没有什么意义。两个焦点间的距离以2c表示。对于圆,两个焦点重合,所以2c为零;对于抛物线, 可认为虚焦点F′在无穷远处,所以2c为无穷大;对于双曲线2c取负值。通过两个焦点的弦长称为圆锥曲线的长轴,以2a 表示,参数a称为长半轴或长半径。对于圆, 2a就是直径;对于抛物线,2a 为无穷大;对于双曲线,2a取负值。曲线在焦点处的宽度是一正值之量,称为正焦弦(通径)以2p表示。除了抛物线之外, 所有的圆锥曲线均有偏心率额e,

????= ??=??(1? ??2) 圆和椭圆轨道:a>O,e<1双曲线轨道:a<O,e>1

抛物线轨道:a=,e=1椭圆轨道: (椭圆的短半轴记作b), 2双曲线轨道: , a ? b 2 ? c 2 p ? a (1 ? e 2 ) p?a(1?e2)

抛物线轨道:c=∞,

h 单独决定了p , 而E单独决定了a, 它们共同决定了e, 即确定

了圆锥曲线轨道的具体形状。

2. 5 利用牛顿定律证明开普勒第三定律。

????????????GMmrFg??有牛顿万有引力定理得:??= 由两式相等得:??

????

??常数)

2. 6 计算第一宇宙速度和第二宇宙速度。

航天器在圆周轨道上运行所必须具备的速度叫做圆周速度。GMm/R^2=mv^2/R,解得

v=(GM/R)^0.5地球半径R=6371.02km,计算得第一宇宙速度为7.9km/s.同理设逃逸速度为,由机械能守恒,E===0得到逃逸速度为由动能定理得1/2*mV^2-GMm/r=0;解得V=√(2GM/r)这个值正好是第一宇宙速度的√2倍。计算得第二宇宙速度为11.2km/s.

2.8 什么是轨道六要素, 它们是如何确定航天器在空间的位置的?

航天器运行轨道的形状和其在间的位置,可以通过6个参量来表示,简称轨道要素或轨道根数。这些参量是相互独立的,而且通常具有十分明确的物理意义。轨道六要素是描述和确定航天器轨道特征的量轨道六要素为:(1)轨道倾角i:航天器运行轨道所在的面叫轨道面,这个平面通过地心,它与地球赤道平面的夹角称为轨道倾角。(2)升交点赤径Ω:从春分点方向轴量起的升交点的经度,顺地球自转方向为正。0≤Ω≤2 。(3)近地点角距ω:投影在天球

上的椭圆轨道近地点与升交点对地心所张的角度,从升交点顺航天器运行方向量到近地点。(4)椭圆轨道的长半轴a。(5)椭圆偏心率??= ??,其中b是椭圆的短半轴。(6)航天器过近地点的时刻????。确定航天器在空间的位置:

(1)确定航天器轨道平面在空间的方位:由轨道倾角i和升交点赤经Ω确定。当轨道倾角i=0°时,称为赤道轨道;当i=90°时,称为

极轨道;当0°<i<90°时,航天器运行方向与地球自转方向相同,称为顺行轨道;当90°<i<180°时,航天器运行方向与地球自转方向相反,称为逆行轨道;当i=180°时,航天器成为与地球自转方

向相反的赤道航天器。(2)确定椭圆长轴在轨道平面上的指向:由近地点角距确定。(3)确定椭圆轨道的形状和大小:由长半轴a和偏心率e 确定。(4)确定航天器在轨道上的位置:由航天器过近地点时刻把时间和空间(航天器在轨道上的位置)联系起来。3.1分析描述航天器姿态运动常用的参考坐标系之间的相对关系。

答:航天器姿态运动常用的坐标系,主要有4种,分别是:惯性坐标系、质心平动坐标系、质心轨道坐标系、以及本体坐标系。在坐标系确定以后,航天器上任何一点的位置就可以在固联于星体的本体坐标中表示;若要描述三轴稳定航天器的对地定向运动,则要借助于质心轨道坐标系,若要讨论自旋卫星的章动运动时,就必须运用质心平动坐标系。而各种坐标系之间的关系可以通过一系列旋转角来表示,这些旋转角称为欧拉角。具体地说可以通过3个欧拉角,,来确定本

体坐标系相对于其他坐标系的位置。以坐标系和为例,星体轴的位置

可通过3次旋转达到坐标轴的位置。

3.4若航天器本体坐标系Ox y z 各轴不是主惯量轴, 试推导姿态欧拉动力学方程。

设航天器在空间以角速度旋转,其动量矩为。为了方便起见,基准点选航天器本体坐标系的原点,也即航天器质心0,是作用在航天器相对于质心0的合外力矩,所以航天器的动量矩即为

式中,矢量r是刚体内相对于质心的矢径;是质量元在空间相对于质心的速度矢量;m为航天器的总质量。于是在本体坐标系中,刚体的和M可以分别表示成

式中,是航天器本体坐标系各轴的单位矢量,上两式右端的系数则是相应矢量沿各坐标轴的分量。将H对时间t求取导数,求动量矩H在空间的变化率,即

由于刚体在空间中以的角速度进行旋转,所以与其固连的本体坐标系各轴方向也在相应变化。

已知坐标轴单位矢量的导数公式是

代入H的导数式中,并根据动量矩定理得

开为

其在各轴的分量表示为,所以M在航天器本体坐标系中可以展或表示成矩阵矢量形式,即

上式称为欧拉力矩方程式。

同理,对r求导也可得

若刚体内各质点相对于质心的位置不变,式H描述的动量矩即为利用矢量叉乘公式,有

代入H中,有:

即:

式中,I为惯性矩阵;分别为刚体绕坐标轴的转动惯量;

数值可正可负,它们与坐标系的选取密切有关。如果在某一坐标系中,称为惯量积。惯量积的,则该坐标系称为主轴坐标系,轴就是刚体的主惯量轴。若轴不是刚体的主惯量轴,则直接将代入到中就得到此时的姿态动力学方程。

3.5设有两颗转动惯量Ix , Iy, Iz完全相同的沿圆轨道运行的地球卫星, 一颗轨道高度为2 000 km, 另一颗为200 km。试定量分析这两颗卫星各通道间耦合的强弱, 并阐述产生耦合的原因。

因为沿圆轨道飞行的角速度为:a=F/m=(GMm/r^2)/m=v^2/r∵

F=mv^2/r v=sqrt(fr/m)=sqrt(GM/r) ω=2π/T=v/r其中是加速度,r是轨道半径,M是地球质量,m是卫星质量,G是常数,ω是角速度,T是周期。

即,轨道高度为2000km的卫星对应的角速度为:ω=v/2000

轨道高度为200km的卫星对应的角速度为:ω=v/200

又因为航天器的线性化姿态动力学方程是:

所以航天器姿态动力学在俯仰轴可以独立出来, 而滚动和偏航

姿态是相互耦合的。当这两颗卫星的各惯量相同时,由于轨道高度为2000km的比200km的角速度小,故其滚动和偏航姿态间的相互耦合

强于轨道高度为200km的卫星。卫星做的是复合运动,其各旋转轴的角速度是相互耦合的,因而导致各通道间的耦合。

3.6根据图3 .8 所示, 分析比较轨道高度分别为200 , 500 , 1 000 , 2 000 km 的圆轨道卫星所受的最主要的两种干扰力矩的异同。

答:200km和500km所受的最主要的两种干扰力矩是:气动力矩和重力梯度力矩;1000km和2000km所受的最主要的两种干扰力矩是:重力梯度力矩和磁力矩。

4.5比较各种常用姿态敏感器的优缺点

敏感器类型优点

1.适用于近地轨道卫星

2.信号强

3.轮廓清楚

4.分析方便

1.信号源强

2.轮廓清楚

3.功耗低、质量轻缺点1.一般需要扫描机构2.需要防止太阳干扰3.精度约0.1°

4.受轨道影响大1.有阴影区2.精度约1′地球敏感器(地平仪)太阳敏感器

星敏感器

1.精度约0.003°

2.视场不受限制

3.不受轨道限制

1.信号弱

2.结构复杂、成本高

3.要防止太阳干扰

4.星识别复杂

5.确定初始姿态,需要第二个姿态确定系统

1.分辨率大于0.5°

2.受轨道影响大

3.在星体内要进行磁清洁1.易于漂移

2.有高速旋转部件,易磨损

3.功率大、质量大1.无自主性

2.受地面站分布影响

磁强计

1.成本低、功耗低

2.对低轨道卫星灵敏度高1.自主性强2.不受轨道影响

3.有限时间内精度高

4.在星体上容易实现1.精度约0.03°

2.不受航天器形变弯曲影响

3.结构以实现

惯性敏感器

射频敏感器

4.6航天器用的推力器应具备什么特点?为什么认为电推力器是最有发展前景的推力器?

推力器是目前航天器控制使用最广泛的执行机构之一。它根据牛顿第二定律,利用质射排出,产生反作用推力,这也正是这种装置被称为推力器或喷气执行机构的原因。当推安装使得推力方向通过航天器质心,则成为轨道控制执行机构;而当推力方向不过质心,则必然产生相对航天器质心的力矩,成为姿态控制执行机构。根据产生推力所需能源的行驶不同,质量排出型推力器尅分为冷气推力器、热气推力器和电推力器。其中冷气推力器和热气推力器小号的工质需由航天器从地面携带,有限其无法在轨补充;而电推力器消耗电能,可以通过太阳能电池在轨补充,工质消耗大大减少。因此电推力器成为今后

长寿命、高精度航天器推力器的一个重要发展方向。

4.7飞轮分为几种?各种的区别是什么?

根据飞轮的结构特点和产生控制作用的形式可以分为惯性轮、控制力矩陀螺和框架动量轮三种,其中惯性轮又分为反作用轮和动量轮两种。当飞轮的支承与航天器固连时,飞轮动量矩方向相对于航天器本体坐标系Oxyz不变,但飞轮的转速可以变化,这种工作方式的飞轮通常称为惯性轮。其中如果飞轮的转速可以正负改变,且平均动量矩为零,则称为反作用轮。如果飞轮的平均动量矩是一个不为零的常值——偏置值,也就是说飞轮储存了一个较大的动量矩,飞轮的转速可以相对于偏置值有一定的变化,从而产生控制力矩。具有这种特点的飞轮称为动量轮或偏置动量轮。如果把恒速旋转的轮子装在框架上,而框架又可以相对于航天器本体转动,即框架角变化,那么就得到了动量矩的大小恒定不变而方向可变的飞轮,这种飞轮称为控制力矩陀螺。根据支承轮子的框架数量的不同,控制力矩陀螺分为单框架控制力矩陀螺和双框架控制力矩陀螺两种。前者动量矩的方向变化在一个平面内,后者则可在三维空间任意改变。如果在控制力矩陀螺的基础上,轮子旋转的速度也可变化,即动量矩的大小和方向均可变,这种飞轮称为框架动量轮,也有单框架和双框架之分。

4.8分析比较各种环境型执行机构适用的航天器和轨道高度。

磁力矩与轨道高度的3次方成反比,轨道高度越低,磁力矩越大。所以磁力矩作为控制力矩比较适用于低轨道航天器。重力梯度力矩适用于中高度轨道航天器。太阳辐射力矩适用于同步轨

道卫星等高轨道航天器。气动力矩也适用于低轨道。但是最后两种力矩较少用来作为控制力矩。利用环境力矩产生控制力矩的装置可称为环境型执行机构。

4.9分析比较航天器各类姿态控制方式的性能优劣。

自旋稳定系统和环境力矩稳定系统不需要消耗星上能源,且不具有机动能力,因此称为无源系统或被动控制系统。其余系统是由星上携带的控制力矩产生器作执行机构,需要消耗星上能源,且又具有机动能力,因此称为有源系统或主动控制系统。各种航天器通常根据其任务的需要选择合适的控制系统。对复杂结构航天器,通常由若干分体组成,每个分体各有相对独立的控制系统,这种系统称为多体控制系统,也称混合控制系统。

5.5与单自旋卫星相比, 双自旋卫星的主要优缺点是什么?双自旋稳定原理如何?

1、与单自旋卫星相比,双自旋卫星的主要优缺点:

双自旋卫星既能保持自旋稳定的优点,又能容许用一个定向的平台来设置科学仪器和天线等(P89)。由于双自旋卫星存在自旋和消旋两部分,因此与单自旋卫星相比,如何设计消旋控制系统和消旋轴承组合件就成为双自旋卫星的特色(P90)。

2、双自旋卫星的稳定性可以总结如下:

假设自旋部分和消旋部分都近似于刚体,均相对于自旋轴对称,消旋体绕自旋轴角速度为零,则:(1)由于星体内可动部件的影响,惯量比μ大于1(短粗)的双自旋卫星的自旋运动是稳定的。(2)惯量比μ小于

1(细长)的双自旋卫星,只要消旋部分的可动部件引起的能量耗散足够快,其运动也是稳定的。(3) 短粗双自旋卫星的惯量比μ设计准则与自旋卫星相同。

(4) 细长双自旋卫星,为保证稳定,须在消旋部分安装被动章动阻尼器,或者在星上设置主动章动控制系统。(P92)

5.8分析影响重力梯度力矩大小的主要因素。

引力( 含重力) 梯度力矩具有如下性质:

(1)引力梯度力矩随高度的增加而减小:引力梯度力矩与到天体中心距离R0的立方成反比,轨道高度越高,引力梯度力矩越小。(2)引力梯度力矩与航天器的质量分布有关:引力梯度力矩是与航天器的三轴

主惯量间的差成正比。如果航天器对质心的惯量椭球是一正球体,则引力梯度力矩恒为零。因此要想减小引力梯度力矩对姿态运动的影响,就必须使星体对质心的惯量椭球尽量接近于正球体。相反,如果质量分布成哑铃状,则可得到最大的主惯量之差,因此可能得到最大的引力梯度力矩。用引力梯度力矩作稳定力矩的航天器就需要用长杆把各部分质量拉开尽可能大的距离。

(3)引力梯度力矩与航天器的角位置有关:由式(5 .64 )知,当航天器的任一惯量主轴,例如Oz 轴与铅垂线重合,也即与矢量R 共线,则有Rx = Ry = 0, 因此有Mg = 0, 称此位置为引力梯度力矩的零位置。以哑铃为例,哑铃对质心的惯量主轴为沿连杆的方向和垂直于连杆的方向,因此哑铃不论是铅垂放置或水平放置,都有相应的惯量主轴与铅垂线重合,故都是引力梯度力矩的零位置。一般来说,任意形状刚体至少有

3 个惯量主轴,因此相应有3个零位置。引力梯度稳定系统就是利用引力梯度力矩的这一性质使航天器保持对天体定向。月球相对于地球的角位置保持不变,就因为月球具有天然的引力梯度稳定系统。(P98)

6.5 与喷气推力器轴姿态稳定系统相比,说明飞轮三轴姿态稳定系统有什么优缺点。

答案:优点:与喷气推力器三轴姿态稳定系统相比, 飞轮三轴姿态稳定系统具有多方面的优点。

(1) 飞轮可以给出较精确的连续变化的控制力矩, 可以进行线

性控制, 而喷气推力器只能作非线性开关控制。因此飞轮的控制精度一般比喷气推力器的高一个数量级, 而且姿态误差速率也比喷气控制小。(2) 飞轮所需要的能源是电能, 可以不断通过太阳能电池在轨得到补充, 因而适合于长寿航天器携带的工质或燃料质量成正比, 而且还有长期密封问题。(3) 飞轮控制系统

特别适合于克服周期性扰动,而中高轨道卫星所受的扰动基本上是周期性的。(4) 飞轮控制系统能够避免热气推力器对光学仪器的污染。缺点:一是飞轮会发生速度饱和。当飞轮朝一个方向加速或偏转以克服某一方面的非周期性扰动时,飞轮终究要达到它的最大允许转速。在这种极限工作状态下,飞轮就不再吸收航天器的多余动量矩,失去控制能力。这种状态称为饱和,饱和是飞轮系统自身不能克服的缺点。二是由于转动部件的存在,特别是轴承的寿命和可靠性受到限制。

6.8 零动量反作用轮斜装的优点是什么?

答案:(1 ) 控制功耗指标U比较低(2 ) 斜装轮的力矩包和动量包

比较大:动量包就是指所有反作用轮在航天器本体坐标系中的各个方向上所能提供的最大动量矩矢量的端点形成的包络。动量包的大小是动量矩储存能力的体现。若动量包大,则在克服同样外部扰动时,飞轮的卸载次数少。对飞轮动量矩进行微分就成为控制力矩,可把此称为力矩包。力矩包大则说明同样的反作用轮能承受的外部扰动力矩大。

(3 ) 可靠性:可靠性而言,斜装轮比正交轮高,至少是相等的。(4 ) 斜装轮适应性大,系统设计灵活:在设计采用斜装轮的姿态控制系统时,可

选择的参数不仅有飞轮的动量矩大小,还有安装形式。因此系统设计的灵活性较大,易于适应各种外部扰动。

6.9 给出一种偏置动量轮三轴姿态稳定系统的基本敏感器和执

行机构配置方案,并分别说明他们的作用,以及这种系统的优点。

答案:实例,加拿大技术通信卫星CTS。在俯仰轴上装一个动量轮, 其动量矩H=20 。卫星在同步轨道运行,俯仰姿态偏差通过俯仰通道控制系统来消除,主要是在飞轮偏置值附近改变动量矩。另外装两对喷管,一对在俯仰轴,为动量轮卸载去饱和。另外一对喷管斜装,对滚动和偏航姿态偏差都进行控制。上述CTS卫星之所以采用这种系统是因为这种配置的最大优点是可以不用偏航敏感器,只用红外地平仪来测量俯仰和滚动。图( b )所示是图(a)所示的抽象模型图,它具有一般性,明确地显示了偏置动量轮三轴姿态稳定系统的执行机构和敏感器典型配置。

7.3分析磁力矩控制系统与飞轮控制系统、推力器控制系统相比有何优缺点。

优点:简单, 不消耗工质, 只需要少量电能, 特别对小型地球卫星最合适。缺点:地球磁场存在各种不确定性的长期或短期变化, 因此研究地磁场时不但要在一定时间内重新测定, 以校正原来的数据,而且必须对局部的异常加以适当补充。但即使如此, 仍不可能准确了解地球周围磁场的分布, 所以磁力矩控制的精度一般较低,无

论姿态稳定, 还是姿态机动。

7.5什么是姿态捕获?姿态捕获可分为几类?阐述各自的原理。

姿态捕获是航天器由未知姿态到已知姿态的定向过程,是另一类典型的姿态机动。姿态捕获方式可分为三类: 全自主、半自主和地面控制。全自主捕获方式就是整个捕获过程完全由星上设备完成,从姿态信息获得、控制指令综合到执行机构工作。如西德天文卫星AEROS ,它由星上模拟式太阳敏感器和磁强计得到姿态信息, 星上电子逻辑装置控制电磁铁使自旋轴指向太阳。热容量

绘图卫星HCMM采用磁强计和安装在飞轮上的地平扫描仪来控制磁力矩使姿态对地球指向稳定。半自主姿态捕获方式是由地面站和星上设备共同组成的。例如高能天文观察卫星HEAO首先利用模拟式太阳敏感器使自旋轴粗精度指向太阳,其精度在几度范围内。而地面站的计算机根据遥测传送下来的星跟踪器数据,通过相应软件精确确定卫星三轴姿态,并算出陀螺漂移的校正量,然后把这些信息送上卫星,最后通过控制喷气推力器使卫星姿态精确指向目标。地面控制姿态捕获可以分为开环和闭环两种形式。闭环形式类似于星上全自主控制。这种闭环形式的地面控制是利用星上姿态敏感器,通过下行通道遥测

传送到地面站,由地面站计算机把这些数据处理成为姿态控制有关的信息,然后通过上行通道遥控星上执行机构。星上和地面站共同组成一个闭环控制系统,并且以实时方式进行。地面控制的开环形式是把星上敏感器数据传送到地面站,经过地面站计算机处理,并把结果显示出来,然后根据控制规律估算各种控制指令,经过分析和选择,最后通过遥控使星上执行机构动作。

7.6叙述地球同步轨道卫星三轴姿态捕获的过程, 以及对敏感器和执行机构配置的要求。地球同步轨道卫星的姿态捕获是在对自旋体的消旋和速率阻尼的基础上进行的,分为太阳捕获,地球捕获和偏航捕获3个阶段完成。第一阶段为太阳捕获:此前卫星的姿态是任意的。将卫星消旋后,启动姿态捕获控制模式,通过速率控制回路使星体绕滚动轴缓慢转动,一般旋转速率为ωx = (0 .5°~1°)/ s , 并消除绕其他两轴的角速度。这时装在星体上的太阳敏器所形成的两条带状视场也随之转动。这样大的旋转视场在空间总会搜索到太阳。通过姿态控制系统的作用来完成太阳的捕获。第二阶段为地球捕获:在这一过程中,本体坐标系Ox轴始终指向太阳,同时星体绕Ox轴以( 0 .5°~1°)/s 的速度转动,并使安装在Oy轴的红外地平仪在空间扫描。当卫星运行到合适的位置,太阳—卫星—地球之间的连线夹角为9 0°时, 捕获地球的条件得到满足,地球必然会进入俯仰轴上的红外地平仪视场。一旦红外地平仪扫到地球,立即通过滚动通道控制回路消除星体绕Ox轴的角速度,锁住卫星姿态,将地球保持在Oxz平面内,完成地球捕获。第三阶段为偏航捕获:地球捕获后,红外地平仪就可以测出卫星滚动和俯

仰姿态误差信息,然后把这些姿态误差信息送入姿态控制系统,从而把卫星姿态控制在红外地平仪的测量精度范围内。在此基础上再进一步把精确偏航姿态信息输入到姿态控制系统,实现偏航捕获,最后达到三轴姿态捕获,使三轴姿态指向精度都接近姿态敏感器的精度。

7.7叙述重力梯度稳定卫星自主姿态捕获的过程和对敏感器执行机构配置的要求。

卫星姿态控制系统由自主姿态捕获和被动重力梯度稳定两部分组成。前者从星箭分离起到建立重力梯度稳定为止,约十几分钟;后者是长期稳定姿态,可有几年寿命。执行机构可选择两种安装结构,一种是在俯仰和滚动轴各装一对推力器,称为二轴控制系统;两个红外地平仪安装在一个(或者分别装在两个)转角机构的活动板上。另一种是在俯仰、滚动和偏航三轴各装一对推力器,先控制偏航后控制滚动,俯仰一直进行控制,称此为二轴分段控制系统。二轴分段控制系统是在二轴控制系的基础上增加一对偏航推力器。偏航(沿Oz轴)控制和滚动(沿Ox轴) 控制合用一个通道,按照时间划分进行切换,因此测量和逻辑处理的硬件数目和二轴控制系统完全相同。在捕获的

第一阶段,卫星仅作俯仰轴Oy和偏航轴Oz的控制,控制系统充分有效地消除了初始偏差ωy (0 ) ,ωz (0 ) ,并建立起实现卫星程序转弯应有的转动角速率。在捕获的第二阶段,卫星仅作俯仰轴Oy和滚动轴Ox的控制,继而消除沿Ox轴的偏差并完成程序转弯,克服伸杆扰动,给重力梯度稳定提供良好的运动状态。

最新第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)2 1 (0+ =k t 即 πω)21(10+=k t 时 {}10)(==t x p 若 0cos 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω 当 0cos 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02 cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0cos 2cos 1 21,),(022ωπ ω? =??=- 若 0cos 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然???=?? ???-=??? ??出现反面出现正面 出现反面出现正面10,212,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 ?????≥<≤<=??? ?? 11102 1 0021,x x x x F 再求F (x ,1) 显然? ??-=???=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1 (1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ???-=???=出现反面出现正面出现反面出现正面 2 1)1(, 1 0)2 1 ( X X 于是

控制工程基础第三版机械工业出版社课后答案

控制工程基础习题解答 第一章 1-5.图1-10为张力控制系统。当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。画出该控制系统的框图。 图1-10 题1-5图 由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。 当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。 框图如图所示。 角位移 题1-5 框图 1-8.图1-13为自动防空火力随动控制系统示意图及原理图。试说明该控制系统的作用情况。

该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统 获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。 跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。 瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。 控制工程基础习题解答 第二章 2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (3). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (5). ()?? ? ? ?+ =35sin πt t f 图1-13 题1-8图 敏感元件

西电信号与信息处理研究生培养方案修订(博士硕士工程硕士)

信号与信息处理 一、学科、专业介绍 本学科为国家重点学科,建有雷达信号处理处理国家重点实验室,具有博士和硕士学位授予权,并可招收博士后研究人员和访问学者。本学科点还是我校“211工程”建设的重点项目之一,成师资力量雄厚、设备先进,科研经费充足。现有中国科学院院士1名、教授21人、其中博士生导师13人、副教授和高级工程师40人,讲师和工程师30多人。重点实验室、研究所和教学基地为开展学科研究和培养研究生提供了良好的物质条件。近年来已出版专著、译著、教材数十种,在国际、国内著名学术刊物上发表论文数百篇,被SCI、EI和ISTP收录论文百余篇,有数十余项科学研究成果分别获得国家、部、省级科技进步奖。目前在研的纵、横向科研项目百余项,信号与信息处理是一门内容丰富、发展迅速、应用广泛的学科,它是信息系统包括雷达、通信、导航、声纳等系统的核心组成部分,它主要研究信号检测、滤波、估计与识别等的基本理论、方法和实现技术。 本专业的研究方向主要有:信号理论、信号检测与估值、自适应信号处理、阵列信号处理、多维信号处理、智能信号处理、并行处理理论和方法、神经网络及应用、图像与图形处理、电子系统自动化设计、语音处理、雷达成像等。 二、培养方案 1.博士生培养方案 1.1培养目标 坚持面向“四个现代化、面向世界、面向未来”的方针,注意对博士研究生在德智体诸方面的全面培养,使之成为能在科学或专门技术上做出创造性成果的高层次人才。 1.认真学习和较好地掌握马克思主义、毛泽东思想、邓小平理论以及江泽民同志“三个代表”的重要理论;热爱社会主义祖国;具有良好的职业道德和敬业精神;具有高度的事业心和责任感,积极为社会主义现代化建设服务。 2.在本学科上掌握坚实、宽广的基础理论和系统深入的专门知识;具有独立从事科学研究的能力。 3.掌握一门外国语:具有熟练的阅读能力,较好的写译能力和一定的听说能力,能够以英语为工具,熟练地进行科学研究和学术交流。 4.具有健康的体格。 1.2 学习年限 全日制攻读博士学位的学习年限一般为3至4年,硕-博连读的学习年限一般为5至6年,非全日制攻读博士学位的学习年限一般不超过6年,但可以根据实际情况允许研究生提前或延期毕业。 1.3 研究方向 1.4 课程设置 信号与信息处理学科博士研究生的研究方向及课程设置见附件一。 1.5 学位论文 具体要求与做法详见《西安电子科技大学博士生培养工作暂行规定》。 2.硕士生培养方案 2.1培养目标 1.掌握马克思主义、毛泽东思想、邓小平理论以及江泽民同志“三个代表”重要理论的基本原

过程控制工程课后习题参考答案-前三章

过程控制工程课后习题参考答案-前三章

过程控制工程 第一章单回路控制系统 1.1 何谓控制通道?何谓干扰通道?它们的特性对控制系统质量有什么影响? 控制通道——是指操纵变量与被控变量之间的信号联系; 干扰通道——是指干扰作用与被控变量之间的信号联系。 (1)控制通道特性对系统控制质量的影响:(从K、T、τ三方面) 控制通道静态放大倍数越大,系统灵敏度越高,余差越小。但随着静态放大倍数的增大,系统的稳定性变差。 控制通道时间常数越大,经过的容量数越多,系统的工作频率越低,控制越不及时,过渡过程时间越长,系统的质量越低,但也不是越小越好,太小会使系统的稳定性下降,因此应该适当小一些。 控制通道纯滞后的存在不仅使系统控制不及时,使动态偏差增大,而且还还会使系统的稳定性降低。 (2)干扰通道特性对系统控制质量的影响:

(从K、T、τ三方面) 干扰通道放大倍数越大,系统的余差也越大,即控制质量越差。 干扰通道时间常数越大,阶数越高,或者说干扰进入系统的位置越远离被控变量测量点而靠近控制阀,干扰对被控变量的影响越小,系统的质量则越高。 干扰通道有无纯滞后对质量无影响,不同的只是干扰对被控变量的影响向后推迟一个 。 纯滞后时间τ 1.2 如何选择操纵变量? 1)考虑工艺的合理性和可实现性; 2)控制通道静态放大倍数大于干扰通道静态放大倍数; 3)控制通道时间常数应适当小一些为好,但不易过小,一般要求小于干扰通道 时间常数。干扰动通道时间常数越大 越好,阶数越高越好。 4)控制通道纯滞后越小越好。 1.3 控制器的比例度δ变化对控制系统的控制精度有何影响?对控制系统的动态质量有何影响? 比例度δ越小,系统灵敏度越高,余差越小。

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

《控制工程基础》王积伟_第二版_课后习题解答(完整)

第一章 3 解:1)工作原理:电压u2反映大门的实际位置,电压u1由开(关)门开关的指令状态决定,两电压之差△u=u1-u2驱动伺服电动机,进而通过传动装置控制 大门的开启。当大门在打开位置,u2=u 上:如合上开门开关,u1=u 上 ,△u=0, 大门不动作;如合上关门开关,u1=u 下 ,△u<0,大门逐渐关闭,直至完全关闭, 使△u=0。当大门在关闭位置,u2=u 下:如合上开门开关,u1=u 上 ,△u>0,大 门执行开门指令,直至完全打开,使△u=0;如合上关门开关,u1=u 下 ,△u=0,大门不动作。 2)控制系统方框图 4 解:1)控制系统方框图

2)工作原理: a)水箱是控制对象,水箱的水位是被控量,水位的给定值h ’由浮球顶杆的长度给定,杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的使用流出量和给水压力的波动)时,水位发生降低(升高),浮球位置也随着降低(升高),通过杠杆机构是进水阀的开度增大(减小),进入水箱的水流量增加(减小),水位升高(降低),浮球也随之升高(降低),进水阀开度增大(减小)量减小,直至达到新的水位平衡。此为连续控制系统。 b) 水箱是控制对象,水箱的水位是被控量,水位的给定值h ’由浮球拉杆的长度给定。杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的使用流出量和给水压力的波动)时,水位发生降低(升高),浮球位置也随着降低(升高),到一定程度后,在浮球拉杆的带动下,电磁阀开关被闭合(断开),进水阀门完全打开(关闭),开始进水(断水),水位升高(降低),浮球也随之升高(降低),直至达到给定的水位高度。随后水位进一步发生升高(降低),到一定程度后,电磁阀又发生一次打开(闭合)。此系统是离散控制系统。 2-1解: (c )确定输入输出变量(u1,u2) 22111R i R i u += 222R i u = ?-= -dt i i C u u )(1 1221 得到:11 21221222 )1(u R R dt du CR u R R dt du CR +=++ 一阶微分方程 (e )确定输入输出变量(u1,u2) ?++=i d t C iR iR u 1 211 R u u i 2 1-=

西安电子科技大学卓越工程师教育培养计划校内课程大纲

西安电子科技大学卓越工程师教育培养计划校内课程大纲 《工程优化方法》 课程名称:工程优化方法/Engineering Optimization Methods 课程代码:0721005 课程类型:必修 总学时数:46学时 学分:3分 开课单位:理学院数学科学系 适用专业:适用于理、工等专业的卓越工程师硕士 课程的性质与目标 最优化方法是一门新兴的应用数学,是运筹学的核心部分,在工程科技、经济金融、管理决策和国防军事等众多领域具有广泛的应用。工程优化方法基于最优化的原理,着重介绍实用性、有效性强的各种实用优化算法。通过本课程的课堂学习和一定的上机实践使学生对工程优化方法的基本原理、算法的基本步骤、应用要点等有一个基本认识和初步掌握,培养和提高用优化方法解决某些实际问题的初步技能,为应用优化软件包解决实际工程问题奠定基础。 ?能够掌握最优化的基本原理、基本方法和应用技能 ?能够用工程优化方法解决简单的实际问题 ?能够熟练应用优化软件包进行计算 学时安排 课堂教学:学时:40 研讨课:学时:6 实践课:学时:10 总学时数:学时:46+10 教学方法 以课堂教学为主,采用板书与多媒体相结合的教学方式,讲授工程优化方法课程的基本原理和方法,既保证讲授内容的清晰,又兼顾师生的交流与互动。在对具体原理和基本方法的推导和证明时,采用板书讲解方式,以便学生能一步步跟上教师的思路。通过课后作业和上机实验加深学生对工程优化方法的理解,培养学生的应用能力,通过动手实践让学生理解从书本理论到分析问题、解决实际问题的过程,从而培养学生解决实际问题的能力。

先修课程 高等数学、线性代数、C语言程序设计、Matlab语言 课程综合记分方法 各部分的比重分别为: 平时成绩 20 % 实验成绩 30 % 期末考试 50 % 总计 100% 教科书 陈宝林. 最优化理论与算法.北京:清华大学出版社,2005. 推荐参考书 1.唐焕文,秦学志编著. 实用最优化方法(第三版).大连:大连理工大学出版社,2004. 2.袁亚湘,孙文瑜. 最优化理论与方法. 北京:科技出版社,2001. 3.J. Nocedal & S. J. Wright, Numerical Optimization(影印版),北京:科学出版社,2006. * *本表注:对于表中第二列所列技能应对照附录A 理解。目标栏内以A, B, C, D 来表示对此条能力要求达到的程度,A 为最高要求,无要求则留空。接触指在教、学活动中有所提及但没有训练和测试要求;训练指有明确要求并有测试项目;应用指在教、学中有所应用而不论是否曾给与相关训练或考核。

行业特色型大学拔尖创新人才培养模式分析_以西安电子科技大学为例_赵韩强

第1期2015年1月现代教育科学·高教研究 Modern Education Science:Hig her Education Research EditionNo.1 Ja n.2015[收稿日期]20 14-09-26[基金项目]中央高校基本科研业务费专项资金资助(项目编号:K5051399016 )。[作者简介]赵韩强(19 75-),男,河南南乐人,西安电子科技大学教师教学发展中心办公室主任、副研究员;研究方向:高等教育管理。郭宝龙(19 62-),男,陕西西安人,西安电子科技大学教务处处长、教授、博士生导师;研究方向:高等教育管理。 行业特色型大学拔尖创新人才培养模式分析 ———以西安电子科技大学为例 赵韩强,郭宝龙,赵东方 (西安电子科技大学,陕西西安71 0071) [ 摘 要]行业特色型大学是我国高等教育体系的重要组成部分,培养了一批批满足行业发展需要的专门技术人才,为国民经济建设和社会发展做出了重要贡献。本文以西安电子科技大学为例,对行业特色型大学拔尖创新人才培养的现状及存在的问题进行对比分析,并对进一步做好拔尖创新人才培养工作提出建议。 [ 关键词]行业特色型大学 西安电子科技大学 拔尖创新人才 培养模式 [ 中图分类号]G640 [文献标识码]A [文章编号]1005-5843(2015)01-0070-04 新中国成立初期,为适应社会主义现代化建设 和国家工业化发展战略的需求,我国通过大规模的院校调整建立了一批服务于行业发展需要的行业特色型院校。这些院校经过长期的发展和积累,培养了一大批满足行业发展需要的专门技术人才,促进了行业发展和科技水平的提高;形成了一大批优势学科和特色专业,为社会经济的发展和产业结构的调整做出了重要贡献。在新时期,行业特色型大学如何发挥行业办学特色和优势,培养一批引领行业发展和科技进步的拔尖创新人才,是一项亟待研究和探索的重要课题。 一、行业特色型大学的定位与优势 所谓行业特色型大学,是相对于综合性大学而言的。它是指具有明显的行业背景、以行业为依托和服务行业需求及相应学科特色的院校,原来一般隶属于国务院各行业主管部门。上世纪90年代以 后,随着我国高等教育管理体制的改革和调整,除极少数行业院校继续归原行业部门管理外,绝大多数行业院校已划归教育部或下放到地方政府管理。行业特色型大学具有以下鲜明的办学特征:(1)学科相对集中,办学特色鲜明。经过长期的发展,形成了与行业发展密切相关且较为集中的学科专业体系,拥有若干个代表国家先进水平的优势学科专业,在某一行业或专业领域内处于领先地位,受到本行业领域的普遍认可和社会广泛认同。(2)科研实力强,拥有一支经验丰富和善于解决行业技术难题的科研队伍,取得了一批高水平科研成果,引领行业发展和技术进步,支撑了行业发展。(3)服务行业发展,培养了一大批满足行业发展需要的专门技术人才,他们在行业领域内发挥了重要作用,成长为行业领域的骨干人才和领军人物,获得社会和用人单位的高度认可。(4)拥有独特的资源优势。 这类大学的办学传统、大学声誉、行业特色、校园

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

随机过程-方兆本-第三版-课后习题答案

习题4 以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。 1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布. (a ) 若Λ,2,1=t ,证明},2,1),({Λ=t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质 Λ,2,1,0)cos (2121)sin()sin()(2020==-=? ==?t Ut t dU Ut Ut E t EX π π ππ ))cos()(cos(2 1 )sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=?= t U s t s t U s t s t ππ π21}])[cos(1])[cos(1{212020? +++--= s t ≠=,0 2 1 Ut Esin ))(),((2= =t X t X COV (b) ,)),2cos(1(21 )(有关与t t t t EX ππ-= .)2sin(81 21DX(t)有关,不平稳,与t t t ππ-= 2. 设},2,1,{Λ=n X n 是平稳序列,定义Λ Λ,2,1},,2,1,{) (==i n X i n 为 Λ,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2 t X X COV DX m EX t t n n n γσ===+ 2 121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX ) 1()1()(2),(),() ,(),(),(),(111111) 1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,) 1(n X 为平稳过程. 同理可证,Λ,,) 3()2(n n X X 亦为平稳过程. 3.设 1 )n n k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)

控制工程基础课后答案

第二章 2.1求下列函数的拉氏变换 (1)s s s s F 2 32)(23++= (2)4310)(2+-=s s s F (3)1)(!)(+-= n a s n s F (4)36 )2(6 )(2++=s s F (5) 2222 2) ()(a s a s s F +-= (6))14(21)(2 s s s s F ++= (7)52 1 )(+-= s s F 2.2 (1)由终值定理:10)(lim )(lim )(0 ===∞→∞ →s t s sF t f f (2)1 10 10)1(10)(+-=+= s s s s s F 由拉斯反变换:t e s F L t f ---==1010)]([)(1 所以 10)(lim =∞ →t f t 2.3(1)0) 2()(lim )(lim )0(2 =+===∞ →→s s s sF t f f s t )0()0()()()](['2''0 ' 'f sf s F s dt e t f t f L st --==-+∞ ? )0()0()(lim )(lim '2''0f sf s F s dt e t f s st s --=+∞ →-+∞ +∞→? 1 )2()(lim )0(2 2 2 ' =+==+∞→s s s F s f s (2)2 ) 2(1 )(+= s s F , t te s F L t f 21)]([)(--==∴ ,0)0(2)(22' =-=--f te e t f t t 又,1 )0(' =∴f 2.4解:dt e t f e t f L s F st s --?-==202)(11 )]([)( ??------+-=2121021111dt e e dt e e st s st s

控制工程2习题解答

题目已知f t =0.5t ,则其Lftl-【】 答案:C 题目 函数f (t )的拉氏变换L[f(t)]= _________________ 分析与提示:拉氏变换定义式。 答案: 'f (t )e'tdt 题目:函数f t =e^的拉氏变换 L[f(t)]= ________________ 分析与提示:拉氏变换定义式可得,且 f(t)为基本函数。 1 答案:^^ s +a 题目:若 f(t) =t 2e^t ,则 L[f (t)H 【 】 2 (S 2)3 分析与提示:拉氏变换定义式可得,即常用函数的拉氏变换对, L[f(t)] 3 (S 2)3 答案:B 题目:拉氏变换存在条件是,原函数 f(t)必须满足 _________________ 条件。 分析与提示:拉氏变换存在条件是,原函数 f(t)必须满足狄里赫利条件。 答案:狄里赫利 题目:已知f t =0.5t 1 ,则其L Ifd =【】 2 2 A. S 0.5S B. 0.5S 2 A. S 0.5s B. 0.5s 2 C. 1 2S 2 D. 分析与提示:由拉氏变换的定义计算,可得 1 2S 1 Llf d = 0.5 2 S A. C. 2 S -2 D. 2 (S - 2)3

J 1 J 若 FS=——,则 f 0 )=()。 s + a 1 1 f (t) = lim S lim 1 T s+a ι% 丄 a 1 + S 答案: 1 此为基本函数,拉氏变换为 —2。 S 题目: 函数 f t =t 的拉氏变换L[f(t)]= C. 2S 2 S D. 1 2s 分析与提示:由拉氏变换的定义计算, 这是两个基本信号的和, 由拉氏变换的线性性质, 1 1 Llfd= 0.5 2 S S 其拉氏变换为两个信号拉氏变换的和。 答案:C 4s +1 题目:若 F S A -2—,则 Iim f t )=( S +s t -?? )。 A. 1 C. ∞ B. 4 D. 0 分析与提示: 根据拉氏变换的终值定理 f (::) = lim f (t) = lim SF(S)。即 有 S )0 ! im f (t)τs m o 答案:B s*4 S S 题目:函数f t =e& cos 的拉氏变换L[f(t)]= 分析与提示: 基本函数cos t 的拉氏变换为 S 7 2,由拉氏变换的平移性质可知 S ■ ■ ■ L l -f t I- s +a s ? a 2 ‘2 答案: (s +a f +ω2 题目: 分析与提示: 根据拉氏变换的初值定理 f(0) =Iim f (t) = Iim SF(S)。即有 t 「0 S ]:: f(0) =Iim tτ 分析与提示:

西电电路与系统学科(博士硕士)

电路与系统学科 一、学科、专业介绍 本专业具有博士和硕士学位授予权,并可招收博士后研究人员和访问学者,同时是国家重点学科。 电路与系统是一门内容丰富、发展迅速、应用广泛的学科,它是现代信息工程包括通信工程、控制工程、计算机科学以及一切电子科学技术与理论的基础,它主要研究电路与系统的基本理论以及对各种电路与系统进行分析、综合和故障诊断。其研究对象是各种电路及为完成某种功能、采用各种技术所构成的基本系统。 本专业的研究方向主要有:电路与系统CAD及设计自动化、非线性电路与系统、智能信息处理、VLSI 设计与故障测试等。 本专业有全校多个院、系和专职科研机构所构成师资力量雄厚、设备先进,拥有国防科工委批准建立的“雷达信号处理国防科技重点实验室(神经网络与非线性理论)”、CAD研究所、软件研究所等,还有经国家教委批准建立的“电工电子国家工科基础课程教学基地”,本学科点还是我校“211工程”建设的重点项目之一。有教授20人,其中博士生导师5人,副教授和高级工程师38人,讲师和工程师30多人。重点实验室、研究所和教学基地为开展学科研究和培养研究生提供了良好的物质条件。近年来已出版专著、译著、教材20余种,在国际、国内著名学术刊物上发表论文500余篇,被SCI、EI和ISTP收录论文百余篇,有50余项科学研究成果分别获得国家、部、省级科技进步奖。目前在研的纵、横向科研项目60余项,其中省部级以上的项目25项,科研经费近2000万元。 二、培养方案 1.博士生培养方案 1.1培养目标 坚持面向“四个现代化、面向世界、面向未来”的方针,注意对博士研究生在德智体诸方面的全面培养,使之成为能在科学或专门技术上做出创造性成果的高层次人才。 1.认真学习和较好地掌握马克思主义、毛泽东思想、邓小平理论以及江泽民同志“三个代表”的重要理论;热爱社会主义祖国;具有良好的职业道德和敬业精神;具有高度的事业心和责任感,积极为社会主义现代化建设服务。 2.在本学科上掌握坚实、宽广的基础理论和系统深入的专门知识;具有独立从事科学研究的能力。 3.掌握一门外国语:具有熟练的阅读能力,较好的写译能力和一定的听说能力,能够以英语为工具,熟练地进行科学研究和学术交流。 4.具有健康的体格。 1.2 学习年限 全日制攻读博士学位的学习年限一般为3至4年,硕-博连读的学习年限一般为5至6年,非全日制攻读博士学位的学习年限一般不超过6年,但可以根据实际情况允许研究生提前或延期毕业。 1.3 研究方向 1.4 课程设置 电路与系统学科博士研究生的研究方向及课程设置见附件一。 1.5 学位论文 具体要求与做法详见《西安电子科技大学博士生培养工作暂行规定》。

机械控制工程基础课后答案

1-1机械工程控制论的研究对象与任务是什么? 解机械工程控制论实质上是研究机械一r_程技术中广义系统的动力学问题。具体地讲,机械工程控制论是研究机械工程广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出二者之间的动态关系。 机械工程控制论的任务可以分为以下五个方面: (1)当已知系统和输人时,求出系统的输出(响应),即系统分析。 (2)当已知系统和系统的理想输出,设计输入,即最优控制。 (3)当已知输入和理想输出,设计系统,即最优设计。 (4)当系统的输人和输出己知,求系统的结构与参数,即系统辨识。 (5)输出已知,确定系统,以识别输入或输入中的有关信息,即滤波与预测。 1.2 什么是反馈?什么是外反馈和内反馈? 所谓反馈是指将系统的输出全部或部分地返送回系统的输入端,并与输人信号共同作用于系统的过程,称为反馈或信息反馈。 所谓外反馈是指人们利用反馈控制原理在机械系统或过程中加上一个人为的反馈,构成一个自动控制系统。 所谓内反馈是指许多机械系统或过程中存在的相互藕合作用,形成非人为的“内在”反馈,从而构成一个闭环系统。 1.3 反馈控制的概念是什么?为什么要进行反馈控制? 所谓反馈控制就是利用反馈信号对系统进行控制。 在实际中,控制系统可能会受到各种无法预计的干扰。为了提高控制系统的精度,增强系统抗干扰能力,人们必须利用反馈原理对系统进行控制,以实现控制系统的任务。 1.4闭环控制系统的基本工作原理是什么? 闭环控制系统的基本工作原理如下: (1)检测被控制量或输出量的实际值; (2)将实际值与给定值进行比较得出偏差值; (3)用偏差值产生控制调节作用去消除偏差。 这种基于反馈原理,通过检测偏差再纠正偏差的系统称为闭环控制系统。通常闭环控制系统至少具备测量、比较和执行三个基本功能。 1.5对控制系统的基本要求是什么? 对控制系统的基本要求是稳定性、准确性和快速性。 稳定性是保证控制系统正常工作的首要条件。稳定性就是指系统动态过程的振荡倾向及其恢复平衡状态的能力。 准确性是衡量控制系统性能的重要指标。准确性是指控制系统的控制精度,一般用稳态误差来衡量。 快速性是指当系统的输出量与输入量之间产生偏差时,系统消除这种偏差的快慢程度。

西电最优化大作业

最优化大作业 学院电子工程学院 专业 学号 姓名

1.第一题 分别用牛顿法和变尺度法求解优化问题. Minf(x)=x12-2x1x2+4x22+x1-3x2. 牛顿法 初始点选择 [2 2]T 迭代步骤 已知目标函数f(X)及其梯度g(X),Hesee矩阵G(X),终止限ε.(1)选定初始点X0;计算f0=f(X0),g0=g(X0);置k=0. (2)计算Hesee矩阵 (3)由方程G k P k=-g k解出P k。 (4)计算X k+1=X k+P k,f k+1=f(X k+1),gk+1=g(X k+1). (5)判别终止条件是否满足,若满足,则打印结果。否则令k=k+1,转(2). 实验结果如下:

变尺度法 初始点选择 [0 0]T 迭代步骤 (1)选定初始点X0;计算F0=F(X0),G0=G(X0);选定初始矩阵H0,要求H0对称正定。置k=0 (2)计算搜索方向P K=-H K G K. (3)作直线搜索X K=1=ls(X K+1),S K=X K+1-X K,y k=g k+1-g k。 (4)判别终止条件是否满足:若满足,则X k+1就是所求的极小点,打印,结束。否则转(5)。 (5)计算H K+1=H K+E K.

(6)K=K+1.转(2)。 实验结果如下: 2.第二题 利用外点法和内点法解下列约束问题. minf(x)=(x1-3)2+(x2-2)2 s.t. h(x)=x1+x2-4≤0 外点法 初始点选择 [2 1]T 迭代步骤 给定终止限ε(可取ε=6- 10).

(1).选定初始点0X ,惩罚因子01>M (可取11=M ). 惩罚因子放大系数10=C ,置1=k . (2).假设已获得迭代点1-k X ,以1-k X 为初始点,求解无约束问题 ),(min k M X F . 设其最优点为k X . (3).若εα≤)(X M k 则k X 就是所要求的最优解,打印输出))(,(k k X f X ,结束; 否则转至过程(4). (4).置,1,1+==+k k CM M k k 转至过程(2). 实验结果如下: 内点法 初始点选择 [2 1]T

机械控制工程基础课后答案-董玉红、徐莉萍主编

机械控制工程课后答案 1-1机械工程控制论的研究对象与任务是什么? 解机械工程控制论实质上是研究机械一r_程技术中广义系统的动力学问题。具体地讲,机械工程控制论是研究机械工程广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出二者之间的动态关系。 机械工程控制论的任务可以分为以下五个方面: (1)当已知系统和输人时,求出系统的输出(响应),即系统分析。 (2)当已知系统和系统的理想输出,设计输入,即最优控制。 (3)当已知输入和理想输出,设计系统,即最优设计。 (4)当系统的输人和输出己知,求系统的结构与参数,即系统辨识。 (5)输出已知,确定系统,以识别输入或输入中的有关信息,即滤波与预测。 1.2 什么是反馈?什么是外反馈和内反馈? 所谓反馈是指将系统的输出全部或部分地返送回系统的输入端,并与输人信号共同作用于系统的过程,称为反馈或信息反馈。 所谓外反馈是指人们利用反馈控制原理在机械系统或过程中加上一个人为的反馈,构成一个自动控制系统。 所谓内反馈是指许多机械系统或过程中存在的相互藕合作用,形成非人为的“内在”反馈,从而构成一个闭环系统。 1.3 反馈控制的概念是什么?为什么要进行反馈控制? 所谓反馈控制就是利用反馈信号对系统进行控制。 在实际中,控制系统可能会受到各种无法预计的干扰。为了提高控制系统的精度,增强系统抗干扰能力,人们必须利用反馈原理对系统进行控制,以实现控制系统的任务。

1.4闭环控制系统的基本工作原理是什么? 闭环控制系统的基本工作原理如下: (1)检测被控制量或输出量的实际值; (2)将实际值与给定值进行比较得出偏差值; (3)用偏差值产生控制调节作用去消除偏差。 这种基于反馈原理,通过检测偏差再纠正偏差的系统称为闭环控制系统。通常闭环控制系统至少具备测量、比较和执行三个基本功能。 1.5对控制系统的基本要求是什么? 对控制系统的基本要求是稳定性、准确性和快速性。 稳定性是保证控制系统正常工作的首要条件。稳定性就是指系统动态过程的振荡倾向及其恢复平衡状态的能力。 准确性是衡量控制系统性能的重要指标。准确性是指控制系统的控制精度,一般用稳态误差来衡量。 快速性是指当系统的输出量与输入量之间产生偏差时,系统消除这种偏差的快慢程度。 2-1 dt d t u RC dt d dt d t u RC dt d t u dt t u C t u R t t u idt C t u i a i i i i )t (u )(1 )t (u )t (u )(1 )t (u ) (R ) (1)(i )(u )(1 )(.000 00000=++=+=∴=+=??同时:由电压定律有:设回流电流为

机械控制工程基础课后答案(廉自生)

2-1什么是线性系统?其最重要特性是什么? 答:如果系统的数学模型是线性的,这种系统就叫做线性系统。线性系统最重要的特性,是适用于叠加原理。叠加原理说明,两个不同的作用函数(输入),同时作用于系统所产生 的响应(输出),等于两个作用函数单独作用的响应之和因此,线性系统对几个输入 量同时作用而产生的响应,可以一个一个地处理,然后对它们的响应结果进行叠加。 2-2 分别求出图(题2-2)所示各系统的微分方程。 ) () (t f t y k m (a ) ) (t y ) (t f 2 1 k k m (b ) c c 1 2 m x x i o (c ) 1k 2 k o i x x c (d ) 1 k 2k x i x o c (e ) 解:)(a )()()(t f t ky t y m =+ )(b )()()()(21t f t y k k t y m =++ ? ???+=-02010))((x c x m c x x c i 2 12110)()()() (K K s K K c cs K s X s X d i ++= 02010)())((x K c x x K x x e i i =-+-? ? 2-3 求图(题2-3)所示的传递函数,并写出两系统的无阻尼固有频率n ω及阻尼比ξ的表达式。 x i x o c k m (a ) C u u o i L R (b )

解:图)(a 有:m k s m c s m k s G ++= 2)( m k n =ω mk C 2=ξ 图)(b 有:??? ???? =++=??idt C V idt C R L V i i i 110 ∴ LC s L R s LC s G 11 )(2+ += LC n 1=ω L C R 2=ξ 2-4 求图(题2-4)所示机械系统的传递函数。图中M 为输入转矩,m C 为圆周阻尼,J 为转动惯量。(应注意消去θ θ ,及θ ) x m k R c M m ,C J 题2-4 解:由已知可知输入量M 与输出量θ之间的关系为: M k C J m =++θθθ 经拉氏变换后为:)()()(2 s M k s s C s Js m =++θθθ ∴ 2 2 2 222/11)() ()(n n n m m s J k s J C s J k s C Js s M s s G ωξωωθ++=++=++== 其中,J k n = ω Jk C m 2=ξ 2-5 已知滑阀节流口流量方程式为)/2(v ρωp x c Q =,式中,Q 为通过节流阀流口的流量;p 为节流阀流口的前后油压差;v x 为节流阀的位移量;c 为流量系数;ω为节流口

相关主题
文本预览
相关文档 最新文档