当前位置:文档之家› 电磁波作用下介质中的电流

电磁波作用下介质中的电流

电磁波作用下介质中的电流
电磁波作用下介质中的电流

电磁波作用下介质中的电流*

张涛

北京师范大学低能核物理研究所,北京市辐射中心,北京,(100875)

taozhang@https://www.doczj.com/doc/1917556454.html,

摘要提出了在电磁波作用下介质中存在的一种电流机制,有助于深入认识电磁波与介质之间的相互作用.

关键词电磁波介质电流

介质与电磁波相互作用时,介质中会生成宏观意义上的附加电荷和电流,用ρ和j分别表示所有宏观附加电荷的密度和所有宏观附加电流的密度. 为了便于分析,这里的“介质”是指无限大各向同性介质. 一般认为ρ和j组成如下[1]

ρ=ρ0+ρ′, (1)

j=j0+j P+j M, (2)

式中ρ0和ρ′分别是介质中自由电荷密度和极化电荷密度,j0、j P和j M分别是介质中传导电流密度、极化电流密度和磁化电流密度,这是根据电荷和电流的形成机制而划分的.

最近提出了电子云导体模型:电子云之中存在的变化外磁场会在电子云上诱发一个感生电流. 这一模型应用于光的折射方面取得一些合理结果,并将氦气的折射率与抗磁性联系起来[2]. 麦克斯韦认为:变化的磁场在周围激发了一种电场,这种电场称为感生电场,它的存在不依赖于在变化的磁场周围是否有闭合导体. 根据法拉第电磁感应原理,电磁波变化的磁

B

.

来轨道运动上的附加运动造成的,这是对电子运动统计平均的结果. 一个分子内所有电子的周向运动形成一个等效环电流(称之为“分子感生环电流”或“分子感生电流”),如图2. 如同介质磁化会在介质中形成宏观的磁化电流一样,介质各个分子感生环电流最终形成一个宏观电流(如图3). 为方便起见,称这个宏观电流为“合成感生电流”,并且用j F表示合成感生电流密度. 总之,每一分子内各个电子的周向运动形成分子感生环电流,介质中各个分子

合成感生电流与磁化电流都是分子大小级别的环电流合成宏观电流的结果,但它们的生成机理是不同的:合成感生电流生成机理是法拉第电磁感应原理,合成感生电流随变化的外磁场而产生,在稳定的外磁场下j F=0;磁化电流是介质顺磁、抗磁等性质的结果,无论外磁场变化与否,只要外磁场不为0,j M就不为0.

可以借助介质的极化电流机制来说明合成感生电流的合理性. 绝缘介质的一种电极化机制是电子极化,即分子内的电子在交变外电场作用下往复运动,类似一个振子[3, 4],这种往复运动具有统计意义. 这表明,绝缘介质分子内的电子虽然不能在分子之间自由流动,但它在自己的电子云空间内可以有一定程度的自由运动,可以视为分子内的自由电子(分子内每一电子的活动区域限于其电子云范围)[5]. 既然分子内的电子能在交变外电场作用下形成统计意义上往复定向运动,并且导致介质的极化电流,那么,分子内的电子也应该能在变化外磁场诱发的感生电动势作用下形成统计意义上的环形定向运动,并且导致合成感生电流. 实际上,电子在介质内或分子内的定向运动均是统计意义上的结果.

在外场作用下原子光谱的分裂现象、介质的抗磁性、介质在电场下的击穿等现象均是外场改变分子内电子运动的例子.

2

下面考察j F 的表达形式. 类似于磁化电流的统计处理方法,可以假定:只要所考察的各个分子处的电磁波?B /?t 相同,则在电磁波?B /?t 作用下各个分子形成的感生环电流的强度和尺寸是相同的. 分子感生环电流i 正比于感生电动势从而正比于磁通量变化的负值,即

t

S U ???==B

i F

σσ. (3) 式中U = ?S F (?B /?t )是感生电动势(法拉第电磁感应原理),S F 是感生环电流面积,B 是介质中的磁感应强度,σ是一比例系数. 每个分子感生环电流的磁矩(称之为“分子感生磁矩”)

t

S S ???==B

i m 2

F

F F σ. (4) m F 指向阻止B 变化的方向.分子感生磁矩造成的磁化强度(称之为“感生磁化强度”,区别于介质磁化造成的磁化强度)

t

t S N N ???=???==B

B m M βσ2

F

F F . (5) 式中N 是介质分子的密度,β=N σ S F 2. N 、σ、S F 与介质性质有关,在一定情况下它们随外界条件变化而变化,将它们合并为一个介质的宏观性质参数β,称之“感生磁化率”,其单位:S ?m(西门子?米). 类似于磁化电流密度与磁化强度之间的关系[1],最终有合成感生电流密度j F 与感生磁化强度M F 之间关系

)(F F t

???×?=×?=B

M j β

. (6) 与磁化电流一样,合成感生电流不会引起电荷的积累,因此式(1)保持不变. 根据上面论述,式(2)j 变为

j =j 0+j P +j M +j F . (7)

式(7)比式(2)多了j F 项.

总之,在电磁波作用下,介质中应该至少存在4种电流机制,它们分别是传导电流、极化电流、磁化电流和合成感生电流机制. 其中传导电流是电子(或其它载流子)在导电物质分子之间的定向运动造成的,在光频下其余三种电流是电子在其分子内的定向运动造成的. 只要有电子云存在,就会有分子感生环电流的机制,因此推论电磁波与介质相互作用时导致合成感生电流的现象应该是普遍存在的.

参考文献

[1]蔡圣善,朱耘,徐建军.电动力学. 北京:高等教育出版社,2002年7月第二版,第1章. [2]张涛. 光在介质中的折射. https://www.doczj.com/doc/1917556454.html, ,2005年9月1日. [3]赵建林.高等光学. 北京:国防工业出版社,2002年9月,第2章.

[4]Gerald Burns. Solid State Physics. Orlando, Florida: Academic Press, Inc., 1985,Chapter 13.

3

[5]同[1],352页.

Currents in medium interacted with electromagnetic wave

Zhang Tao

Institute of Low Energy Nuclear Physics, Beijing Radiation Center, Beijing Normal University,

Beijing 100875, China

Abstract

A mechanism of current in medium was presented. This helps to understand the interaction between medium and electromagnetic wave.

Keywords:medium, electromagnetic wave, current

4

电磁波作用下介质中的电流

电磁波作用下介质中的电流* 张涛 北京师范大学低能核物理研究所,北京市辐射中心,北京,(100875) taozhang@https://www.doczj.com/doc/1917556454.html, 摘要提出了在电磁波作用下介质中存在的一种电流机制,有助于深入认识电磁波与介质之间的相互作用. 关键词电磁波介质电流 介质与电磁波相互作用时,介质中会生成宏观意义上的附加电荷和电流,用ρ和j分别表示所有宏观附加电荷的密度和所有宏观附加电流的密度. 为了便于分析,这里的“介质”是指无限大各向同性介质. 一般认为ρ和j组成如下[1] ρ=ρ0+ρ′, (1) j=j0+j P+j M, (2) 式中ρ0和ρ′分别是介质中自由电荷密度和极化电荷密度,j0、j P和j M分别是介质中传导电流密度、极化电流密度和磁化电流密度,这是根据电荷和电流的形成机制而划分的. 最近提出了电子云导体模型:电子云之中存在的变化外磁场会在电子云上诱发一个感生电流. 这一模型应用于光的折射方面取得一些合理结果,并将氦气的折射率与抗磁性联系起来[2]. 麦克斯韦认为:变化的磁场在周围激发了一种电场,这种电场称为感生电场,它的存在不依赖于在变化的磁场周围是否有闭合导体. 根据法拉第电磁感应原理,电磁波变化的磁 B .

来轨道运动上的附加运动造成的,这是对电子运动统计平均的结果. 一个分子内所有电子的周向运动形成一个等效环电流(称之为“分子感生环电流”或“分子感生电流”),如图2. 如同介质磁化会在介质中形成宏观的磁化电流一样,介质各个分子感生环电流最终形成一个宏观电流(如图3). 为方便起见,称这个宏观电流为“合成感生电流”,并且用j F表示合成感生电流密度. 总之,每一分子内各个电子的周向运动形成分子感生环电流,介质中各个分子 合成感生电流与磁化电流都是分子大小级别的环电流合成宏观电流的结果,但它们的生成机理是不同的:合成感生电流生成机理是法拉第电磁感应原理,合成感生电流随变化的外磁场而产生,在稳定的外磁场下j F=0;磁化电流是介质顺磁、抗磁等性质的结果,无论外磁场变化与否,只要外磁场不为0,j M就不为0. 可以借助介质的极化电流机制来说明合成感生电流的合理性. 绝缘介质的一种电极化机制是电子极化,即分子内的电子在交变外电场作用下往复运动,类似一个振子[3, 4],这种往复运动具有统计意义. 这表明,绝缘介质分子内的电子虽然不能在分子之间自由流动,但它在自己的电子云空间内可以有一定程度的自由运动,可以视为分子内的自由电子(分子内每一电子的活动区域限于其电子云范围)[5]. 既然分子内的电子能在交变外电场作用下形成统计意义上往复定向运动,并且导致介质的极化电流,那么,分子内的电子也应该能在变化外磁场诱发的感生电动势作用下形成统计意义上的环形定向运动,并且导致合成感生电流. 实际上,电子在介质内或分子内的定向运动均是统计意义上的结果. 在外场作用下原子光谱的分裂现象、介质的抗磁性、介质在电场下的击穿等现象均是外场改变分子内电子运动的例子. 2

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

电磁波在介质中的传播规律

电磁波在介质中的传播规律 电磁波的传播是电磁场理论的重要组成部分。我们只考虑电磁波在各向同性均匀线性介质中传播,分别对电磁波在线性介质和非线性介质中的传播规律进行讨论。 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,j 0)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子ex) j t相乘,这里是角频率。在这种约定下,麦克斯韦方程组便可表示成1 (1) H j E (2) E 0 ⑶ H 0 ⑷ 对方程(1)两边同取旋度,并将式(2)代入便得 E 2E (5) 利用如下矢量拉普拉斯算子定义以及方程(3) (6) 方程(5)式变为 类似地,可得B所满足的方程为 k2B(9) 2E k2E 0

方程(7)和(9)式称为亥姆霍兹(Helmholtz)方程,是电磁场的波动方程。

2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °ex3 j t k r (11) 式中E 0, B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const 方程(12)两边对时间t 求导可得 dr v dt k 由式(8)可知 1 v ----- 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得 3 由(17)和(18 )可以看出,介质中传播的电磁波是横波,电场与磁场都与传播方向垂直;(12) (13) (14) E 。 k B o B 0 k k E o E o k B o 0 (15) (16) (17) (18)

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 课程实验:电磁波在介质中传播规律 班级__________________ 姓名____________________ 指导老师: _____________________ 实验日期: __________________

(4) 电磁波在介质中的传播规律 一、实验目的: 1、 用MATLAB?序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、 结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、 学会使用Matlab 进行数值计算,并绘出相应的图形,运用 MATLAB 寸其进行可视化 处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同 性均匀线性的,即( 0, j 0)的情形。麦克斯韦方程组的解既是空间的函数又 是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。寸于这种解,其 形式可表示成一个与时间无关的复矢量和一个约定时因子 exp j t 相乘,这里 是 角频率。在这种约定下,麦克斯韦方程组便可表示成 j H (2) (3) 寸方程( 1 )两边同取旋度,并将式 (2) 代入便得 5) 利用如下矢量拉普拉斯算子定义以及方程( 3) (1)

类似地,可得B 所满足的方程为 k 2 B 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °exo j t k r (11) 式中E 。,B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const ( 12) 方程(12)两边对时间t 求导可得 (6) 方程(5)式变为 2 E k 2 E 0 (7) (8) (9)

最新电磁场与电磁波必考重点填空题经典

一、填空题 ▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和; 散度的物理意义是矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是散度一个单位体积内通过的通量。 2.散度在直角坐标系z A y A x A A div Z Y X ??+??+??=散度在圆柱坐标系z A A r r rA r A div Z r ??+??+??=??1)(1 ▲3,矢量函数的环量定义 ??=l l d A C ;旋度的定义MAX l S S l d A A rot ??=?→?lim 0; 二者的关系 ???=???l S l d A S d A )(;旋度的物理意义:最大环量密度和最大环量密度方向。 4.旋度在直角坐标系下的表达式)()()(y A x A e x A z A e z A y A e z y z z x y y Z x ??-??+??-??+??-?? ▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ; 等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。 6.用方向余弦cos α 、cos β、cos γ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos z y x l e e e e ++= ▲7.直角坐标系下方向导数l u ??的数学表达式 γβαcos cos cos z u y u x u ??+??+??;梯度γβαcos cos cos z y x e e e ++ ▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 ▲9.麦克斯韦方程组的积分表达式分别为 1.?=?S Q S d D ;2.S d t B l d E l S ????-=?;3.0=??S S d B ;4.?????+=?S l S d t D J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源 3.磁感应强度的散度为0,说明磁场不可能由通量源产生; 4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。 ▲10.麦克斯韦方程组的微分表达式分别为 1.ρ=??D ;2.t B E ??-=??; 3.0=??B ; 4.t D J H ??+=?? 其物理描述分别为同第九题 11.时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理 ▲12.坡印廷矢量的数学表达式 H E S ?=; 其物理意义 电磁能量在空间的能流密度; 表达式??S S d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 ▲13.电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。

电磁场与电磁波答案()

《电磁场与电磁波》答案(4) 一、判断题(每题2分,共20分) 说明:请在题右侧的括号中作出标记,正确打√,错误打× 1.在静电场中介质的极化强度完全是由外场的强度决定的。 2.电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。 3.两列频率和传播方向相同、振动方向彼此垂直的直线极化波,合成后 的波也必为直线极化波。 4.在所有各向同性的电介质中,静电场的电位满足泊松方程2ρ?ε?=-。 5.在静电场中导体内电场强度总是为零,而在恒定电场中一般导体内的电场强度不为零,只有理想导体内的电场强度为零。 6.理想媒质和损耗媒质中的均匀平面波都是TEM 波。 7.对于静电场问题,保持场域内电荷分布不变而任意改变场域外的电荷分布,不会导致场域内的电场的改变。 8.位移电流是一种假设,因此它不能象真实电流一样产生磁效应。 9.静电场中所有导体都是等位体,恒定电场中一般导体不是等位体。 10.在恒定磁场中,磁介质的磁化强度总是与磁场强度方向一致。 二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中) 1. 判断下列矢量哪一个可能是静电场( A )。 A .369x y z E xe ye ze =++ B .369x y z E ye ze ze =++ C .369x y z E ze xe ye =++ D .369x y z E xye yze zxe =++ 2. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。( B ) A .0 B .-4 C .-2 D .-5 [ ×]1 [ √]2 [ ×]3 [ ×]4 [ √]5 [ √]6 [ ×]7 [ ×]8 [ √]9 [ ×]10

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期:

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω == (13) 由式(8)可知 εμ 1 = v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

20200128电磁波传播介质存在吗

电磁波传播介质存在吗? Benjamin Peng 20200128 狭义相对论抛弃了电磁波的传播介质——以太。本文在解决狭义相对论自洽性问题时得出了相反的结论:电磁波的传播是需要介质的,这种介质就是以太。如果以太存在,物理世界会怎样? 一.以太存在 以太存在吗?如何解决以太存在的困难? 1.以太的历史背景 十七世纪,法国科学家笛卡儿认为物体之间的作用力都是通过客观存在的介质来传递的,不存在超距作用、瞬时作用,这种介质就是以太,并率先把亚里士多德提出的名词“以太”引入物理学。胡克、惠更斯认为光也类似声波依赖于自身的传播介质,光的传播介质就是以太。根据光、电磁波的传播现象与性质,科学家们也赋予了以太一些物理性质:(1)以太充满整个宇宙,也充满在任何物体之中。 (2)以太没有惯性质量,且“绝对静止”。 (3)以太对任何宏观物体的运动都没有阻碍作用。 (4)由于光具有横波的特征,以太应该是弹性较高的物质,以至于应类似固态形式。 (5)当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动,即以太部分拽引假说。 以太从来没有显现它的踪影,人们从未感知到以太的存在,也从未通过实验证明以太的存在。以太存在的最大困难在于以太的性质:以太如何穿过物体而不影响物体的运动。随着迈克尔逊-莫雷实验、以及电磁理论的普及,人们抛弃了以太观念,认为电磁波就是一种客观存在,它不需要传播介质而存在。 物理学中,关于以太是否存在的争论却并没有停止。 2.孤立波与孤立子 十九世纪三十年代,苏格兰科学家J.S.罗素(J. Scott Russell,或译为拉塞尔)发现了一种奇特的波,并首次对它进行了研究。这种波只有一个波峰,没有波谷,传播运动过程中,速度、能量几乎不衰减,传播距离非常远。半个世纪后,通过数学研究,才弄清楚了它的性质。这种波属于孤立波的一种,是在传播过程中不发生色散的非线性波。 (1)某些孤立波具有能量、动量、质量、电性。所以人们把这种具有粒子性质的孤

实验二-电磁波在介质中的传播规律

实验二-电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期: 2015.11.21

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向 同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω== (13) 由式(8)可知 εμ1 =v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论 电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μHt’ ▽×H=εEt’+ζ E ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,ζ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=Eoe-αx+i(βx-ωt) H(x,t)=Hoe-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直

指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性 描述电磁波传播特性的波矢量k为复数:k=β+iα, β描述波传播的相位,称为相位常数;α描述波幅的衰减,称为衰减常数,它们是介质的性质。相位常数与衰减常数与介质电磁参数及频率的关系如下: β=ω(με)1/2[((1+ζ2/ω2ε2)1/2+1)/2]1/2 α=ω(με)1/2[((1+ζ2/ω2ε2)1/2-1)/2]1/2 根据介质的电磁性质,分三种情况对上式进行讨论。 对于低电导介质,满足ζ<10-7S/m,ζ/εω《1,此时相位常数、衰减常数和电磁波速V为: 1/2 β=ω(με) α=ζ(μ/ε)1/2 1/2 V=ω/β=(1/με)

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μH t’ ▽×H=εE t’+σE ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,σ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=E o e-αx+i(βx-ωt) H(x,t)=H o e-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性

电磁场与电磁波答案()

《电磁场与电磁波》答案(4) 一、判断题(每题2分,共20分) 说明:请在题右侧的括号中作出标记,正确打√,错误打× 1.在静电场中介质的极化强度完全是由外场的强度决定的。 2.电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。 3.两列频率和传播方向相同、振动方向彼此垂直的直线极化波,合成后 的波也必为直线极化波。 4.在所有各向同性的电介质中,静电场的电位满足泊松方程 2ρ ? ε ?=-。 5.在静电场中导体内电场强度总是为零,而在恒定电场中一般导体内的 电场强度不为零,只有理想导体内的电场强度为零。 6.理想媒质和损耗媒质中的均匀平面波都是TEM波。 7.对于静电场问题,保持场域内电荷分布不变而任意改变场域外的电荷 分布,不会导致场域内的电场的改变。 8.位移电流是一种假设,因此它不能象真实电流一样产生磁效应。 9.静电场中所有导体都是等位体,恒定电场中一般导体不是等位体。 10.在恒定磁场中,磁介质的磁化强度总是与磁场强度方向一致。 二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中) 1. 判断下列矢量哪一个可能是静电场( A )。[×]1 [ √]2 [ ×]3 [ ×]4 [ √]5 [ √]6 [ ×]7 [ ×]8 [ √]9 [ ×]10

A .369x y z E xe ye ze =++ B .369x y z E ye ze ze =++ C .369x y z E ze xe ye =++ D .369x y z E xye yze zxe =++ 2. 磁感应强度为(32)x y z B axe y z e ze =+-+, 试确定常数a 的值。( B ) A .0 B .-4 C .-2 D .-5 3. 均匀平面波电场复振幅分量为(/2) 2-2jkz -2j kz x y E 10e E 510e 、,则 极化方式是( C )。 A .右旋圆极化 B .左旋圆极化 C .右旋椭圆极化 D .左旋椭圆极化 4. 一无限长空心铜圆柱体载有电流I ,内外半径分别为R 1和R 2,另一无限长实心铜圆柱体载有电流I ,半径为R2,则在离轴线相同的距离r (r>R2)处( A )。 A .两种载流导体产生的磁场强度大小相同 B .空心载流导体产生的磁场强度值较大 C .实心载流导体产生的磁场强度值较大 5. 在导电媒质中,正弦均匀平面电磁波的电场分量与磁场分量的相位( B )。 A .相等 B .不相等 C .相位差必为4π D .相位差必为2 π 6. 两个给定的导体回路间的互感 ( C ) A .与导体上所载的电流有关 B .与空间磁场分布有关 C .与两导体的相对位置有关 D .同时选A ,B ,C 7. 当磁感应强度相同时,铁磁物质与非铁磁物质中的磁场能量密度相比( A )。 A .非铁磁物质中的磁场能量密度较大 B .铁磁物质中的磁场能量密度较大 C .两者相等 D .无法判断 8. 一般导电媒质的波阻抗(亦称本征阻抗)c η的值是一个。( C ) A .实数 B .纯虚数 C .复数 D .可能为实数也可能为纯虚数 9. 静电场在边界形状完全相同的两个区域上满足相同的边界条件,则两个区域中的场分布( C )。 A .一定相同 B .一定不相同 C .不能断定相同或不相同

电磁场与电磁波课后习题与答案七章习题解答(2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波 7.1 求证在无界理想介质沿任意方向e n (e n 为单位矢量)传播的平面波可写成 j() e n r t m βω?-=e E E 。 解 E m 为常矢量。在直角坐标中 故 则 而 故 可见,已知的() n j e r t m e βω?-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。 7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。 解 表征沿+z 方向传播的椭圆极化波的电场可表示为 式中取 显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。 7.3 在自由空间中,已知电场3(,)10sin()V/m y z t t z ωβ=-E e ,试求磁场强度 (,)z t H 。 解 以余弦为基准,重新写出已知的电场表示式 这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90? -。与之相伴的磁场为 7.4 均匀平面波的磁场强度H 的振幅为1 A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。当t=0和z=0时,若H 的取向为y -e ,试写出E 和H 的表示式,并求出波的频率和波长。 解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为 由rad/m β=30得波长λ和频率f 分别为 则磁场和电场分别为 7.5 一个在空气中沿 y e +方向传播的均匀平面波,其磁场强度的瞬时值表示式为 (1)求β和在3ms t =时, z H =的位置;(2)写出E 的瞬时表示式。 解(1 ) 781π 10πrad /m rad /m 0.105rad /m 31030β==? ==? 在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =899992.m 。 考虑到波长260m π λβ = =,故 因此,t =3ms 时,H z =0的位置为 (2)电场的瞬时表示式为 7.6 在自由空间中,某一电磁波的波长为0.2m 。当该电磁波进入某理想介质后,波长变为0.09m 。设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。 解 在自由空间,波的相速 80310m/s p v c ==?,故波的频率为 在理想介质中,波长0.09m λ=,故波的相速为 而

电磁波的在规则波导中的传播

讨论电磁波的在规则波导中的传播特性,就是确定在给定的边界条件下,满足麦克斯韦方程组的解,这个解的不同形式就表示不同的波型,这个解随时空的变化规律,便是电磁波在波导中传播规律。本节讨论在任意截面波导中的波动方程的求解方法以及电磁波在波导中传播的一般特性。 一、麦克斯韦方程组及边界条件 1.一般边界条件 2.理想导体表面的边界条件 二、规则波导中电磁场的求解方法 1.直接求解法 在给定边界条件下求解上述波动方程,便可得波导中电磁场的解。

2.赫兹矢量位法 (1)赫兹电矢量位引入赫兹电矢量位 (2)赫兹磁矢量位引入赫兹磁矢量位 3.纵向分量法 先求解满足标量波动方程的z方向分量(纵向分量);然后,由各分量间的关系求出其他分量(横向分量) 三、导行波波型的分类 波型也称模式,它指的是能够单独在波导传输线中存在的电磁场结构的型式。 1.横电磁波:即没有纵向电场又没有纵向磁场分量,即和的波,并以TEM 表示。TEM波只能存在于多导体传输线中,而不能存在于空心波导中。 2.横电波:凡是磁场矢量既有横向分量又有纵向分量,而电场矢量只有横向分量,即 的波称为磁波或横电波,通常表示为H波或TE波。 3.横磁波:凡其电场矢量除有横向分量外还有纵向分量,而磁场矢量只有横向分量,即 的波称为电波或横磁波,通常表示为E波或TM波。

§2.2 导行波的传输特性 各种不同横截面的波导系统传输导行波时,尽管横向场分布彼此各异,但它们有着共同的纵向传输特性。导行波的传输特性包括六个方面: 截止波长、波导波长、相速群速和色散、波阻抗、传输功率以及导行波的衰减 一、截止波长 在即的情况下,称为传输状态。 在即的情况下,这是传输系统的截止状态。 就是介于传输状态和截止状态之间的临界状态。 临界频率或截止频率: 临界波长或截止波长: 截止波数: 二、波导波长 波导中的波长称为波导波长,并记为 为真空中的波长。 对于TEM波, 三、相速、群速和色散 1、相速度——波导中传输的波的等相位面沿轴向移动的速度。 TE、TM波的相速度公式为 对于TEM波, 则

电磁波在不同分界面的反射与透射的简单分析

目录 摘要 (1) 关键词 (1) A b s t r a c t (1) Ke y w o r d s (1) 引言(或绪论) (1) 1理论基础 (2) 1.1均匀平面波 (2) 1.2对导电媒质分界面的垂直入射 (2) 1.3全反射与全透射 (3) 2 均匀平面波对理想介质分界面的斜入射 (4) 2.1垂直极化波 (4) 2.2平行极化波 (6) 3 均匀平面波对理想导体分界面的斜入射 (4) 3.1垂直极化波 (9) 3.2平行极化波 (9) 参考文献 (10)

电磁波在不同分界面的反射与透射的简单分析 摘要:由于不同媒质其媒质参数不同, 电磁波入射到媒质分界面时会产生反射和透射现象。通过对电磁波在分界面上反射和透射的理论分析, 讨论反射波、透射波振幅、方向随入射角的变化。 关键词:边界条件; 反射系数; 平行极化;全反射 Reflection and transmission characteristics of electromagnetic waves on interface of different mediums Student majoring in elecnomic information engineering Jing Xinping Tutor Jinhua Ouyang Abstract:Due to the different parameters with different mediums, electromagnetic waves incidencing on the interface between mediums will produce the phenomenon of reflection and transmission. This paper discusses amplitude, direction character istics of reflected wave and transmission wave versus the angle of incidence through analyzing the formula. Key words:boundary condition; reflection coefficient;parallel polarization; all reflection

电磁场与电磁波答案()

《电磁场与电磁波》答案(4) 一、判断题(每题2分,共20分) 说明:请在题右侧得括号中作出标记,正确打√,错误打× 1。在静电场中介质得极化强度完全就是由外场得强度决定得、 2。电介质在静电场中发生极化后,在介质得表面必定会出现束缚电荷。 3、两列频率与传播方向相同、振动方向彼此垂直得直线极化波,合成后 得波也必为直线极化波。 4.在所有各向同性得电介质中,静电场得电位满足泊松方程。 5、在静电场中导体内电场强度总就是为零,而在恒定电场中一般导体内 得电场强度不为零,只有理想导体内得电场强度为零、 6。理想媒质与损耗媒质中得均匀平面波都就是TEM 波。 7。对于静电场问题,保持场域内电荷分布不变而任意改变场域外得电荷 分布,不会导致场域内得电场得改变。 8。位移电流就是一种假设,因此它不能象真实电流一样产生磁效应、 9.静电场中所有导体都就是等位体,恒定电场中一般导体不就是等位 体。 10。在恒定磁场中,磁介质得磁化强度总就是与磁场强度方向一致、 二、选择题(每题2分,共20分) (请将您选择得标号填入题后得括号中) 1。 判断下列矢量哪一个可能就是静电场( A )。 A 。 B 、 C、 D. 2、 磁感应强度为, 试确定常数a得值。( B ) A 、 B 。-4 C、-2 D 、-5 3、 均匀平面波电场复振幅分量为,则极化方式就是( C )。 A.右旋圆极化 B.左旋圆极化 C.右旋椭圆极化 D、左旋椭圆极化 4。 一无限长空心铜圆柱体载有电流I,内外半径分别为R1与R2,另一无限长实心铜 圆柱体载有电流I,半径为R2,则在离轴线相同得距离r(r>R2)处( A )。 [ ×]1 [ √]2 [ ×]3 [ ×]4 [ √]5 [ √]6 [ ×]7 [ ×]8 [ √]9 [ ×]10

麦克斯韦电磁场理论和电磁波

麦克斯韦电磁场理论和电磁波 电磁学电子教案第八章麦克斯韦磁场理论和电磁波 三、麦克斯韦方程组 一、电磁波的产生、传播 三、电磁波的性质 五、电磁波谱 一、电磁场具有能量 二、.电磁场理论的基本概念二、电磁波的辐射四、光的电磁理论二、次开发1 电磁学电子教案第八章麦克斯韦磁场理论和电磁波 电磁场的基本理论是麦克斯韦方程组。这是他在前人实践和理论的基础上对整个电磁现象作系统研究,特别对库仑、安培、法拉第等电磁学说加以总结、发展,提出了“涡旋”电场和“位移电流”的假说。在1865 年他预言了电磁波的存在,并计算出其传播速度等于光速,提出了光的统一电磁场理论。 麦克斯韦的电磁场理论把电、磁、光三个领域综合到一起,具有划时代意义,爱因斯坦评价麦克斯韦的工作,他说“这是自牛顿以来,物理学上经历的最深刻和最有成果的一次变革。” §1 麦克斯韦电磁理论 一. 位移电流 位移电流的假说,是麦克斯韦对电磁理论所作重大贡献的核心,问题

是由含有电容的交变电路引出。 我们知道,稳恒电流磁场的安培环路定理具有如下形势: H?dl????LS???0?dS??Io ? 图中S1、S2是一曲线L为边线的两个曲面,在稳恒电路中,穿过S1,S2的电流I0相同。 但是在含有C的交流电路中,将安培环路定理应用于闭合曲线L上。 对于S1面:H?dl?i L?? 而对于S2面:H?dl?0 L?? 矛盾的焦点:在非稳恒情况下,H得环流应是怎样的表达式? 麦克斯韦提出应满足下式:? ?D?dS H?dl???(?0?LS?t???? 其中S是以L为边线的任意曲面 ?D???D——位移电流密度(矢量)?t 2 ? 电磁学电子教案第八章麦克斯韦磁场理论和电磁波 ?D? ???dS?ID——位移电流(标量)?t ??D ??(?0?)?dS ——全电流S?t??? 即I?I0?ID 比较H?dl????LS ?????0?dS??Io ????D?dS?I0?ID * H?dl???(?0?LS?t *式满足非稳恒,也满足稳恒,反映了新的物理规律——位移电流与

(完整word版)电磁场与电磁波必考重点填空题经典.docx

一、填空题 ▲ 1.矢量的通量物理含义是 矢量穿过曲面的矢量线的总和;散度 的物理意义是 矢量场中任意一点处通量对体积的变化率;散度与通量的关系是 散度一个单位体积内通过的通量。 2. 散度在直角坐标系 div A A X A Y A Z 散度在圆柱坐标系 div A 1 (rA r ) 1 A A Z x y z r r r z ▲ 3,矢量函数的环量定义 C l A d l ;旋度的定义 rot A l A dl ; lim S S 0 MAX 二者的关系( A) d S A d l ;旋度的物理意义: 最大环量密度和最大环量密度方向 。 S l 4. 旋度在直角坐标系下的表达式 A Z A y ) e y ( A x A z ) e z A y A z ) e x ( y z z x ( y x ▲ 5.梯度的物理意义 :函数最大变化率和最大变化率方向 ; 等值面、方向导数与梯度的关系是 :方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最 大值。 6. 用方向余弦 cos α 、 cos β、 cos γ写出直角坐标系中单位矢量 e l 的表达式 e l e x cos e y cos e z cos ▲ 7.直角坐标系下方向导数 u 的数学表达式 u cos u cos u cos ;梯度 e x cos e y cose z cos l x y z ▲ 8.亥姆霍茨定理表述 在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是 要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 ▲ 9.麦克斯韦方程组的积分表达式分别为 1. D d S Q ;2. E d l B d S ;3. B d S 0 ;4. H dl ( J D ) d S S l S t S l S t 其物理描述分别为 1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源 3.磁感应强度的散度为 0,说明磁场不可能由通量源产生; 4.传导电流和位移电流产生磁场,他们是产生磁场的漩 涡源。 ▲ 10.麦克斯韦方程组的微分表达式分别为 1. D ;2.E B B 0 ; 4.H J D 同第九题 ; 3. 其物理描述分别为 t t 11.时谐场是 激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场 ; 一般采用时谐场来分析时变电磁场的一般规律, 是因为 1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来 描述 2.在线性条件下可以使用叠加原理 ▲ 12.坡印廷矢量的数学表达式 S E H ; 其物理意义 电磁能量在空间的能流密度 ; 表达式 ( E H )d S 的物理意义 单位时间内穿出闭合曲面 S 的电磁能流大小 S ▲ 13.电介质的极化是指 在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化) 。 产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布 ; 描述电介质极化程度或强度的物理量是 极化矢量 P

相关主题
文本预览
相关文档 最新文档