当前位置:文档之家› 模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策.
模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策

王荣滨

(南弯工具厂江西330004

摘要讨论了模具钢十种热处理组织缺陷及消除方法,可产生明显经济效益和社

会效益。

关键词模具钢组织缺陷对策

Abstract This paper analyzes ten kinds of microstruture defect of heat treatment mold

steel,and it also gives the relative solutions to avoid defects,which can obviously bring

about the economic benefit.

K eyw ords mold steel microstructure defect countermeasures

钢的物理性能、化学性能和力学性能决定钢的热处理组织,正常组织赋予钢产品优异性能和高寿命;热处理组织缺陷恶化钢的性能,降低模具产品质量和使用寿命,甚至产生废品和发生事故。因种种原因,钢热处理主要有十种组织缺陷,分析原因,采取对策,提高模具使用寿命,有显著技术经济效益。

1奥氏体晶粒粗大

钢奥氏体晶粒定为13级,1级最粗,13级最细。1~3级为粗晶粒,4~6级为中等晶粒,7~9级为细晶粒,10~13级为超细晶粒。晶粒愈细,钢的强韧性愈佳,淬火易得到隐晶马氏体;晶粒愈粗,钢的强韧性愈差,淬火易得到脆性大的粗马氏体。实践证明,奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大。当加热温度一定时,

快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大。奥氏体晶粒随钢中W、Mo、V元素增加而细化,随钢中C、Mn元素增加而增大。钢最终淬火前未经预处理,奥氏体晶粒愈粗化,淬火得粗马氏体,强韧性低,脆性大。仪表跑温,晶粒粗化,降低晶粒之间结合力,恶化力学性能。

对策—合理选择加热温度和保温时间。加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。加热温度应按钢的临界温度确定,严格仪表精密控温,保温时间按加热设备确定。合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、真空加热和激光加热等。最终淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。选用细晶粒钢、电渣重熔钢、真空精炼钢制造模具等措施。

2残余奥氏体过量

钢件淬火冷却时过冷奥氏体转变成淬火马氏体,过冷奥氏体不能100%转变为淬火马氏体,未完全转变的过冷奥氏体为残余奥氏体。淬火马氏体经不同温度回火后转变为不同回火组织,达到所需组织性能。残余奥氏体在回火过程中可部分转变为马氏体,但因材料和工艺不同,残余奥氏体可多可少保留在使用状态中。保留少量残余奥氏体有利增加钢的强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。但残余奥氏体过量将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致服役时发生尺寸变化等不利因素。因此,钢中残余奥氏体不宜过量。

对策—按照模具服役条件,合理选择淬火加热温度,因模具钢含有大量降低马氏体点(Ms的合金元素,过高淬火加热温度会使钢中碳和合金元素大量溶入高温奥氏体中,奥氏体合金化程度高,增加奥氏体稳定性,使过冷奥氏体不易发生马氏体相变,有较多残余奥氏体保留在淬火组织中,因此,淬火加热温度应适中。分级淬火和等温淬火保留较多残余奥氏体,因此,采用中温预回火和多次高温回火,促使在高温回火冷却过程中残余奥氏体发生马氏体转变。其次,淬火后经短时低温回火后进行-

60℃~120℃零下冷处理,实质是淬火的继续,促使残余奥氏体较充分转变为马氏体,温

度越低,转变量愈多。依据产品结构和模具特点采取不同方式按需控制残余奥氏体量,获得满意组织性能。

3魏氏组织

多发生含碳量≤0.6%的亚共析钢,当钢锭从1000~1200℃高温奥氏体状态经长时间保温和缓慢冷却扩散退火时,游离铁素体从奥氏体晶界及沿解理面以微细格子状或块状析出,形成具有一定位向的片状组织,晶粒粗大,即是魏氏组织。魏氏组织存在钢中力学性能低劣,脆性转变温度升高。在钢的临界区形变后再结晶热处理,也会形成晶粒粗大的魏氏组织。先共析铁素体呈网状分布于晶界,呈块状分布于晶内或呈针状沿奥氏体一定晶面分布也是魏氏组织,常规热处理无法消除,它是典型的过热组织,保留在使用状态中易发生突发事故,必须采取对策消除。

对策—对钢材进行改锻,经3~4次双十字形镦拔可击碎网状、块状、针状铁素体,使之细化并均匀分布和充分溶解于高温奥氏体中,得到在A1相变点处奥氏体微细化结构。锻热固溶调质预处理能显著改善材料显微组织结构,再经正常热处理达到组织性能技术条件。轻微魏氏组织可采用完全退火或正火加以消除。严格原材料入库检查,有魏氏组织钢材不投产。在保护气氛炉中加热,避免热处理时严重氧化脱碳和在临界区形变。提高钢材纯洁度,选用二次精炼钢等措施。

4碳化物不均匀度大

碳化物硬而脆,是脆性相,它的大小、形状和分布直接影响钢的性能,对模具性能影响特大。碳化物不均匀分布,增加钢的过热敏感性。因碳和合金元素富集,降低碳化物堆集处熔点,造成碳化物堆集处过热、过烧、晶粒粗大和导致淬火组织粗化引起应力集中,成为裂纹源,导致淬裂。碳化物

不均匀分布,引起淬火晶粒粗细大小不均,因碳化物聚集处有大量未溶解碳化物阻碍奥氏体晶粒长大,则晶粒细;非碳化物堆集处未溶解碳化物数量少,则无法阻碍奥氏体晶粒长大,此处晶粒粗大。碳化物不均匀分布对基体起切割作用,破坏了金属基体连续性,使钢的力学性能有明显各向异性。在碳化物堆集处周围的奥氏体淬火加

热时溶解较多的碳化物和合金元素,使该处马氏体转变开始点(Ms 降低,为此,增加残余奥氏体量并易发生稳定化作用,不易通过回火使残余奥氏体转变为马氏体,造成回火不足。而碳化物堆集处附近晶粒粗大,降低机械强度,导致该处理组织应力增大,易使堆集处碳化物剥落,造成模具早期失效。

对策—采用扩散退火、高温正火和锻热调质固溶预处理,使碳化物溶解于奥氏体中,达到再处理时重新呈细小、弥散析出而细化。对具有难溶解块状、大颗粒状、带状、网状和堆集状级别大的碳化物原材料进行改锻,击碎和细化碳化物,经四镦四拔双十字形镦拔锻造,使合金碳化物形貌发生质的飞跃,使之≤3级,呈细、小、匀分布于钢基体并形成沿模具轮廓合理的纤维组织排列,改善显微组织,细化晶粒,增加整体性能,尤其是心部横向性能、刚性,降低过热敏感性,大幅度提高模具使用寿命。

5孪晶碳化物析出

钢中碳化物的特点是呈平行直线状析出,导致相同产品、相同工艺条件下出现不同组织、硬度、性能且高低不一,相差悬殊。多发生在4Cr13等马氏体不锈钢中,因钢件超温加热,钢中碳化物完全溶入奥氏体,导致奥氏体稳定化,在随后退火加热过程中,碳化物由奥氏体在孪晶界面沉淀,形成与孪晶界面完全相同稳定的碳化物骨架,沿着奥氏体退火孪晶共格或非共格界面析出平行直线状孪晶碳化物,孪晶碳化物相当稳定,最终淬火加热时不能溶入奥氏体,保留在成品使用状态中,造成力学性能低劣。过高的锻造加热温度是导致马氏体不锈钢孪晶碳化物析出的根本原因。表1是孪晶碳化物对淬火、回火4Cr13马氏体不锈钢物理、化学性能影响。

表13孪晶碳化物对淬火、回火4Cr13马氏体不锈钢物理、化学性能影响孪晶碳化物形态

性能σbb (MPa f (mm αk (J /cm 2腐蚀速度g/m 2?h 外观腐蚀程度接触疲劳(N ×10-6磨损(×10-3mm 3无孪晶碳化物2862~2874312~318

96~10101002无腐蚀1319~14121413~1512较小孪晶碳化物2549~2561211~214

58~7201015少量腐蚀点718~8131615~1713粗大孪晶碳化物

2015~2024019~113

13~1701021大量腐蚀点416~5121718~1815

3三组性能试样平均值

对策—锻造加热时精密控温,采用下限加热温度与停锻温度和较大锻造变形量。实验表明,在下限温度始锻和停锻能使4Cr13等马氏体不锈钢奥氏体晶粒细化至10~11级,击碎孪晶碳化物至≤3级,呈细小均匀弥散于钢基体,在后续退火过程中聚集成球状。宜采用多次高温退火,因孪晶碳化物非常稳定,常规退火、淬火无法消除,为此,将钢件加热至1000~1100℃,充分保温后以30~40℃/h 缓冷至≤500℃,使孪晶碳化物破碎,聚集成球状,性能可达到无孪晶碳化物水准。也可将有孪晶碳化物锻件置于-190℃液氮处理2h ,消除原来共格和非共格孪晶界面,然后再进行正常退火,可完全消除孪晶碳化物。

6混晶

钢在热处理过程中形成晶粒大小不均匀的组织,个别特大的晶粒和特小的晶粒及中等晶粒群组成,在体积中杂乱分布,形成混晶。试验表明,混晶与均匀晶粒比,持久强度降低10%~15%、抗弯强度σbb降低15%~20%、延伸率δs降低15%~25%、冲击韧性αk降低10%~15%。力学性能大幅度降低,严重降低使用寿命,甚至出现突发事故。

混晶在不锈钢中存在于选择固溶处理温度不当。如1Cr18Ni9Ti钢固溶加热温度≤1000℃可获得均匀细小晶粒,随着温度升高和保温时间延长,混晶度增加,加热至1050℃混晶度达到峰值。晶粒长大过程与钢中强化相溶解有关,钢中Cr23C6强化相加热至850℃固溶,起不到阻碍晶粒长大作用。TiN、CrN、TiC强化相需加热至1150℃~1200℃才固溶,在加热至≤1150℃时均起到阻碍晶粒长大作用。不绣钢在临界区形变易形成混晶,中等速度固溶加热较易产生混晶。

对策—不同牌号不锈钢有一最佳固溶处理温度和快速加热或慢速加热可避免混晶,避开混晶严重固溶处理温度;选用真空电炉、保护气氛电炉等固溶加热设备或采用高频、激光快速加热和固溶处理前的预形变应大于临界变形等措施,能有效避免混晶组织产生,获得均匀细小晶粒,提高材料物理、化学与力学性能,有效防止晶间腐蚀、应力腐蚀和低温、高温脆性发生,提高使用寿命。

7非正常珠光体

机械冷切削加工钢材的正常组织为粒状或球状珠光体,它有良好切削加工性能。但有时发现材料难加工,刀具易崩刃和热处理易过热,易畸变及力学性能低劣等问题。这主要与珠光体形态有关—非正常珠光体。过冷奥氏体在连续冷却时,在较高温度下易形成粗片状珠光体,在较低温度下易形成细粒状珠光体,粗细不均匀珠光体导致机械性能不均匀,硬度偏高或超高,切削加工性能恶化,难加工。共析转变形成的珠光体是铁素体与渗碳体机械混合物,当珠光体中的渗碳体是片状分布时,硬度较高220~300HB,即片状珠光体难加工、易过热和畸变。当珠光体中渗碳体是球状分布时,硬度较低≤200HB,冷切削加工性能优良,热处理时不易过热和畸变,是理想的最终淬火预处理组织,为正常的珠光体组织。当钢材冶金质量不良,杂质含量偏高,钢中C、Mn、Mo等元素偏析严重和热处理工艺或操作不当,造成组织性能差异悬殊,凡是珠光体中的渗碳体不管呈粗片状或细片状均属非正常珠光体组织,既恶化冷、热加工性能又易造成模具最终淬火时过热和畸变,必须消除。

对策—严格原材料入库检查,原材料珠光体分为六级,一级和六级不合格,二、三、四、五级合格。高级别精密模具宜选用真空熔炼钢或电渣重熔钢。对不合格原材料进行改锻,击碎钢中片状碳化物,达到所需级别。对已投产的不合格原材料进行正火、等温退火、扩散退火或调质预处理消除片状珠光体,确保获得球状珠光体,避免模具最终淬火时发生过热、畸变和磨裂等缺陷。

8屈氏体

当钢铁零件加热至高于Ac3或Acm时得到高温奥氏体,在随后冷却时,因冷速不足,导致与该钢S—曲线鼻子相碰,过冷奥氏体发生先共析转变,形成屈氏体组织,剩余过冷奥氏体冷至Ms点以

下发生马氏体转变,因冷速不足形成屈体缺陷组织。屈氏体组织特征呈黑色网状或孤立团块状分布于奥氏体晶界或奥氏体晶内,屈氏体由铁素体与渗碳体组成的弥散混合物。屈氏体强韧性低,冷切削加工性能差,脆性大,易腐蚀剥落。在所有钢组织中,最不耐腐蚀的是屈氏体,屈氏体保留在使用状态中,服役时因化学反应和电化学反应引起金属从表至内组织结构腐蚀破坏,产生应力腐蚀裂纹,导致断裂事故发生。模具热处理不希望得到此组织。但屈氏体并非无一好处,回火屈氏体弹性最好,可应用于特定条件下经防锈处理的弹簧,因屈氏体最易腐蚀,应用于不受力的某种雕花模具。

对策—选用淬火冷却介质应符合该钢S—曲线和淬透性曲线,淬火冷却速度应大于该钢临界淬火冷却速度,合理选用钢材,确保大件基体心部达到临界淬火冷却速度,避免形成表面层为淬火马氏体,内层为屈氏体组织。对于淬透性较低的钢件应避免分级淬火,防止形成屈氏体。淬火钢尽量回避在350~400℃回火,因屈氏体常在此温度出现。加强对原材料金相组织检查,对有块状屈氏体组织钢材,因常规热处理无法消除,可进行改锻或充分预处理消除。性能差的屈氏体与性能好的索氏体象是孪生兄弟,易鱼目混珠,必须加强成品金相检验。对模具表面改性强化处理还可增强模具抗蚀性。

9石墨化

钢材轧制和退火时加热温度过高,保温时间过长,冷却缓慢,使含Si钢珠光体中的渗碳体(Fe3C发生分解,Fe3C_3Fe+C,析出的自由碳(C即是石墨,石墨很软与基体不粘合,破坏了基体的连续性,力学性能急剧降低。石墨碳析出使周围碳量减少,出现大块铁素体组织,既淬不透,也淬不硬,形成软块,硬度很低,强韧性很差。具有石墨钢材,断口呈灰黑色,是严重组织缺陷,正常热处理无法消除。Si是石墨化元素,当钢中含Si量≤1.0%~2.0%时细化晶粒,强化铁素体,提高奥氏体稳定性、钢的淬透性、淬

硬性、屈强比(σ0.2/σb、疲强比(σ-1/σb、弹性极限等,有较好的固溶强化、沉淀强化和细晶强化效果,为此,冶炼钢中加入Si元素较普遍。但当Si含量≥2.0%时,存在较严重的石墨化、脱碳和过热敏感性倾向,升高脆性转变温度等缺陷,降低钢的强韧性。必须扬长避短,发挥Si元素优化作用。

对策—严格控制模具钢材Si含量≤2.0%,加强原材料化学成分检验和宏观断口检测,Si含量超标者不投产;钢材退火温度不宜过高,保温时间不宜过长,冷却速度

≥70℃~100℃/h。实践表明,采用亚温等温退火,能有效抑制石墨化析出,又有良好冷切削加工性能。对已有石墨化钢材,宜进行980~1000℃高温短时扩散退火,尽量使石墨重新溶入奥氏体中,短时保温后快冷,之后进行正常正火,细化晶粒,再按正常工序热处理等措施,确保模具钢材质量。

10脱碳与氧化

钢材脱碳因氧化作用使钢材表面碳量减少现象。当氧化速度比碳向金属外层扩散速度小时则发生脱碳,反之,氧化速度比碳向金属外层扩散速度大时则产生氧化,形成氧化铁皮。脱碳形成的铁素体晶粒组织有柱状晶粒脱碳和粒状晶粒脱碳两种形式。钢材脱碳和氧化是国内钢铁热处理普遍存在的问题,既浪费钢材、能源、又严重影响着产品质量和耐用度,而国外先进工业化国家已基本避免。主要是加热设备与工艺差距大,约落后十年。国内约80%~90%钢铁零件在引起氧化、脱碳空气炉内加热,导致淬火硬度低,形成铁素体软点,降低耐磨性、抗疲劳强度及化学渗层易出现性

86 Die and Mould Technology No. 1 1999 能差的黑色屈氏体组织 ,同时造成表层与心部组织比容差异形成磨削裂纹 ,严重影响模具质量与使用寿命 ,甚至产生废品。钢铁零件在空气炉内加热时 ,炉中 O2 、 2 、 2 O 等气体与钢中 Fe 发生化学反应 ,使其表面氧 CO H 化生成氧化铁皮剥落。反应式 :2 Fe + O2 _ 2 FeO ; Fe + CO2 _ FeO + CO ; H2 O _ [ O ] + H2 ;3 Fe + 4[ O ] Fe3 O4 ;2 Fe + 3[ O ] _ Fe2 O3 ; Fe2 O3 + mH2 O Fe2 O3 ? 2 O mH 钢在炉气作用下 ,钢中碳 ( C 便和炉气发生化学反应 ,使钢件脱碳 ,化学反应式 : Fe ( C + 1/ 2O2 _ Fe + CO ; Fe ( C + 2 H2 O _ Fe +

CH4 + O2 2 Fe ( C + CO2 _ 2 Fe + 2CO ; Fe ( C + H2 O _ Fe + H2 + CO 炉加热模具 ,消除氧化、、脱碳确保产品质量 ,提高寿命 ,创汇出名牌 ,给企业带来生机与兴旺和显著技术经济和社会效益。 ( 上接第 48 页图7落冲复合模

8 图定位系统 1—上模座— 2 冲孔凹模— 3 凸模镶块—— 4 冲 1 下模座— 2 定位支架体— 3 螺钉— 4 定位孔凸模— 5 顶杆—6 冲孔凸模固定板— 7 垫销支架— 5 手柄— 6 定位销— 7 卡销—8 弹板— 8 凹模镶块— 9 卸料螺钉— 10 下模座—簧 9 定位销套— 10 螺钉对策—模具装箱加热 ,用铸铁屑或木炭密封保护 ; 钢件表面涂 1 ~ 2mm 厚防氧化涂料 ; 盐浴炉加热时充分脱氧 ; 根本解决办法是淘汰或改造落后旧设备 ,更换新设备 ,采用可控气氛电炉、真空电要求定位支架体不易变形。尺寸稳定 ,有足够的强度。与模座连接牢固可靠 ,定位销应快速伸缩 ,定位准确 ,稳定。经过系列纵梁实际生产证明这四套模具再配一送料机构其通用性、实用性、经济性是可行的 , 成功的。产品质量是稳定的。不管现有的还是新开发的或准备开发的车型无需单独制造纵梁落冲模 ,系列纵梁的生产通用化。而每套落冲模至少需要 60 万元 ,可见节约资金是非常可观的。而且开创了我厂小设备干大活的先例 ,同时也为不断开发新产品提供了有力的基础。 ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 512 定位系统设计 6结束语

(答案)模具材料及热处理试题库

模具材料及热处理试题库 一、判断 1、60钢以上的优质碳素结构钢属高碳钢,经适当的热处理后具有高的强度、韧性和弹性,主要用于制作弹性零件和耐磨零件。(×) 2、40Cr钢是最常用的合金调质钢。(√) 3、60Si2Mn钢的最终热处理方法是淬火后进行高温回火。(×) 4、高合金钢的完全退火的冷却速度是每小时100~150℃。(×) 5、等温淬火与普通淬火比较,可以获得相同情况下的高硬度和更好的韧度。(√) 6、一些形状复杂、截面不大、变形要求严的工件,用分级淬火比双液淬火能更有效的减少工件的变形开裂。(√) 7、渗碳时采用低碳合金钢,主要是为提高工件的表面淬火硬度。(×) 8、均匀化退火主要应用于消除大型铸钢、合金钢锭在铸造过程中所产生的化学成分不均及材料偏析,并使其均匀化。(√) 9、高合金钢及形状复杂的零件可以随炉升温,不用控制加热速度。(×) 10、铬钼钢是本质粗晶粒钢、其淬透性和回火稳定性高,高温强度也高。(×) 11、铬锰硅钢可以代替镍铬钢用于制造高速、高负荷、高强度的零件。(√) 12、铬轴承钢加热温度高,保温时间略长,主要使奥氏体中溶入足够的合金碳化物。(√)13、低合金渗碳钢二次重新加热淬火,对于本质细晶粒钢的零件,主要使心部、表层都达到高性能要求。(×) 14、铸铁的等温淬火将获得贝氏体和马氏体组织。(√) 15、高速钢是制造多种工具的主要材料,它除含碳量高外,还有大量的多种合金元素(W、Cr、Mo、V、Co),属高碳高合金钢。(×)16、钢在相同成分和组织条件下,细晶粒不仅强度高,更重要的是韧性好,因此严格控制奥氏体的晶粒大小,在热处理生产中是一个重要环节。(√)17、有些中碳钢,为了适应冷挤压成型,要求钢材具有较高的塑性和较低的硬度,也常进行球化退火。(√)18、低碳钢正火,为了提高硬度易于切削,提高正火温度,增大冷却速度,以获得较细的珠光体和比较分散的自由铁素体。(√)19、过共析钢正火加热时必须保证网状碳化物完全融入奥氏体中,为了抑制自由碳化物的析出,使其获得伪共析组织,必须采用较大的冷却速度冷却。(√)20、含碳量相同的碳钢与合金钢淬火后,硬度相差很小,但碳钢的强度显著高于合金钢。(×)21、中高碳钢的等温淬火效果很好,不仅减少了变形,而且还获得了高的综合力学性能。(√)22、淬火钢组织中,马氏体处于碳的过饱和状态,残余奥氏体处于过热状态,所以组织不稳定,需要回火处理。(×)23、低碳钢淬火时的比容变化较小,特别是淬透性较差,故要急冷淬火,因此常是以组织应力为主引起的变形。(×)24、工件淬火后不要在室温下放置,要立即进行回火,会显著提高马氏体的强度和塑性,防止开裂。(√)

淬火热处理后硬度不足的原因分析

淬火热处理后硬度不足的原因分析 在生产过程中, 有时会出现淬火后硬度不足的情况, 这是热处理淬火过程中常见的缺陷。硬度不足有时表现为整个工件硬度值偏低, 有时是局部硬度不够或产生软点。淬火时硬度不足的原因很多,与材料内在的冶金缺陷、选材不当、错料; 设计上的结构工艺性差、加热工艺、冷却介质、冷却方法以及回火温度等都有密切关系。综合了一些实际请总结出了这么几点常见的可能因素造成:1、原材料问题 (1) 原材料选择不当或发错料。应该用高碳钢或中碳钢制造的零件而错用成低碳钢; 应该用合金工具钢制造的零件错用成普通高碳钢。 (2) 原材料显微组织不均匀。如碳化物偏析或聚集现象, 铁素体成大块状分布, 出现石墨碳, 严重的魏氏组织或带状组织等。 2、加热工艺问题 (1) 淬火加热温度偏低, 保温时间不足也是淬火后硬度不足的原因。如亚共析钢, 当加热温度在AC3与AC1之间时, 则因铁素体未全部溶于奥氏体, 淬火后不能得到均匀一致的马氏体而影响工件硬度。金相分析时可见未溶铁素体(2) 淬火加热温度过高, 保温时间过长。对于工具钢, 当钢的加热温度过高时, 大量碳化物溶于奥氏体, 大大地增加了奥氏体的稳定程度, 使马氏体开始转变点降低, 因而淬火后工件中保留大量残余奥氏体, 使淬火后工件的硬度下降。金相分析时, 可见未溶的碳化物稀少, 残余奥氏体量明显多。 (3) 淬火加热时, 工件表面脱碳, 使表面硬度不足。金相分析时, 表面有铁素体及低碳马氏体。当磨去表面脱碳层后, 硬度便达到要求。工件在一般箱式炉中未加保护或保护不良的情况下加热, 或者在脱氧不良的盐浴炉中加热, 都会

产生氧化脱碳现象。

模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策 王荣滨 (南弯工具厂江西330004 摘要讨论了模具钢十种热处理组织缺陷及消除方法,可产生明显经济效益和社 会效益。 关键词模具钢组织缺陷对策 Abstract This paper analyzes ten kinds of microstruture defect of heat treatment mold steel,and it also gives the relative solutions to avoid defects,which can obviously bring about the economic benefit. K eyw ords mold steel microstructure defect countermeasures 钢的物理性能、化学性能和力学性能决定钢的热处理组织,正常组织赋予钢产品优异性能和高寿命;热处理组织缺陷恶化钢的性能,降低模具产品质量和使用寿命,甚至产生废品和发生事故。因种种原因,钢热处理主要有十种组织缺陷,分析原因,采取对策,提高模具使用寿命,有显著技术经济效益。 1奥氏体晶粒粗大 钢奥氏体晶粒定为13级,1级最粗,13级最细。1~3级为粗晶粒,4~6级为中等晶粒,7~9级为细晶粒,10~13级为超细晶粒。晶粒愈细,钢的强韧性愈佳,淬火易得到隐晶马氏体;晶粒愈粗,钢的强韧性愈差,淬火易得到脆性大的粗马氏体。实践证明,奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大。当加热温度一定时,

快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大。奥氏体晶粒随钢中W、Mo、V元素增加而细化,随钢中C、Mn元素增加而增大。钢最终淬火前未经预处理,奥氏体晶粒愈粗化,淬火得粗马氏体,强韧性低,脆性大。仪表跑温,晶粒粗化,降低晶粒之间结合力,恶化力学性能。 对策—合理选择加热温度和保温时间。加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。加热温度应按钢的临界温度确定,严格仪表精密控温,保温时间按加热设备确定。合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、真空加热和激光加热等。最终淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。选用细晶粒钢、电渣重熔钢、真空精炼钢制造模具等措施。 2残余奥氏体过量 钢件淬火冷却时过冷奥氏体转变成淬火马氏体,过冷奥氏体不能100%转变为淬火马氏体,未完全转变的过冷奥氏体为残余奥氏体。淬火马氏体经不同温度回火后转变为不同回火组织,达到所需组织性能。残余奥氏体在回火过程中可部分转变为马氏体,但因材料和工艺不同,残余奥氏体可多可少保留在使用状态中。保留少量残余奥氏体有利增加钢的强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。但残余奥氏体过量将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致服役时发生尺寸变化等不利因素。因此,钢中残余奥氏体不宜过量。 对策—按照模具服役条件,合理选择淬火加热温度,因模具钢含有大量降低马氏体点(Ms的合金元素,过高淬火加热温度会使钢中碳和合金元素大量溶入高温奥氏体中,奥氏体合金化程度高,增加奥氏体稳定性,使过冷奥氏体不易发生马氏体相变,有较多残余奥氏体保留在淬火组织中,因此,淬火加热温度应适中。分级淬火和等温淬火保留较多残余奥氏体,因此,采用中温预回火和多次高温回火,促使在高温回火冷却过程中残余奥氏体发生马氏体转变。其次,淬火后经短时低温回火后进行- 60℃~120℃零下冷处理,实质是淬火的继续,促使残余奥氏体较充分转变为马氏体,温

模具氮化十种缺陷分析

模具氮化十种缺陷分析 一.氮化机理在500?~650 ?2NH3 2「N」+3H2分解后的活性氮原子被钢件表面吸收,并向金属内部扩散,首先溶解在a-Fe 中形成固溶体,饱和后逐渐形成氮化物层HV1000。 氮化层特性:1.高硬度/高耐磨/抗疲劳/抗粘结/抗腐蚀/抗擦伤/畸变小。 2.氮化不仅可以消除模具张(拉伸)应力,而且赋予模具压缩应力。从这方面讲,氮化优于去应力退火,去应力退火只是消除模具张应力。 二.模具氮化十种缺陷分析 1.渗氮层硬度过低 原因:成份不对或混料等导致渗氮模具表层含氮量不足;钢件未经调质处理,未获得回火索氏体组织,或虽经调质处理,但基体组织硬度过低,渗氮层如附在薄冰上;工件不干净;使用新渗氮罐或旧罐久未退氮;氮化炉密封不严而漏气。 返修:返修时用汽油或酒精清理干净渗氮表面,在520 ?~530 ?补渗7-10H,NH3分解率控制在20-25% 2.渗层浅 原因:加热不均;工件表面有油污,锈迹和氧化物;装炉过密;强渗期NH3分解率不稳定;扩散期期不稳定。 对策:NH3分解率控制在20-40% 3.渗层硬度不均匀,有软点。 原因:材料有严重偏析;调质温度高;工件表面脱碳和污染;氮化

炉加热器分布不合理。 4.模具崎变 原因:模具设计不合理;模具存在较大组织应力和加工应力;温度不均匀,升温过快,模具出炉冷却速度过快;装挂不合理;氮化层比容较大,产生组织应力与渗氮层厚度成正比。 对策:升温速度50-70?/H,出炉温度〈200 ?,易产生畸变的工件最好用辉光离子氮化。 5.氮化层耐蚀性差 原因:当氮化层有一层致密的,化学稳定性高的ε相层(0.015-0.060MM)时,模具有良好的搞蚀性. ε相层含氮量在6.1-8.5%为宜. 6.氮化模具表面氧化 原因:炉内负压;出炉温度高. 7.模具表面腐蚀 原因:模具长期在潮湿,碱性,酸性环境中服役. 8.渗氮层脆性大,起泡剥落有裂纹. 原因:组织缺陷;模具设计不当,有较多尖角锐边和表面积过大,活性氮原子从多方面同时渗入,氮浓度高形成ξ脆性相.渗氮介质活性太强,表面吸收大于扩散,表面含氮量超过11%形成脆性相;NH3含水量大,分解率过高,强渗温度高,时间长; 9.鱼骨状氮化物 原因:NH3含水超标;原材料大块铁素体未消除.

【材料课件】实验九碳钢热处理基本组织观察

实验九碳钢热处理基本组织观察 目的 1.认识碳钢经不同方式热处理后的典型显微组织特征; 2.了解热处理工艺对组织的影响。 一、相关知识 1.TTT曲线 2.碳钢的退火和正火 碳钢的退火组织也就是铁碳合金的平衡组织,以前的实验已经观察过。 亚共析钢的正火组织形式上很象退火组织,这是的珠光体层片较细,整体为灰黑色,理论上讲,铁素体的含量应比平衡状态略少,相差并不明显。 过共析钢一般进行球化退火,得到球化珠光体,正火仅用于消除二次渗碳体网,得到颗粒状的碳化物和细片状珠光体,紧接着进行球化退火。 3.碳钢的等温淬火组织 上贝氏体:在500-350℃的等温转变组织,铁素体片在原奥氏体晶界向内发展,成羽毛状,片间间断分布碳化物。为了清楚看到这种组织,在生成部分上贝氏体后立即快速冷却,其它部分是马氏体。 上贝氏体:在320-250℃的等温转变组织,铁素体片在原奥氏体晶内成透镜状,或象竹叶状。片内部有非常细小分布碳化物,整体浸蚀后为暗灰色。为了清楚看到这种组织,在生成部分贝氏体后立即快速冷却,其它部分是马氏体。 4.碳钢的淬火组织 小试样奥氏体化后水冷,可以全部淬透,得到马氏体和少量残余奥氏体。 低碳马氏体(板条马氏体):在光学显微镜下,板条马氏体为一束束相互平行的细长条状,在一个奥氏体晶粒内可有几束不同取向的马氏体群。

高碳马氏体(针状马氏体):在光学显微镜下,片状马氏体呈针状或竹业状,片间互不平行呈一定角度,其立体形态为双凸透镜状。针的粗细决定于奥氏体晶粒的大小,通常其针细小,在光学显微镜下不能看清,称为隐针马氏体。T10正常加热温度为760℃,若过热(温度820℃,为能了解其形态),就可看到其针状的形貌。 5.碳钢的回火组织 回火马氏体:形状同淬火态,但内部有碳化物,浸蚀后的颜色变暗。 回火曲氏体:原马氏体形态不可见,弥散的Fe3C析出,组织一般为灰暗色。 回火索氏体:在铁素体的基体上分布小颗粒状的渗碳体。 6.低碳钢渗碳后炉冷组织 920℃渗碳后,表层的含碳量接近Acm线,逐渐降低,到心部为原始的低碳(或纯铁),炉冷后得到平衡组织,从表到里,经过过共析(珠光体+网状渗碳体)、共析(珠光体)、亚共析(铁素体+珠光体)的逐渐过渡。实用材料往往可直接淬火,或渗碳后空冷正火,表层部分的渗碳体为颗粒状。 二、实验内容 ①.观察45钢的正火组织,铁素体+索氏体。 ②.观察等温淬火组织,认识上、下贝氏体形貌特征。 ③.观察淬火组织认识马氏体形态:20钢得到的板条马氏体,由45钢得到的混合马氏 体,T10钢过热淬火得到的粗大马氏体针。 ④.正常淬火回火组织:T10钢正常淬火回火的组织为未溶颗粒状碳化物+回火隐针马 氏体。 ⑤.调质:中碳钢淬火后高温回火得到的回火索氏体。 ⑥.渗碳后炉冷组织:从组织了解渗碳后碳含量的大致分布。 三、实验报告要求 画出5个以上观察到的组织示意图,注明材料、热处理过程、所得到的组织。

碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析 实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的 (1)观察和研究碳钢经不同形式热处理后显微组织的特点。 (2)了解热处理工艺对碳钢硬度的影响。 二:实验说明 碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。 图1 共析碳钢的c曲线 图2 45钢的CCT曲线 C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。 1.碳钢的退火和正火组织 亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则

采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。 2.钢的淬火组织 含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。 图3 T12 钢球化退火组织图4 低碳马氏体组织 45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

模具材料及热处理

模具材料及热处理模具材料及热处理 1.金属组织 1.1金属 具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 1.2合金 由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 1.3固溶体 是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 1.4固溶强化 由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 1.5化合物 合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 1.6机械混合物 由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。2.金属硬度 2.1硬度 金属的硬度,是指金属表面局部体积内抵抗外物压入而引起的塑性变形的抗力,硬度越高表明金属抵抗塑性变形的能力越强,金属产生塑性变形越困难。硬度试验方法简单易行,又无损于零件。实际常使用的硬度试验方法有:布氏硬度、洛氏硬度和维氏硬度三种。三种硬度试验值有大致的换算关系,见表一。 布氏硬度HB:布氏硬度是用载荷为P的力把直接D的钢球压入金属表面,并保持一定的时间,测量金属表面上的压痕直径d,据此计算出的压痕面积AB,求出每单位面积所受力,用作金属的硬度值,叫布氏硬度,记作HB。布氏硬度的使用上限是HB450,适用于测定退火、正火、调质钢、铸铁及有色金属的硬度。 2.1.1洛氏硬度HRA、HRC: 洛氏硬度是工业生产中最常用的硬度测量的方法,因为操作简便、迅速,可以直接读出硬度值,不损伤工件表面,可测量的硬度范围较宽。但洛氏硬度也有一些缺点,如因压痕小,对材料有偏析及组织不均匀的情况,测量结果分离度大,再现性较差。洛氏硬度(HR)也是用压痕的方式试验硬度。它是用测量凹陷深度来表示硬度值。洛氏硬度试验用的压头分硬质和软质两种。硬质压头为顶角为120o的金刚石圆锥体,使用于淬火钢等硬的材料。HRA硬度有效范围是>70,适用于硬质合金、表面淬火层及渗碳层;HRC硬度有效范围是20-68(相当于HB230-700,HB450-700超出了布氏硬度的使用上限),适用于淬火钢及调质钢。 2.1.2洛氏硬度HRB 洛氏硬度HRB的测量采用直径1.588mm(1/16")的钢球,适用于退火钢、有色金属等,硬度有效范围是25-100(相当于HB60-230)。 2.1.3维氏硬度HV 维氏硬度也是利用压痕面积上单位应力作为硬度值计量。维氏硬度所使用的压头是锥面夹角为136o的金刚石四方锥体。试验时,在载荷P的作用下,在试样试验面上压出一个正方形压痕。测量压痕两对角线的平均长度d,借以计算压痕面积A V,以P/A V的数值表示试样的硬度,以HV表示。维氏硬度的优缺点:维氏硬度有一个连续一致的标度;试验负荷可任意选择,所得的硬度值相同。试验时加载的压力小,压入深度浅,对工件损伤小。特别适用于测量零件的表面淬硬层及经过表面化学处理的硬度,精度比布氏、洛氏硬度精确。但是维氏硬度的试验操作较麻烦,一般在生产上很少使用,多用于实验室及科研方面。

金属热处理缺陷分析报告及案例

<<金属热处理缺陷分析及案例>>试题 一、填空题 1、热处理缺陷产生的原因是多方面的,概括起来可分为热处理前、热处理中、热处理后三个方面的原因。 2、热处理缺陷分析方法有:断口分析、化学分析、金相检验、力学性能试验、验证试验、综合分析。 3、断裂可分为两种类型:脆性断裂和韧性断裂。 4、金属断裂的理论研究表明:任何应力状态都可以用切应力和正应力表示,这两种应力对变形和断裂起着不同的作用,只有切应力才可以引起金属发生塑性变形,而正应力只影响断裂的发展过程。 5、热处理变形常用的校正方法可分为机械校正法和热处理校正法。 6、热应力是指由表层与心部的温度差引起的胀缩不均匀而产生的内应力。 7、工程上常用的表面淬火方法主要有高频感应加热淬火和火焰淬火两种。 8、热处理中质量控制的关键是控制加热质量和冷却质量。 9、过热组织晶粒粗大的主要特征是奥氏体晶粒度在3级以下。 10、真空热处理常见缺陷有表面合金元素贫化、表面不光亮和氧化色、表面增碳或增氮、粘连、淬火硬度不足、表面晶粒长大。 11、低温回火温度范围是(150-250)℃,中温回火温度范围是(350-500)℃,高温回火温度范围是(500-6 50)℃。

12、工件的形状愈不对称,或冷却的不均匀性愈大,淬火后的变形也愈明显。 13、马氏体片越长,撞击能量越高,显微裂纹密度会越大,撞击应力会越大,显微裂纹的数目和长度也会增加。 14、合金元素通过对淬透性的影响,从而影响到淬裂倾向,一般来说,淬透性增加,淬裂性会增加。合金元素对M S的影响较大,一般来说,M S越低的钢,淬裂倾向越大。 15、一般来说,形状简单的工件,可采用上限加热温度,形状复杂、易淬裂的工件,则应采用下限加热温度。 16、对于低碳钢制工件,若正常加热温度淬火后内孔收缩,为了减小收缩,要降低淬火加热温度;对于中碳合金钢制的工件,若正常加热温度淬火后内孔胀大,为了减小孔腔的胀大,需降低淬火加热温度。 17、工件的热处理变形分为尺寸变化和形状畸变两种形式。 二、单项选择题 1、淬火裂纹通常分为 A 四种。 A、纵向裂纹、横向裂纹、网状裂纹、剥离裂纹 B、纵向裂纹、横向裂纹、剥离裂纹、显微裂纹 C、纵向裂纹、横向裂纹、网状裂纹、表面裂纹 D、纵向裂纹、横向裂纹、剥离裂纹、应力集中裂纹 2、第一类回火脆性通常发生在淬火马氏体于 B 回火温度区间,这类回火脆性在碳钢和合金钢中均会出现,它与回火后的冷却速

氮化优点及常见缺陷原因分析工艺制定

离子氮化及优点,常见缺陷及原因分析,工艺制定 离子氮化是由德国人B.Berghaus于1932年发明的。该法是在0.1~10Torr (Torr = 133.3 Pa)的含氮气氛中,以炉体为阳极,被处理工件为阴极,在阴阳极间加上数百伏的直流电压,由于辉光放电现象便会产生象霓红灯一样的柔光覆盖在被处理工件的表面。此时,已离子化了的气体成分被电场加速,撞击被处理工件表面而使其加热。同时依靠溅射及离子化作用等进行氮化处理。 离子氮化法与以往的靠分解氨气或使用氰化物来进行氮化的方法截然不同,作为一种全新的氮化方法,现已被广泛应用于汽车、机械、精密仪器、挤压成型机、模具等许多领域,而且其应用范围仍在日益扩大。 离子氮化法具有以下一些优点: ①由于离子氮化法不是依靠化学反应作用,而是利用离子化了的含氮气体进行氮化处理,所以工作环境十分清洁而无需防止公害的特别设备。因而,离子氮化法也被称作二十一世纪的“绿色”氮化法。 ②由于离子氮化法利用了离子化了的气体的溅射作用,因而与以往的氮化处理相比,可显著的缩短处理时间(离子渗氮的时间仅为普通气体渗氮时间的1/3~1/5)。 ③由于离子氮化法利用辉光放电直接对工件进行加热,也无需特别的加热和保温设备,且可以获得均匀的温度分布,与间接加热方式相比加热效率可提高2倍以上,达到节能效果(能源消耗仅为气体渗氮的40~70%)。 ④由于离子氮化是在真空中进行,因而可获得无氧化的加工表面,也不会损害被处理工件的表面光洁度。而且由于是在低温下进行处理,被处理工件的变形量极小,处理后无需再行加工,极适合于成品的处理。 ⑤通过调节氮、氢及其他(如碳、氧、硫等)气氛的比例,可自由地调节

T12钢热处理工艺

金属材料与热处理技术课程设计 题目:T12钢热处理工艺课程设计 院(系):冶金材料系 专业年级:材料1201 负责人:陈博 唐磊,杨亚西, 合作者:谭平,潘佳伟,多杰仁青 指导老师:罗珍 2013年12月

热处理工艺课程设计任务书 系部冶金材料系专业金属材料与热处理技术 学生姓名陈博,杨亚西,唐磊,谭平,多杰仁青,潘佳伟 课程设计题目T12 设计任务: 1,课程设计的目的:为了使我们更好地了解碳素工具钢的性能及其热处理工艺流程。培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。学习热处理工艺设计的一般方法,热处理设备选用和装夹具设计等进行热处理设计的基础技能训练。 2.课程设计的任务分组(碳素工具钢T12) ①:锉刀的热处理工艺(唐磊) ②:热处理后的组织金相分析(陈博) ③:淬火(潘佳伟) ④:回火(多杰仁青) ⑤:局部淬火(谭平) ⑥:缺陷分析(杨亚西) 3.课程设计的内容: T12钢热处理工艺设计流程 4参考文献: 【1】詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析.塑性工程学报,2001,8(4) 【2】叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005,59---60 【3】许天己钢铁热处理实用技术.化学工业出版社2005,134"~136 设计进度安排: 第一周周一~周二钢的普通热处理工艺设计理论学习 周三~周五分组进行典型金属材料的热处理工艺设计第二周周一~周三撰写设计说明书 周四~周五答辩 指导教师(签字): 年 月日

热处理工艺卡 热处理工艺卡材料牌 号 T12 零件重 量 锉刀400g 工艺路 线 热轧钢板冲压下料——退火——校直——铣或刨侧 面——粗磨——半精磨——剁齿——淬火加回火。 技术条件检验方法 硬度HRC60-62,HB≤207 洛氏硬度计,布氏硬度计 金相组 织 珠光体,马氏体和 渗碳体 金相观察 力学性 能 硬度:退火,≤ 207HB,压痕直径≥ 4.20mm;淬火:≥ 62HRC 布氏法,洛氏法 工 序号工序名称设备 装炉方式 及数量 加热温 度℃ 保温 时min 冷却 介 质 温 度 ℃ 冷却时间 min 1 预热加热炉- 550-65 加热 时间 的5-6 倍 - - - 2 球化退火退火炉- 760-77 0 2-4h 空 气 550 -60 4h 3 淬火保护气 氛炉- 770-78 - 水150 -20 10 4 低温回火回火炉- 160-18 0 0.75- 1h 空 气 150 60 编制人陈博编制日期2013.12.11 审核日期

6063挤压型材条纹缺陷产生原因分析及解决措施

6063挤压型材条纹缺陷产生原因分析及解决措施 周春荣张宏辉 (广东豪美铝业有限公司,广东,清远511540) 摘要:根据多年现场的生产经验总结,主要分析了装饰用、表面质量要求高的6063热挤压铝型材表面条纹产生的原因,并提出了解决措施。 关键词:6063铝合金;挤压;条纹 随着人们生活质量的不断提高,建筑行业的不断发展,以及出口比例的不断增加,铝合金型材的用量也越来越大。与此同时,人们对铝型材的装饰性能的要求也越来越严格。给铝加工行业提出了新的挑战,同时也刺激了中 国铝加工行业的进步和发展。下面就我们在现场的多年生产经验,单就6063铝型材的表面和氧化后条纹这一缺陷进行分析和探讨。 1.条纹的分类 按照表面处理要求,可以分为表面处理前条纹和表面处理后条纹。按条纹产生的机理分,可分为组织条纹、变形条纹、加工条纹。组织条纹主要是由铸棒质量和化学成分引起的;变形条纹也就是工作带条纹,主要由模具设计和加工缺陷引起的;加工条纹为挤压过程中产生的,与铸棒的加热温度、挤压速度等工艺密切相关。 2.产生的原因及解决措施 2.1 铸棒质量铸棒质量是产生组织条纹的主要原因,我们可以从铸锭的化学成分和铸锭质量两个方面来分析和探讨。 2.1.1 化学成分的合理控制 6063合金是Al-Mg-Si系合金的典型代表,具有良好的可挤压性能。其化学成分范围见表一: 表表一为GB/T3190-1996的化学成分,从表中我们可以看出,6063化学元素的含量范 围比较大。但在实际生产中,需要根据不同的 用途来合理配置各种元素的范围。6063合金 中Si、Mg、Fe的合理配置对型材表面质量和 力学性能有很大的关系。Mg、Si的总量和比 例至关重要,根据多年的现场经验,要得到理 想的力学性能和表面质量,按不同的用途, Mg、Si元素的总量可控制在0.85~1.0%比较 合适。确定Mg、Si的总量后,我们需从Mg/Si 的比值和过剩硅及Fe元素含量来分析确定 Mg、Si、Fe的合理分配。我们知道Mg、Si 在6063成分中主要形成Mg2Si强化相,其比 例A=Mg的原子×2/Si的原子量=24.81× 2/28.09=1.73,当A>1.73时,即Mg元素过

钢的热处理组织分析判断方法

钢的热处理组织分析判断方法 钢的热处理组织分析判断方法 金属的热处理是否合格,重要的判断是金相组织,下面将简要介绍热处理的分析判断方法,有不对的地方请大家指正。 一、观察方法: 1.观察组织组成物和种类 钢热处理后,根据热处理种类和材料的不一样,组织组成物可能是一种或多种。如马氏体,马氏体+残余奥氏体,单一珠光体,单一奥氏体,铁素体+珠光体,铁素体+马氏体+碳化物等等。 金相观察时,首先要判断被观察组织中有几种组织组成物,是单一组成物,还是两种或多种组成物。 在组织组成物中,某一组成物可以是单一相,如铁素体或奥氏体等单相;也可以是两相或多相混合组成或化合物,如珠光体是铁素体与渗碳体的机械混合物,各种碳化物等。 不同的组成物有不同的形态特征,利用这些特征可以快速的识别:不同的组成物受溶液浸蚀的程度不同,使得其在金相显微镜下具有不同的明暗程度或不同的色彩差;不同组成物形成的先后顺序不一样,其形态也不一样,最先形成的总是从奥氏体晶界开始形核;各组成物形成的原理不一样,形态也有差异。通过这些就可以判别被观察物的组成种类。大多数情况下,能够观察到几种不同明暗程度或几种形态不同的部份,就可以判定有几种组成物。

2.观察形态 组织组成物的形态是我们判别组成物的极其重要的依据之一。一些特定组织具有极显著的特征,如典型的珠光体具有层片状(或称指纹状)特征,一看就知道是珠光体;羽毛状物是上贝氏体。白色的块状物不是铁素体就是奥氏体或碳化物,黑色针状物不是马氏体就是下贝氏体,沿晶分布的白色块状或针状肯定是铁素体或碳化物(渗碳体)两者之一等等。 要观察组织物是片状、针状、块状、颗粒状、条状、网状或者是其它什么形状。有时,还要精细观察是单一相还是复合相。 在观察中要注意试样的浸蚀程度,只有合理的浸蚀,各种组织才会正确的显现出来,同时,制样也很关键,错误的制样可能导致对组成物的错误判断。由于制样和浸蚀问题,导致的判断错误在新手中屡见不鲜。 在观察中还要注意,对于观察到的白色或黑色物,不要轻易就认为是一种组成物。对于白色的可能是奥氏体或铁素体,更有可能是碳化物;对于黑色物,可能由于其极其细密,在常规倍数下观察根本无法分开。 3.组成物的分布 组成物的分布特点是识别组成物的重要根据,不同的组成物具有不同的分布特点,一般是指其分布于母相的晶界或晶内。 在观察到的组织中,凡是呈网络状分布(不管是封闭网状或是断续网状或略有呈网状的趋势)的都是沿晶界分布,其余的都是分布于晶内。要注意的是,有时沿晶析出物很少时,不易看出是沿晶分布,此时可

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 GAGGAGAGGAFFFFAFAF

2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口 端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状 GAGGAGAGGAFFFFAFAF

钢的热处理及热处理后的显微组织观察实验报告

钢的热处理及热处理后的显微组织观察 实验报告 罗毅晗2014011673 一、实验目的 (1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。 (2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。 (3)观察碳钢热处理后的显微组织。 二、概述 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。热处理的基本操作有退火、正火、淬火、回火等。进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。 三、实验内容 加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.052.152.652.2 860℃油冷﹨20.223.419.120.9 860℃空冷﹨94.194.694.294.3 860℃炉冷﹨86.085.285.785.6 860℃水冷200℃51.952.052.152.0 860℃水冷400℃34.835.335.735.3 860℃水冷600℃20.321.519.620.5 显微组织观察 45钢 860℃气冷索氏体+铁素体

45钢860℃油冷马氏体+屈氏体 45钢860℃水冷马氏体

45钢 860℃水冷+600℃回火回火索氏体 T12钢 760℃球化退火球化体

T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体 T12钢 1100℃水冷粗大马氏体+残余奥氏体

四、实验分析 1.火温度而言,淬火温度越高,硬度越高。但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。 2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。 3.火温度而言,回火温度越高,硬度越低。 图像: 分析原因: ①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。 ②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。因此,硬度大小为:空冷>炉冷>水冷>油冷。

Cr12MoV钢不同热处理条件下的硬度和金相组织分析

Cr12MoV钢不同热处理条件下的硬度和金相组织分析 摘要:研究了Cr12MoV钢在不同温度淬火和回火后的硬度变化,并对不同热处理条件下的金相组织进行了分析。 Cr12MoV钢是广泛用于模具行业的冷作模具钢,具有高淬透性,截面为300~400mm2以下者可以完全淬透。在300~400℃时仍可保持良好硬度和耐磨性,因此可用来制造断面较大、形状复杂、经受较大冲击负荷的各种模具和工具。由于该钢中存在大量碳化物,且偏析严重,因此不同的热处理工艺对钢的性能有很大的影响[1]。本文对Cr12MoV钢在不同热处理条件下的硬度和金相组织进行了分析,为业内人士提供参考。 1 实验条件 (1)试样材料:Cr12MoV钢,碳化物偏析较严重。 (2)试样规格:试棒为<100mm×200mm,在试棒的R/2处截取金相试样15mm×15mm×20mm。 (3)淬火前进行等温退火,850±10℃保温100~120min,740℃等温4h。 (4)淬火加热用盐浴炉,冷却介质为20号机油。 (5)金相组织用XJB-200型在线金相仪。 2 试验结果与分析 2.1 硬度 Cr12MoV钢经不同温度淬火和不同温度回火后的硬度实验数据见表1所示。 根据实验数据绘制其关系曲线如图1所示。

从表1和图1可以看出: (1)Cr12MoV钢淬火后的硬度与淬火温度有极大关系,980~1040℃淬火获得的最高硬度为63~65HRC。 (2)Cr12MoV钢的回火稳定性高,980~1040℃淬火,200℃回火2次,每次2h,硬度为59.5~60.5HRC,250℃回火1h,硬度为58.5~59.5HRC。 (3)1100℃淬火,520℃回火2~3次,“二次硬化”硬度最高为60.5~61HRC。 (4)1130℃淬火,520℃回火3次,硬度仅提高到50HRC,在550℃回火1~2次,硬度提高到58HRC。1200℃淬火,520℃回火3次,硬度提高很少,经550℃2次回火,硬度提高到59HRC。 (5)Cr12MoV钢经1040℃淬火,500℃回火后硬度为57.5HRC,520℃回火2次,硬度为56~57.5HRC,看不出二次硬化现象。 2.2 金相组织 Cr12MoV钢热处理状态不同,显微组织变化很大,特别是1150℃以上温度淬火的组织比较特殊。 Cr12MoV钢不同热处理状态的金相组织图说明如下: (1)800~880℃淬火,未回火的试样组织为:马氏体+屈氏体+碳化物。材料碳化物偏析比较严重,奥氏体成分不均匀,稳定性程度不同,硬度由低到高(见图2所示)。 图2 800~880℃淬火金相组织×400 图3 1040℃、1070℃淬火金相组织×400 (2)950℃、980℃、1010℃淬火,未回火的试样为正常淬火组织:马氏体+碳化物+残留奥氏体。 (3)1040℃、1070℃淬火,未回火的试样为正常组织:回火马氏体+碳化物+残留奥氏体(见图3所示)。 (4)1100℃~1160℃淬火,未回火的试样为粗针状马氏体+碳化物+残留奥氏体(见图4、图5所示)。

模具钢的处理

模具钢的处理 模具钢材的热处理方式与加工工序安排密切相关。在模具制造时,应当根据材料和加工工艺路线来选择热处理方法,制定相应得热处理工艺。 (1)一般冷作模具钢工作零件的热处理工序安排:筹造——退火——机械加工成型——淬火与回火—工修整。 (2)冷作模具钢采用成型磨削及电加工工艺:锻造——退火——机械粗加工——淬火或回火——精加工(磨削、电加工)。 (3)冷作模具钢复杂冲模的加工:锻造——退火——机械粗加工——高温回火或调质——机械加工成型——淬火与回火——磨削与电工加工成型。 大多数冷作模具钢使用状态为淬火与回火,模具硬度通常为60hrc,为了进一步提高模具表面硬度、耐磨性和使用寿命,常进行表面强化处理,如渗碳、渗氮、渗硼氮碳共渗、td 法渗钒铌、化学气相村积(cvd)等作为最终热处理。 模具热处理 模具制造的成本高,特别是一些精密复杂的冷冲模、塑料模、压铸模等。采用热处理技术提高模具的使用性能,可以大幅度提高模具寿命,有显著的经济效益,我国模具技术工作者十分重视模具热处理技术的发展。 1 真空热处理 模具钢经真空热处理后有良好的表面状态,变形小。与大气下的淬火比较,真空油淬后模具表面硬化比较均匀,而且略高一些,主要原因是真空加热时,模具钢表面呈活性状态,不脱碳,不产生阻碍冷却的氧化膜。在真空下加热,钢的表面有脱气效果,因而具有较高的力学性能,炉内真空度越高,抗弯强度越高。真空淬火后,钢的断裂韧性有所提高,模具寿命比常规工艺普遍提高40%~400%,甚至更高。冷作模具真空淬火技术已得到较广泛的使用。 2 深冷处理 近年来的研究工作表明,模具钢经深冷处理(-196℃),可以提高其力学性能,一些模具经深冷处理后显著提高了使用寿命。模具钢的深冷可以在淬火和回火工序之间进行,也可在淬火回火之后进行深冷处理。如果在淬火、回火后钢中仍保留有残余奥氏体,则在深冷处理后仍需要再进行一次回火。深冷处理能提高钢的耐磨性和抗回火稳定性。深冷处理不仅用于冷作模具,也可用于热作模具和硬质合金。深冷处理技术已越来越受到模具热处理工作者的关注,已开发出专用深冷处理设备。不同钢种在深冷过程中的组织变化及其微观机制及其对力学性能的影响,尚需进一步研究。 3 模具的高温淬火和降温淬火 一些热作模具钢,如3Cr2W8V、H13、5CrNiMo、5CrMnMo等,采用高于常规淬火温度加热淬火,可以减少钢中碳化物的数量、改善其形态和分布,使固溶于奥氏体中碳的分布均匀化,淬火后可在钢中获得更多的板条马氏体,提高其断裂韧性和冷热疲劳抗力,从而延长模具使用寿命。例如3Cr2W8V钢制的一种热挤压模具,常规淬火温度为1080~1120℃,回火温度为560~580℃。当淬火温度提高至1200℃,回火温度为680℃(2次),模具寿命提高了数倍。 W6Mo5Cr4V2、W18Cr4V高速钢和Cr12MoV等高合金冷作模具钢,可适当降低其淬火温度,以改善其塑韧性,减少脆性开裂倾向,从而提高模具寿命。例如W6Mo5Cr4V2的淬火温度可选用1140~1160℃。 4 化学热处理 化学热处理能有效地提高模具表面的耐磨性、耐蚀性、抗咬合、抗氧化性等性能。几乎

相关主题
文本预览
相关文档 最新文档