当前位置:文档之家› 行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题

行程问题

一、相遇问题:

路程=速度×时间

甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离

三、环形跑道问题:

1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题

1、飞行问题,基本等量关系:

顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速

2、航行问题,基本等量关系:

顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速

一、相遇问题

1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度

3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速度是摩托车的1/3倍,求摩托车和自行车的速度。

4、A,B两村相距2800米,小明从A村出发向B村步行5分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130米,小明每分钟步行多少米?

5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。

6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

二、追及问题

1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。

(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?

(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?

2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。1号队员从离队开始到与队员重新会和,经过了多长时间?

3、一队学生去郊外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追去。问通讯员用多少时间可以追上学生队伍?

三、环形跑道

1、一条环形跑道长400米,甲每分钟行550米,乙每分钟行250米,甲乙两人同时同地同向出发,问多少分钟后他们再相遇?

四、航行问题

1、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.

2、一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。

3、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离

五、火车过桥

1、某桥长500米,一列火车从桥上通过,测得火车从开始上桥到完全通过共用30秒,而整列火车完全在桥上的时间为20秒,求火车的速度和长度。

2、一列快车和一列慢车相向行驶在平行的两条轨道上,快车长150米,慢车长200米,坐在慢车上的乘客见快车驶过窗口的时间是6秒,问坐在快车上的乘客见慢车驶过窗口的时间是几秒?

3、甲乙两列火车,长分别为144米和180米,甲车比乙车每秒多行4米,两列火车相向而行,从相遇到错开需要9秒,问两车的速度各是多少?

4、火车用26秒的时间通过一个长256米的隧道,(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。

一元一次方程经典应用题(较难)

一元一次方程的应用经典题 1、“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费: (1)某用户1月份共交水费65元,问1月份用水多少吨? (2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元? 2、60 增加15

3、 七(1)、(2)104(1)班人数多于七(2)班,70人,准备周末去公园 1140元. (1) (2) (3)(1)班有10 4、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3 种不同型号的 电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案. (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

5、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中, 一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件. 6、某工厂计划生产一种新型豆浆机,每台豆浆机需要3个A种零件和5个B种零件正好配套, 已知车间每天能生产A种零件4个或B种零件30个,现在要使在22天中所生产的零件全部配套,那么应该安排多少天生产甲种零件,多少天生产乙种零件? 7、日历上爷爷生日那天的上下左右4个日期的和为80,你能说出爷爷的生日是哪天吗

一元一次方程应用题之行程问题练习题(配答案)

行程问题(讲义) ? 课前预习 1. 小学我们已经学过行程问题,那么行程问题中的基本关系是 _________=________×________. 2. 已知小明家离学校2千米,一天小明在下午5:00放学之后开始步行回家,同时爸爸骑自行车从 家出发去接小明,已知小明步行的速度是60米/分钟,爸爸骑自行车的速度是140米/分钟,请问小明爸爸从家出发几分钟后接到小明?设小明爸爸从家出发x 分钟后接到小明,分别用含x 的代数式表达小明和爸爸所走的路程. 3. 上题中的等量关系是: _______________+_____________=从家到学校的距离. 可列方程为:_________________________. 学校 家 爸爸

?知识点睛 行程问题: ①理解题意,找关键词,即________、________、________; ②分析运动过程,通常采用____________或____________的方法来进行; ③梳理信息,列表,提取数据,列表时要按照运动状态或者运动过程进行分类; ④根据等量关系列方程. ?精讲精练 1.一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米 /时的速度独自行进,行进10千米后掉转车头,仍以45千米/ 时的速度往回骑,直到与其他队员会合.1号队员从离队开始 到与队员重新会合,经过了多长时间? 启明中学举行了一次路程为60千米的远足活动,八年级学生步行,七年级学生乘一辆汽车,两个年级的学生同地出发,这辆汽车开到目的地后,再回头接八年级的学生.若八年级学生的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问八年级学生出发后经过多长时间与回头接他们的汽车相遇? 2.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知 两人在上午8时同时出发,到上午10时,两人还相距36 km, 到中午12时,两人又相距36 km.求A,B两地间的路程. 3.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时下

人教版七年级数学上册一元一次方程解应用题专题练习

一元一次方程应用题专题 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子, 然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解, 是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率现在量=原有量+增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式V=底面积×高=S·h= r2h ②长方体的体积V=长×宽×高=abc 4.数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题 (1)商品利润=商品售价-商品成本价(2)商品利润率= 商品利润 商品成本价 ×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售. 6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

一元一次方程经典题型(推荐文档)

一元一次方程经典题型 1.以y 为未知数的方程c b ay 52=()0,0≠≠b a 的解是 ( ) A .a bc y 10= B .c bc y 52= C .a bc y 25= D .c bc y 10= 2.要使415+ m 与??? ??+415m 互为相反数,那么m 的值是 ( ) A .0 B .203 C .201 D .20 3- 3.已知05432=+-n x 是关于x 的一元一次方程,则.____________=n 4.若79b a x 与12437---y x b a 是同类项,则.___________,__________==y x 5.若2-是关于x 的方程a x x -= +243的解,则._________1100100=-a a 6、若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是 . 6、已知:()2135m --有最大值,则方程5432m x -=+的解是 . 7、方程456,x y -=用含x 的代数式表示y 得 ,用含y 的代数式表示x 得 。 3、解方程20.250.1x 0.10.030.02 x -+=时,把分母化为整数,得 。 2、方程23(1)0x -+=的解与关于x 的方程 3222k x k x +--=的解互为倒数,求k 的值 。 7. .222 .01.05.0=+-x x 6.3.1从实际问题到方程 一、本课重点,请你理一理 列方程解应用题的一般步骤是: (1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________; (2)“设”:用字母(例如x )表示问题的_______; (3)“列”:用字母的代数式表示相关的量,根据__________列出方程; (4)“解”:解方程; (5)“验”:检查求得的值是否正确和符合实际情形,并写出答案; (6)“答”:答出题目中所问的问题。 二、基础题,请你做一做 1. 已知矩形的周长为20厘米,设长为x 厘米,则宽为( ). A. 20-x B. 10-x C. 10-2x D. 20-2x 2.学生a 人,以每10人为一组,其中有两组各少1人,则学生共有( )组. A. 10a -2 B. 10-2a C. 10-(2-a) D.(10+2)/a

一元一次方程总复习经典练习题(供参考)

一元一次方程板块 1.已知等式2(2)10a x ax -++=是关于x 的一元一次方程(即x 未知),则这个方 程的解为______ 2.方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( ) A. -5 B . -3 C. 3 D. 5 3.若关于x 的方程a x x -=+332的解是2x =-,则代数式21a a -的值是_________ 4.关于x 的方程729+=-kx x 的解是自然数,则整数k 的值为 5.当m 取什么整数时,关于x 的方程1514()2323 mx x -=-的解是正整数? 6、关于x 的方程143+=+x ax 的解为正整数,则a 的值为( ) A 、2 B 、3 C 、1或2 D 、2或3 7.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解 2-=x ,则原方程的解为___________________________. 8. 解方程 (1)x x 325.2]2)125.0(32[23=-++ (2)13 5467221--=---x x x (3)14 3)1(2111=-+-x (4)、200320042003433221=?++?+?+?x x x x 9.某公司向银行贷款40万元,用来生产某种产品,已知该贷款的利率为15%(不 计复利,即还贷款前两年利息不计算),每个新产品的成本是2.3元,售价是4元, 应纳税款是销售额的10%,如果每年生产该种产品20万个,并把所得利润(利 润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清? 10.(2009年牡丹江)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾 卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共 节省2800元,则用贵宾卡又享受了 折优惠. 11.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程 所需天数为( ) A.1x y + B.11x y + C.1xy D.1 11x y +

一元一次方程行程类问题

3.4 实际问题与一元一次方程 ————行程类 教学目标: 1.借助生活中的实例,了解路程、速度、时间之间的关系,根据等量关系能列一元一次方程。 2.能通过画线段图解决行程类的相遇问题,追击问题。 教学重点:根据线段图熟练找出等量关系。 教学难点:会画行程类线段图。 教学过程: 一、创设情境提出问题 有一次,外国一位著名数学家与苏步青教授一起乘车,这位数学家出了这样一道题请苏步青解答: 甲、乙两人同时从相距50千米的A、B两地同时出发,相向而行。甲每小时走6千米,乙每小时走4千米。甲带一只狗和他同时出发,狗以每小时8千米的速度向乙奔去,遇到乙立即回头向甲奔去;遇到甲又回头向乙奔去,直到甲、乙两人相遇时狗才停住。 问:这只狗共跑了多少千米? 苏教授一下子便回答出来了,你能回答出上述问题吗? 二、交流质疑精讲点拨 甲、乙两人同时从相距50千米的A、B两地同时出发,相向而行。甲每小时走6千米,乙每小时走4千米。甲带一只狗和他同时出发,狗以每小时8千米的速度向乙奔去,遇到乙立即回头向甲奔去;遇到甲又回头向乙奔去,直到甲、乙两人相遇时狗才停住。 问:这只狗共跑了多少千米? 变式1: 例:甲、乙两人从相距50千米的A、B两地出发,相向而行,甲每小时走6千米,乙每小时走4千米. 若乙先出发半小时后甲再出发,问甲出发几小时后与乙相遇? 小结: 相遇问题: 甲走的路程+ 乙走的路程= 两地间的路程 巩固练习:《自主学习与测评》第86 页第 2 题 变式2:你还能提出一个怎样的问题? 甲、乙两人同时从相距50千米的A、B两地出发,相向而行。甲每小时走6千米, 乙每小时走4千米.两人出发多少小时后两车相距10千米? 巩固练习:《自主学习与测评》第86页第 4 题

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

行程问题--一元一次方程经典应用题

行程问题 一、相遇问题: 路程=速度×时间 甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离 三、环形跑道问题: 1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。 2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。 四、航行问题 1、飞行问题,基本等量关系: 顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速 2、航行问题,基本等量关系: 顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速 一、相遇问题 1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇? 2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度 3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速度是摩托车的1/3倍,求摩托车和自行车的速度。 4、A,B两村相距2800米,小明从A村出发向B村步行5分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130米,小明每分钟步行多少米? 5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。 6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米? 二、追及问题 1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。 (1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇? (2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲? 2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。1号队员从离队开始到与队员重新会和,经过了多长时间? 3、一队学生去郊外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追去。问通讯员用多少时间可以追上学生队伍? 三、环形跑道 1、一条环形跑道长400米,甲每分钟行550米,乙每分钟行250米,甲乙两人同时同地同向出发,问多少分钟后他们再相遇? 四、航行问题 1、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度. 2、一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。 3、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离 五、火车过桥 1、某桥长500米,一列火车从桥上通过,测得火车从开始上桥到完全通过共用30秒,而整列火车完全在桥上的时间为20秒,求火车的速度和长度。 2、一列快车和一列慢车相向行驶在平行的两条轨道上,快车长150米,慢车长200米,坐在慢车上的乘客见快车驶过窗口的时间是6秒,问坐在快车上的乘客见慢车驶过窗口的时间是几秒? 3、甲乙两列火车,长分别为144米和180米,甲车比乙车每秒多行4米,两列火车相向而行,从相遇到错开需要9秒,问两车的速度各是多少? 4、火车用26秒的时间通过一个长256米的隧道,(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。

华师大版七年级数学下册用一元一次方程解应用题专题训练

一、数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。 1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少? 二、日历中的方程(巧设未知数) 日历中的规律:横行相邻两数相差____;竖行相邻两数相差___。 1、观察一个月的日历,一个竖行上的三个数字之和是27,这三天分别是。 2、小斌外出旅行三天,这三天的日期之和是42,则小斌回来的日期是号。 3、如果某一年5月份中,有五个星期五,他们的日期之和为80,那么这个月4号是星期 几? 4、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。

三、水箱变高了-----等积变形问题 此类问题的关键在“等积”上,须掌握常见图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系:①形状面积变了,周长没变;②原料体积=成品体积。公式关系: 圆柱体积= 立方体体积= 长方体体积= 1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少? 2、将一个边长为5m的正方形铁丝框改成长方形,且该长方形的长比宽多1.4米,问长 方形的长和宽各为多少米? 3、用长7.2m的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m。求窗的高和 宽。(不考虑木料加工时损耗) 4、鱼儿离不开水,用一个底面半径为20厘米,高为45厘米的圆柱形的塑料桶给一个长方形的玻璃养鱼缸倒水,养鱼缸的长为120厘米、宽为40厘米、高为1米,将满满一桶水倒下去,鱼缸里的水会升高多少? 5、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方

(完整版)一元一次方程经典题型(可编辑修改word版)

4 一元一次方程经典题型 1.以y 为未知数的方程2ay = 5c (a ≠ 0, b≠ 0)的解是() b A.y =10bc a B. y = 2bc 5c C. y = 5bc 2a D.y =10bc c 2.要使5m +1 与 ? + 1 ? 互为相反数,那么m 的值是() 5 m ? 4 ?? A.0 B.3 20 C.1 20 D.-3 20 3.已知4x 2n-3+ 5 = 0 是关于x 的一元一次方程,则n =. 4.若9a x b7与- 7a3x-4b 2y-1是同类项,则x =, y =. 5.若- 2 是关于x 的方程3x + 4 =x -a 的解,则a100- 2 1 =. a100 6、若关于x 的方程mx m-2-m + 3 = 0 是一元一次方程,则这个方程的解是. 6、已知:1-(3m-5)2有最大值,则方程5m - 4 = 3x + 2 的解是. 7、方程4x - 5 y= 6, 用含x 的代数式表示y 得,用含y 的代数式表示x 得。 2x 0.25 -0.1x 3、解方程+= 0.1时,把分母化为整数,得。 0.03 0.02 2、方程2 -3(x +1) = 0 的解与关于x 的方程 7.0.5x - 0.1 + 2x = 2. 0.2 k +x 2 -3k - 2 = 2x 的解互为倒数,求k 的值。 6.3.1从实际问题到方程 一、本课重点,请你理一理 列方程解应用题的一般步骤是: (1)“找”:看清题意,分析题中及其关系,找出用来列方程的;(2)“设”:用字母(例如x)表示问题的; (3)“列”:用字母的代数式表示相关的量,根据列出方程; (4)“解”:解方程; (5)“验”:检查求得的值是否正确和符合实际情形,并写出答案; (6)“答”:答出题目中所问的问题。 二、基础题,请你做一做 1.已知矩形的周长为20 厘米,设长为x 厘米,则宽为(). A. 20-x B. 10-x C. 10-2x D. 20-2x 2.学生a 人,以每10 人为一组,其中有两组各少1 人,则学生共有()组. A. 10a-2 B. 10-2a C. 10-(2-a) D.(10+2)/a 三、综合题,请你试一试

一元一次方程知识点及经典例题

第三章一元一次方程单元复习与巩固 知识点一:一元一次方程及解的概念 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 类型一:一元一次方程的相关概念 1、已知下列各式: ①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。 其中方程的个数是( ) A、5 B、6 C、7 D、8 [变式1]判断下列方程是否是一元一次方程: -2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2) [变式2]已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。 [变式3](2011重庆江津)已知3是关于x的方程2x-a=1的解,则a的值是( ) A.-5 B.5 C.7 D.2 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。 即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,

说课案(一元一次方程应用--行程问题)

一元一次方程的应用说课稿 一、数学分析 通过一元一次方程应用的学习,学生将对利用方程思想解决实际问题有一定的认识和理解,进一步体会数学建模思想,即:由实际问题抽象为方程模型这一过程蕴含的模型化的思想,同时也为后继学习用二元一次方程组、分式方程、一元二次方程解决实际问题奠定了基础。 二、标准分析 1.探索具体问题中的数量关系和变化规律,掌握用方程进行表述的方法。 2.通过用方程表述数量关系的过程,体会模型的思想。 3.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。 三、学情分析 学生已经会解一元一次方程,有列方程解应用题的初步经验。经过调研,抽测17 人,有15 人完全掌握了解方程的知识,有12 人能分析出简单行程问题(不含分类讨论的问题)的数量关系,能找到相等关系,列出方程。我所教班级学生能够比较清晰的表达自己的见解,愿意与他人合作交流;基于此在例题的选择上,我设置了一道分类讨论的题目,但由于学生正处于有感性认识向理性认识过渡时期,抽象思维能力有待提高,学生在这道题目上易出现分类讨论不全面、考虑问题片面、数形结合思想应用不到位等问题。在教学中要重视对学生思维的研究,从而对学生思维途径进行有效的指导。

四、教学目标 1.能将实际问题转化为数学问题,并能找出数学问题中的相等关系,列出方程解决问题。 2.通过经历“问题情景——建立数学模型——求出数学模型的解——检验、解释实际问题”的过程,初步渗透分类讨论和数学建模思想。 3.通过利用电子白板的演示、表演,教师的引领,寻求解决问题的方法;学会与他人合作,体验解决问题方法的多样性,获得解决实际问题的经验 五、重点、难点分析 重点是能将实际问题转化为数学问题,并能找出数学问题中的相等关系,列出方程解决问题。 难点是如何正确找出行程问题中的相等关系。 借助电子白板、按按按互动反馈技术与演示文稿的交互使用,引导学生利用路程图研究对象的行进过程帮助学生解决教学重点,突破教学难点。 六、教材对比分析 人教版教材中《一元一次方程》是第三章内容,先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再逐步引导学生列出含未知数的等式—方程,突出方程的根本特征,并使学生认识到从算式到方程使我们有了更有力、 更方便的数学工具,从算术方法到代数方法是数学的进步。

七年级一元一次方程经典题型计算题道

经 典 题 型 一、解方程(等式的性质)20分 1、x x 232-=- 2、463127.253.13?-?-=-+-x x x x 3、x x 21-=- 4、x 355-= 5、15=-x 6、1835+=-x x 7、x x 237+= 8、x x x 58.42.13-=-- 9、26473-=+-x x x 10、x x x 910026411-=-+ 11、x x x x 43987--=+- 12、x x x 25.132-=+- 13、x x 3.15.67.05.0-=- 14、3.05.064-=-+-x x x 15、15 2+-=-x x 16、35 36+-=-x x 17、3 223=x 18、168421x x x x x ++-+ = 19、4 32214+=-x x 20、x x x 3 212-=- 二、解方程(去括号)30分

1、4)1(2=-x 2、5)1(10=-x 3、95)3(+=--x x 4、)12(1)2(3--=+-x x x 5、)15(2)2(5-=+x x 6、)4(3)2()1(2x x x -=+-- 7、1)1(234+-=+x x 8、x x x 31)1(2)1(-=--+ 9、)1(3)14(6)2(2x x x -=--- 10、)1(9)15(3)2(4x x x -=--- 11、)12(3)32(21+-=+-x x 12、x x x 31)1(2)1(-=--+ 13、)9(76)20(34x x x x --=-- 14、)3()2(2+-=-x x 15、)1(72)4(2--=+-x x x 16、)43(23)165(2--=+-x x x 17、)12(41)2(3--=+--x x x 18、)4(12)2(24+-=-+x x x 19、)1(9)14(3)2(2x x x -=--- 20、)1(9)14(3)2(2y y y -=--+ 21、)9(76)20(34x x x x --=-- 22、17}20]8)15(4[3{2=----x 23、2)]}4(8[2{3]5)4(3[2----=-+--x x x x x x 24、)1(32 )1(2121-=??????--x x x 25、1122(1)(1)223 x x x x ??---=-????

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程(含答案) 1、71 2=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ; 解:(移项) (合并) (化系数为1) 5、914211-= -x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ; 解:(移项) (合并) (化系数为1) 9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32 1 41+=-x x 解:(移项) (合并) (化系数为1 13、1623 +=x x 14、253231+=-x x ;15、152+=--x x ; 16、23 312+=--x x 解:(移项) (合并) (化系数为1) . 17、 4 75.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号) (移项) (合并) (化系数为1) 21、)12(5111+=+x x ; 22、32034)=-(- x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号) (移项) (合并) (化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、3 232 36)=+(-x ; 解:(去括号) (移项) (合并) (化系数为1) 29、x x 2570152002+)=-( ; 30、12123)=+(x .31、452x x =+; 32、3 4 23+=-x x ; 解:(去分母) (去括号) (移项) (合并) (化系数为1)

一元一次方程应用题专题行程问题

第二讲一元一次方程应用题行程类专题讲解 【基本关系式】 (1)行程问题中的三个基本量及其关系: 路程=速度×时间时间=路程÷速度速度=路程÷时间 (2)基本类型 ①相遇问题:快行距+慢行距=原距 ②追及问题:快行距-慢行距=原距 ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程 注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。 常见的还有:相背而行;环形跑道问题。 一、行程(相遇)问题 A.基础训练 1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟 后两人相遇? 2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每 分走多少米? 3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3 分钟后赵文出发,几分钟后两人相遇? 4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每 小时行40千米,乙车出发几小时两车相遇? 5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先 出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间? 6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求 两人的速度。 7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知 甲比乙每小时多行2千米,求两人的速度。

一元一次方程解应用题分类(全)

(一)和差倍分问题 1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。 2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。 ¥ 3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克 4、初一(1)班举办了一次集邮展览。展出的邮票比平均每人3张多24张,比平均每人4张少26张。这个班级有多少学生一共展出了多少邮票 … 5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解. 6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。问该校有多少住校生有多少间宿舍

7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人 ( 8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克 (二)调配问题 1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少 @ 2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队 3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人 .

(完整word)一元一次方程典型应用题汇编(精选题型含答案),推荐文档

一元一次方程的应用 1、列方程解应用题的基本步骤和方法: 注意: (1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上. (2)解方程的步骤不用写出,直接写结果即可. (3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题. 2、设未知数的方法: 设未知数的方法一般来讲,有以下几种: (1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况; (2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用. (3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.

模块一:数字问题 (1)多位数字的表示方法: 一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +. 一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++. (2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数). (3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+. 【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把 一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少? 【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量. 设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ?+-+=,解之得4x =. 于是28x =.所以正确答案应为48. 【答案】48 【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比 原四位数的2倍少6,求这个年份. 【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为 21000x ?+,根据题意可列方程:()1022210006x x +=?+-,解得499x = 【答案】2499年 【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个 四位数. 【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +, 则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758 【答案】8758

一元一次方程练习题

一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. y x -=-5 4121 B. 835-=-- C. 3+x D. 1465 34+=-+x x x 2、方程x x 23 1=+-的解是( ) A. 31- B. 3 1 C. 1 D. -1 3、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( ) A. 10 B. 8 C. 10- D. 8- 4、下列根据等式的性质正确的是( ) A. 由y x 3 231=- ,得y x 2= B. 由2223+=-x x ,得4=x C. 由x x 332=-,得3=x D. 由753=-x ,得573-=x 5、解方程16 110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x 6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a 元 C. 21 .1a 元 D. 81.0a 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A .不赚不亏 B .赚8元 C .亏8元 D . 赚8元 9、下列方程中,是一元一次方程的是( ) (A );342=-x x (B );0=x (C );12=+y x (D ).11x x =- 10、方程212= -x 的解是( ) (A );41-=x (B );4-=x (C );4 1=x (D ).4-=x 11、已知等式523+=b a ,则下列等式中不一定... 成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3 532+=b a 12、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).8

一元一次方程经典练习题

一元一次问题 课时一简单一元一次方程 我们学过这样填括号的题,如()+ 8 = 15 。括号里的数怎样求解呢? 这个我们可以利用加减法的关系来求解.我们知道,一个加数+ 另一个加数= 和,那么求其中一个加数,就可以用和减去另一个加数.因为15 - 8 = 7 ,所以括号里填7. 括号里的未知数还可以用x 来表示,那么上面那个式子就可以变成 x + 8 = 15 x = 15 - 8 , x = 7 这就是运用一元一次方程来解决问题,显得十分简便,本讲内容主要介绍它的意义和作用. 1. 概念 (1)方程:含有未知数的等式,叫做方程; (2)方程的解:使方程左右两边相等的未知数的值,叫做方程的解; (3)解方程:求方程的解得过程叫做解方程. 2. 解方程的依据 解方程主要依据加法与减法、乘法与除法的互逆关系: 一个加数= 和- 另一个加数 被减数= 差+ 减数减数= 被减数- 差 一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商 3. 解方程的一般步骤

(1) 根据四则运算中各部分之间的相互关系,求出X (2) 把X的值代入原方程检验 例 1 在2x+1、3+5=6+2、x—1c5、3x=15 中,________________________ 是方 程,这个方程的解是_____________________ . 分析方程必须符合两个条件:一是“等式”,二是“含有未知数” ?2x?1 虽含有 未知数,但不是等式;3 ^6 2虽是等式,但没有未知数;X -仁:5虽有未知数,但不 是等式;3x∕5既是等式,又含有未知数,所以它是方程.当X =5 时,左右两边的值都是 15,所以X =5是方程3x=15的解. 说明方程是等式,等式不一定是方程? 例2解方程2χ?5=17 解把2x看成一个加数,根据“ 一个加数=和-另一个加数”得 2x =17 -5, 化简得:2x=12, 把X看成一个因数,根据“ 一个因数=积÷另一个因数”得 Xf 2, 化简得:X = 6 2x 5 =17 解: 2x =17 -5 2x =12 X =12 “2 X = 6

教学设计《一元一次方程的应用-行程问题》

一元一次方程的应用—行程问题 教学目标: 1、让学生熟练掌握行程问题中的三个基本量(路程、速度、时间)之间的关系;会用图示法分析行程问题;能准确地找出等量关系,并正确地列出一元一次方程解决行程问题。 2、经历运用方程解决实际问题的过程,体会图示法对分析行程问题的优越性,体会方程是刻画现实世界的有效数学模型。 3、通过教学,让学生初步体会代数方法的优越性;体会数形结合的思想;培养应用数学意识,自觉反思解题过程的良好习惯。 教学重点: 运用图示法寻找问题中的等量关系,并列出一元一次方程解决行程问题。 教学难点: 从行程问题中,准确地分析寻找出等量关系。 教具准备:三角板 教学过程: 一、创设情境,引入新课 情境问题:甲、乙两站相距360公里,一列慢车从甲站开出,每小时80公里,一列快车从乙站开出,每小时160公里。两车从两站同时出发,相向而行,几小时后两车相遇? 思考探讨:

1、这是一道什么类型的应用题?2、这种类型的问题中,有哪些基本量?你是否知道这些基本量的关系?能写出它们之间的关系吗? 3、这道题目你能用几种方法来解决?用我们所学的一元一次方程来解决可以吗? 4、列一元一次方程解应用题的一般步骤有哪些? 学生分小组讨论,然后主动举手回答,师生共同评析,给予肯定和鼓励。通过评析自然导入本节课所学内容:一元一次方程的应用—行程问题。(板书课题) (通过情境问题,引发一系列的问题让学生进行思考探讨,这些问题过渡自然,却又层层递进,将学生引入到思考的海洋中,培养学生思考问题和探究问题的能力。) 二、讲授新课: (一)向学生出示本节课的学习目标: 1、熟练掌握行程问题中的三个基本量(路程、速度、时间)之间的关系式; 2、熟练的了解掌握行程问题的基本类型,并能仔细审题,理解行程问题中“相向而行”、“相背而行”、“同向而行”等关键词的含义; 3、熟练运用路程、速度和时间的关系,结合图示法分析行程问题,并能准确地寻找出问题中的等量关系,从而列出一元一次方程解应用题。 4、熟练掌握列一元一次方程解应用题的一般步骤。同时注意:设未知数和答都要完整,并要注意单位。

相关主题
文本预览
相关文档 最新文档