当前位置:文档之家› 定积分的应用教案

定积分的应用教案

定积分的应用教案
定积分的应用教案

第六章定积分的应用

教学目的

1、理解元素法的基本思想;

2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体

积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:

1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知

的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。

教学难点:

1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法

回忆曲边梯形的面积:

设y=f (x)≥0 (x∈[a,b]).如果说积分,

?=b a

dx x

f

A)

(是以[a,b]为底的曲边梯形的面积,则积分上限函数

?=x a

dt t

f

x

A)(

)

(

就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.

以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以

[a,b]为积分区间的定积分:

?=b a

dx x

f

A)

(.

一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得

?=b a

dx x

f

U)

(.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用

一、平面图形的面积

1.直角坐标情形

设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为

dx x f x f S b

a ?-=)]()([下上.

类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为

?-=d c dy y y S )]()([左右??.

例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.

解 (1)画图.

(2)确定在x 轴上的投影区间: [0, 1].

(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.

(4)计算积分

31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.

解 (1)画图.

(2)确定在y 轴上的投影区间: [-2, 4].

(3)确定左右曲线: 4)( ,2

1)(2+==y y y y 右左??. (4)计算积分

?--+=422)2

14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b

y a x

所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以

?=a

ydx S 04. 椭圆的参数方程为:

x =a cos t , y =b sin t ,

于是 ?=a ydx S 04?=0

)cos (sin 4πt a td b

?-=022sin 4πtdt ab ?-=20)2cos 1(2π

dt t ab ππab ab =?=22.

2.极坐标情形

曲边扇形及曲边扇形的面积元素:

由曲线ρ=?(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为

θθ?d dS 2)]([2

1=. 曲边扇形的面积为

?=βαθθ?d S 2)]([2

1. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.

解: ?=πθθ202)(2

1d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.

解: ?+=πθθ02]cos 1([2

12d a S ?++=πθθθ02)2cos 21cos 221(d a πθθθπ2022

3]2s i n 41s i n 223[a a =++=.

二、体 积

1.旋转体的体积

旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.

旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.

设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为?V =π[f (x )]2dx , 于是体积元素为

dV = π[f (x )]2dx ,

旋转体的体积为

dx x f V b

a 2)]([π?=.

例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.

解: 直角三角形斜边的直线方程为x h

r y =. 所求圆锥体的体积为

dx x h r V h 20)(π?=h x h r 0322]3

1[π=231hr π=. 例2. 计算由椭圆12222=+b

y a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆

22x a a

b y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为

dV = π y 2dx ,

于是所求旋转椭球体的体积为

?--=a

a dx x a a

b V )(2222πa a x x a a

b --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.

解 所给图形绕x 轴旋转而成的旋转体的体积为 ?=a x dx y V ππ202?-?-=π

π2022)cos 1()cos 1(dt t a t a

?-+-=ππ20323)cos cos 3cos 31(dt t t t a

=5π 2a 3.

所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则

??-=a a y dy y x dy y x V 20212022)()(ππ ???--?-=π

ππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a

?--=ππ2023sin )sin (tdt t t a =6π 3a 3 .

2.平行截面面积为已知的立体的体积

设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为

dx x A V b a )(?=.

例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.

解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边

分别为22x R -及αtan 22x R -. 因而截面积为

αtan )(2

1)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=?-ααtan 3

2]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.

解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R

22)(x R h y h x A -=?=.

于是所求正劈锥体的体积为

?--=R R dx x R h V 22h R d h R 2202221c o s 2πθθπ

==? . 三、平面曲线的弧长

设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ? ? ? , M i -1, M i , ? ? ?, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-n

i i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线

弧AB 是可求长的.

定理 光滑曲线弧是可求长的.

1.直角坐标情形

设曲线弧由直角坐标方程

y =f (x ) (a ≤x ≤b )

给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.

取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为

dx y dy dx 2221)()('+=+,

从而得弧长元素(即弧微分)

dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为

?'+=b

a dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线233

2x y =上相应于x 从a 到b 的一段弧的长度. 解: 1

x y =', 从而弧长元素

dx x dx y ds +='+=112.

因此, 所求弧长为

b a b a x dx x s ])1(32[123+=+=?])1()1[(3223

23a b +-+=. 例2. 计算悬链线c

x c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: x y sh =', 从而弧长元素为 dx x dx c x ds ch sh 12=+=. 因此, 所求弧长为

??==-b b b dx c

x dx c x s 0ch 2ch c b c dx c x c b sh 2]sh [20==. 2.参数方程情形

设曲线弧由参数方程x =?(t )、y =ψ(t ) (α≤t ≤β )给出, 其中?(t )、ψ(t )在[α, β]上具有连续导数.

因为)

()(t t dx dy ?ψ''=, dx =?'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()

()(12222ψ???ψ'+'='''+=. 所求弧长为

?'+'=β

αψ?dt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.

解: 弧长元素为

θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2

sin 2=. 所求弧长为

?=π

θθ202sin 2d a s πθ20]2cos 2[2-=a =8a . 3.极坐标情形

设曲线弧由极坐标方程

ρ=ρ(θ) (α ≤ θ ≤ β )

给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得

x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).

于是得弧长元素为

θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.

从而所求弧长为

?'+=βαθθρθρd s )()(22.

例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.

解: 弧长元素为

θθθθd a d a a ds 22221+=+=.

于是所求弧长为

?+=πθθ2021d a s )]412ln(412[2

22ππππ++++=a .

§6. 3 功 水压力和引力

一、变力沿直线所作的功

例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为

2

r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a

提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2

r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k

2, 即功元素为dr r q k

dW 2

=. 于是所求的功为 dr r

kq

W b a 2?=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即

pV =k 或V

k p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为

x

k S xS k S p F =?=?=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx x

k , 即功元素为dx x

k dW =. 于是所求的功为

dx x k W b a ?=b a x k ][ln =a

b k ln =.

例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?

解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π?32dx . 这薄层水吸出桶外需作的功近似地为

dW =88.2π?x ?dx ,

此即功元素. 于是所求的功为

?=5

02.88xdx W π502]2[2.88x π=2252.88?=π(kj). 二、水压力

从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为

P =p ?A .

如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.

例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.

解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.

在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为

dx x R x dP 222-=γ.

所求压力为

?-=R dx x R x P 022 2γ)()(2221220

x R d x R R ---=?γ

R x R 02322])(32[--=γ332R r =. 三、引力

从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为

2

21r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.

如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.

例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.

例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.

解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知,

引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2

,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为

2

222y a a y a dy m G dF x +-?+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为

?-+-=222/322)(l

l

x y a dy am G F ρ2

2412l a a l Gm +?-=ρ.

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

(完整版)定积分在经济中的应用

定积分在经济中的应用 一、由经济函数的边际,求经济函数在区间上的增量 根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分: ()()()b a R b R a R x dx '-=? (1) ()()()b a C b C a C x dx '-=? (2) ()()()b a L b L a L x dx '-=? (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润 ()I x 的改变量(增量) 。 解 首先求边际利润 ()()()0.082550.0820L x R x C x x x '''=-=-+-=-+ 所以根据式(1)、式(2)、式(3),依次求出: 300 250 (300)(250)()R R R x dx '-=?300250(0.0825)x dx =-+?=150万元 300300250250(300)(250)()C C C x dx dx '-==? ?=250万元 300 300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+??=-100万元 二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称 2 121 ()t t f t dt t t -? 为该经济函数在时间间隔21[,]t t 内的平均变化率。 例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

定积分的概念教案知识讲解

定积分的概念教案

人教A版必修一教材 教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 学生情况分析 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 教学目标 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取 极限) 教学难点对“以直代曲”、“逼近” 思想的形成过程的理解. 教学方式教师适时引导和学生自主探究发现相结合. 辅助工具投影展台,几何画板. 教学过程 引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为 S vt =.如果汽车作变速直线运动,在时刻t的速度为()2 v t t=(单 位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S (单位:km)是多少? 创设情境,引入 这节课所要研究的 问题. 类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一 段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围 成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边 图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么 要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题 转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 学生需要用原有的 知识与经验去同化 或顺应当前要学习 的新知识,所以问 题1引导学生回忆 割圆术的作法,通 过问题2引导学生 思考割圆术中的思 想方法----“以直代 曲”,和“无限逼 近”。 通过问题3激 发学生探索的愿 望,明确解决问题 的方向。

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。 1 利用定积分求原经济函数问题

在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(105210 5=+-+=+=+=?t t dt t (件) 3 用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为10000=c 元,产品单价规定为500元。假设生产出的产品能完全销售,

北师大版数学高二定积分的简单应用教案 选修2-2

高中数学 定积分的简单应用教案 选修2-2 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 0xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

定积分教案教学提纲

《数学分析》 之九 第九章定积分(14+4学时) 教学大纲 教学要求: 1.理解Riemann定积分的定义及其几何意义 2.了解上和与下和及其有关性质 3.理解函数可积的充要条件,了解Riemann可积函数类 4.熟练掌握定积分的主要运算性质以及相关的不等式 5.了解积分第一中值定理 6.掌握变上限积分及其性质 7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法 教学内容: 问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。 第页

此表2学时填写一份,“教学过程”不足时可续页 第页

=i 1 。 则称函数)(x f 在[b a .]上可积或黎曼可积。数J 称为函数)(x f 在[b a .]上 的定积分或黎曼积分,记作: ?=b a dx x f J )( 其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dx x f )(称为被积式,b a ,分别称为积分的下限和上限。 定积分的几何意义; 连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数 在区间 上可积 .用定义求积分 . 解 取 等分区间 作为分法 n b x T i = ?, 取 .= . 由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 . 例2 已知函数2 11 )(x x f += 在区间]1,0[上可积 ,用定义求积分 . 解 分法与介点集选法如例1 , 有 . 上式最后的极限求不出来 , 但却表明该极限值就是积分

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

定积分的概念(教案)

1.5.3.定积分的概念 一、复习回顾: 1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤: 2.上述两个问题的共性是什么? 二、新知探究 1.定积分的概念 注: 说明:(1)定积分()b a f x dx ?是一个 ,即n S 无限趋近的常数S (n →+∞时)记为 ()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是: (3)曲边图形面积: 变速运动路程: 变力做功: 例1:利用定积分的定义,计算 dx x ?102 、 dx x ?1 03 的值.

2.定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1 ?b a dx x kf )(= ; 性质2 dx x g x f b a ?±)]()([= 性质3 ??=c a b a dx x f dx x f )()( + 3.定积分的几何意义 从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥, 那么定积分()b a f x dx ?表示由直线 和曲线 所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分 ()b a f x dx ?的 几何意义。 思考: (1)在[,]a b 上0)(≥x f ,()b a f x dx ?= (2)在[,]a b 上0)(≤x f ,()b a f x dx ?= (3)在[,]a b 上)(x f 变号,()b a f x dx ?=

⑤ 练习: 1、利用定积分的几何意义,判断下列定积分值的正、负号。 (1) dx x ?20sin π (2)dx x ?-212 (3)dx x ?-1 23 2、利用定积分的几何意义,说明下列各式成立 (1) 0sin 22=?-dx x π π , 0sin 20=?dx x π (2)dx x dx x ??=200sin 2sin π π 3、计算下列定积分 (1)dx b a ?1 (2)11x dx -?. (3) 5 0(24)x dx -? (4) dx x ?-1021 (5)120(2)x x dx -? 三、课堂小结: ①定积分的概念及性质②用定义法求简单的定积分③定积分的几何意义

定积分的应用本科毕业论文开题报告

一、选题的性质 二、选题的目的和意义 选题目的:定积分作为函数的一种特定总和式的极限,是数学知识的重要基础。通过典型问 题,从不同角度,对定积分的特点进行整体把握,探讨定积分在几何学、物理学、以及经济学中 的应用,加强对定积分思想的认识,提供用定积分分析解决实际问题的方法 。 选题意义:定积分是与应用联系发展起来的,是微积分中的一个重要基本概念,是从实际问 题中抽象出来的数学概念,是解决许多实际问题的工具。 在数学方面如求解复杂图形,求数列极限,证明不等式等;而在物理方面,正是由于定积分 的产生与发展,才使得物理学中的精确计算成为可能,从而使物理学得到长足的发展,如:气象、弹道的计算,人造卫星轨迹的计算,运动状态的分析等,都要用的到积分;把定积分应用到经济 管理学中,可以使一些经济现象更明确,使管理更科学化。 三、与本课题相关的国内外研究现状,预计可能有所创新的方面 研究现状:牛顿,莱布尼茨以无穷思想为据,从不同的角度运用了定积分的思想方法创立了 微积分,在这新的领域上定积分的思想和方法展现出了勃勃生机,为定积分思想的进一步完善奠 定了坚实的基础。定积分理论的建立,使数学摆脱了许多与无穷有关的悖论和困扰,对于培养人 的思维方法,提高分析、解决问题方面有极好的促进作用。定积分作为微积分的重要组成部分, 在几何、物理、经济等方面有着广泛的应用,目前,探究定积分应用的文章非常之多,研究范围 也是相当广泛的。在几何学方面,可以用来计算平面图形面积,立体、旋转体的体积,弧长等; 在物理学方面,压力、引力,变力做工,运动轨迹的计算,运动状态分析等也都用到定积分知识; 在经济学方面可以用来解决消费过剩,收入流等实际问题。也正是因为这些应用,推动着积分学 的不断发展和完善。 预计创新方面:通过典型例题,从定积分的公式、性质及定积分中值定理出发,来介绍定积 分在几何、物理、经济等领域的应用,在前人的基础上对定积分的典型应用进行研究讨论,寻找 简单的用定积分解决实际问题的方法。 四、课题研究的可行性分析 定积分是函数的一种特定总和式的极限,是数学知识的基础,对定积分的一些公式、性质、 定积分中值定理已有深刻的理解,通过常见的定积分例题,从不同角度分析、研究定积分的特点,更容易把握和理解。再看近几年的几何、物理,经济等方面的研究,尤其是几何学,定积分在这 些研究中扮演着相当重要的角色,而事实也证明定积分的思想确实给相关研究带来很大的方便。 所以研究好定积分不单是数学界的问题,更是整个学术界共同的任务。而对其分析研究的结果也 必将给以后各方面的课题研究带来意想不到的便捷之处。

定积分的应用教学设计比赛一等奖

3.1定积分的应用:平面图形的面积 教材分析: 《定积分的简单应用》是人教版选修2-2第1章第7节的内容,从题目中可以看出这节教学的要求,就是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 教学构思:应用型的课题是培养学生观察分析、发现、概括、推理和探索能力的极好素材,本节课通过创设情景、问题探究、抽象归纳、巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。 学情分析:知识层面,学生已经学习了定积分的定义,由来及微积分基本定理。在定积分与曲边梯形面积关系中,许多学生默认相等,这就与定积分本质相违背。能力层面,学生有一定的推理和探索能力,面对知识点,学生还需有归纳概括的能力。还需体会数学学科研究的基本过程与方法。情感层面,学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡,有待加强。 教学理念:以学生发展为主线。新型的教学方式,新型的呈现方式。 教学目标: 知识与技能: 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积. 2.掌握利用定积分求曲边梯形面积的几种常见题型及方法. 过程与方法:通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 情感态度与价值观:通过教学过程中的观察思考总结,养成自主学习的良好学习习惯,培养数学知识应用于生活的意识。

定积分的概念教案

定积分的概念 教学目标: 知识目标:掌握定积分的含义,理解定积分的几何意义。 能力目标: 1、理解定积分概念中归纳思维的运用; 2、掌握例题求解过程中对比思维的运用。 素质目标:提升分析与解决问题的能力 教学重点和难点: 教学重点 :定积分的概念和思想 教学难点:理解定积分的概念,领会定积分的思想 教学方法: 1、直观法:让抽象的数学与具体的生活结合。 2、归纳法:让严整的数学定义与休闲的娱乐生活结合。 3、类比法:让例题求解过程与社会事例结合。 4、总结法:数学学习中培养的能力贯穿生活、社会、科学等各方面。 教学过程: 一、引入新课 我们已经学过规则平面图形的面积:三角形 四边形 梯形 圆等,那么不规则平面图形的面积该怎么求呢? 二、讲解新课 实例1曲边梯形的面积 曲边梯形:若图形的三条边是直线段,其中有两条垂直 于第三条底边,而其第四条边是曲线,这样的图形称为曲边梯形,如左下图所示. 曲边梯形面积的确定步骤: 推 广 为 y O M P Q N B x C A A 曲边梯形面积的确定方法:把该曲边梯形沿着 y 轴方向切割成许多窄窄的长条,把每个长条近似看作一个矩形,用长乘宽求得小矩形面积,加起来就是曲边梯形面积的近似值,分割越细,误差越小,于是当所有的长条宽度趋于零时,这个阶梯形面积的极限就成为曲边梯形面积的精确值了.如下图所示: O x y y = f (x )

(1)分割 任取分点b x x x x x a n n =<<<<<=-1210 ,把底边[a ,b ]分成n 个小区间 []21,x x ,(),,2,1n i =.小区间长度记为 ); ,,2,1(1n i x x x i i i =-=?- (2) 取近似 在每个小区间[i i x x ,1-]上任取一点i ξ竖起高线)(i f ξ,则得小长条面积 i A ?的近似值为 i i i x f A ?≈?)(ξ (n i ,,2,1 =); (3) 求和 把n 个小矩形面积相加(即阶梯形面积)就得到曲边梯形面积A 的近似值 i n i i n n x f x f x f x f ?=?++?+?∑=)()()()(1 2211ξξξξ ; (4) 取极限 令小区间长度的最大值{}i n i x ?=≤≤1max λ 趋于零,则和式 i n i i x f ?∑=)(1ξ的 极限就是曲边梯形面积A 的精确值,即 i n i i x f A ?=∑=→1 )(lim ξλ 实例2 路程问题 解决变速运动的路程的基本思路: 把整段时间分割成若干小时间段,每小段上速度看作不变,求出各小段的路程的近似值,再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值. (1)分割 (2)近似 (3)求和 (4)取极限 路程的精确值 2、归纳总结曲边梯形的面积和变速运动的路程得出定积分的概念。 3、定积分的概念 定义 3.1 设函数)(x f y =在[b a ,]上有定义,任取分点 <<<=321x x x a n n x x <<-1b =,分],[b a 为n 个小区间],[1i i x x -),,2,1(n i =. 记 {}i n i i i i x n i x x x ?==-=?≤≤-11max ),,,2,1(λ , 212101T t t t t t T n n =<<<<<=- 1--=?i i i t t t i i i t v s ?≈?)(τi i n i t v s ?≈∑ =)(1τ0},,,m ax {21→???=n t t t λi n i i t v s ?=∑=→)(lim 1 0τλ

相关主题
文本预览