当前位置:文档之家› 数据相关性分析

数据相关性分析

数据相关性分析

看两者是否算相关要看两方面:显著水平以及相关系数

(1)显著水平,就是P值,这是首要的,因为如果不显著,相关系数再高也没用,可能只是因为偶然因素引起的,那么多少才算显著,一般p值小于0.05就是显著了;如果小于0.01就更显著;例如p值=0.001,就是很高的显著水平了,只要显著,就可以下结论说:拒绝原假设无关,两组数据显著相关也说两者间确实有明显关系。通常需要p值小于0.1,最好小于0.05设甚至0.01,才可得出结论:两组数据有明显关系,如果p=0.5,远大于0.1,只能说明相关程度不明显甚至不相关。起码不是线性相关。

(2)相关系数,也就是Pearson Correlation(皮尔逊相关系数),通常也称为R值,在确认上面指标显著情况下,再来看这个指标,一般相关系数越高表明两者间关系越密切。

R>0 代表连个变量正相关,即一个变大另一个随之变大

R<0 代表两个变量负相关,即一个变大另一方随之减小

|R|大于等于0.8时认两变量间高度相关;

|R|大于等于0.5小于0.8时认为两变量中度相关;

|R|大于等于0.3小于0.5时认为两变量低度相关,

小于0.3说明相关程度很弱

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析) 面板数据分析方法: 面板单位根检验—若为同阶—面板协整—回归分析 —若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。不是时间序列那种接近0.8为优秀。另外,建议回归前先做stationary。很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。该如何选择呢? 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al.(2002)的改进,提出了检验面板单位根的LLC法。Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。Im et al.(1997)还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T、IPS-W、ADF-FCS、PP-FCS、H-Z分别指Levin,Lin&Chu t*

关于两组数据的相关性分析

关于两组数据的相关性分析我通过查阅资料和同学们分组讨论等总结性阐述了关于两组变量间相关关系的统计分析。通过学习和阐述我对两组数据的相关性分析的问题有了比较深的了解. 研究典型相关分析的原理、典型成分的计算方法及计算步骤.把两组变量X与y转化为具有最大相关性的若干对典型成分,直到两组变量的相关性被分解.通过典型相关系数及其显著性检验.选择典型成分分析两组变量的相关性.实例表明只有第一个典型相关系数能通过显著性检验,而其它两个典型相关系数显著为零,放应选取第一对典型成分F,和Gl傲分析.典型相关分析是研究两组随机变量之间相关性的一种统计分析方法,它将两组随机变量间的相关信息更加充分地挖掘出来,分别在两组随机变量中提取相关性最大的两个成分,通过测定这两个成分之间的相关关系,可以推测两组随机变量的相关关系.典型相关分析的方法由霍特林于1936年首次提出.在许多实际问题中,需要研究两组变量之间的相关性.例如:研究成年男性体型与血压之间的关系;研究国民经济的投入要素与产出要素这两组变量之间的联系情况;研究临床症状与所患疾病;研究原材料质量与相应产品质量;研究居民营养与健康状况的关系;研究人体形态与人体功能的关系;研究身体特征与健身训练结果的关系.首先,我们应该进行变量指标的选择,如成年男性体型与血压之间的关系中,体型可用身高、体重、体型

指数等指标来表示,血压可用收缩压、舒张压、脉率等指标来表示;又如身体特征与健身训练结果的关系中,身体特征可用体重、腰围、脉搏表示,而训练结果可用单杠、弯曲、跳高等指标来体现.其次是样本数据的收集.最后,利用典型相关分析的原理进行研究. 相信这个对我以后的统计学的研究会有很大的帮助.

数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。 1、数据挖掘 数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。 数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各

大数据时代下的数据挖掘试题和答案及解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准 (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法 (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内 (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法 (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

《关于两组数据的相关性分析》

《关于两组数据的相关性分析》我通过查阅资料和同学们分组讨论等总结性阐述了关于两组变量间相关关系的统计分析。通过学习和阐述我对两组数据的相关性分析的问题有了比较深的了解. 研究典型相关分析的原理、典型成分的计算方法及计算步骤.把两组变量X与y转化为具有最大相关性的若干对典型成分,直到两组变量的相关性被分解.通过典型相关系数及其显著性检验.选择典型成分分析两组变量的相关性.实例表明只有第一个典型相关系数能通过显著性检验,而其它两个典型相关系数显著为零,放应选取第一对典型成分F,和Gl傲分析. 典型相关分析是研究两组随机变量之间相关性的一种统计分析方法,它将两组随机变量间的相关信息更加充分地挖掘出来,分别在两组随机变量中提取相关性最大的两个成分,通过测定这两个成分之间的相关关系,可以推测两组随机变量的相关关系.典型相关分析的方法由霍特林于1936年首次提出.在许多实际问题中,需要研究两组变量之间的相关性.例如:研究成年男性体型与血压之间的关系;研究国民经济的投入要素与产出要素这两组变量之间的联系情况;研究临床症状与所患疾病;研究原材料质量与相应产品质量;研究居民营养与健康状况的关系;研究人体形态与人体功能的关系;研究身体特征与健身训练结果的关系.首先,我们应该进行变量指标的选择,如成年男性体型与血压之间的关系中,体型可用身高、体重、体型指数等指标来表示,血压可用收缩压、舒张压、脉率等指标来表示;又

如身体特征与健身训练结果的关系中,身体特征可用体重、腰围、脉搏表示,而训练结果可用单杠、弯曲、跳高等指标来体现.其次是样本数据的收集.最后,利用典型相关分析的原理进行研究. 相信这个对我以后的统计学的研究会有很大的帮助. 第二篇:两化融合的数据分析资料相关关系概念:相关关系反映出变量之间虽然相互影响,具有依存关系,但彼此之间是不能一对应的。 相关分析的作用: (1)确定选择相关关系的表现形式及相关分析方法。(2)把握相关关系的方向与密切程度。 (3)相关分析不但可以描述变量之间的关系状况,而且用来进行预测。(4)相关分析还可以用来评价测量量具的信度、效度以及项目的区分度。spss提供的分析方法:简单相关分析的基本原理简单相关分析是研究两个变量之间关联程度的统计方法。它主要是通过计算简单相关系数来反映变量之间关系的强弱。(注:两个元素间呈现线性相关)两种表现形式: 1.相关图 在统计中制作相关图,可以直观地判断事物现象之间大致上呈现何种关系的形式。散点图 pearson相关系数表 分析。两种指数的pearson系数值高达0.995,非常接近1;同时相伴概率p值明显小于显著性水平0.01,这也进一步说明两者高度正

数据清洗、数据分析、数据挖掘

数据清洗 1.基本概念 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为"脏数据"。我们要按照一定的规则把"脏数据""洗掉",这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 ?残缺数据 这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。 折叠错误数据

这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL 的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。 折叠重复数据 对于这一类数据--特别是维表中会出现这种情况--将重复数据记录的所有字段导出来,让客户确认并整理。 数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题, 解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结 论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实 用中,数据分析可帮助人们作出判断,以便采取适当行动。 类型 在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

浅谈大数据时代的数据分析与挖掘

龙源期刊网 https://www.doczj.com/doc/2017151293.html, 浅谈大数据时代的数据分析与挖掘 作者:单海波 来源:《科技创新与应用》2016年第24期 摘要:随着改革开放的进一步深化,以及经济全球化的快速发展,我国各行各业都有了 质的飞跃,发展方向更加全面。特别是近年来科学技术的发展和普及,更是促进了各领域的不断发展,各学科均出现了科技交融。在这种社会背景下,数据形式和规模不断向着更加快速、精准的方向发展,促使经济社会发生了翻天覆地的变化,同时也意味着大数据时代即将来临。就目前而言,数据已经改变传统的结构模式,在时代的发展推动下积极向着结构化、半结构化,以及非结构化的数据模式方向转换,改变了以往的只是单一地作为简单的工具的现象,逐渐发展成为具有基础性质的资源。文章主要针对大数据时代下的数据分析与挖掘进行了分析和讨论,并论述了建设数据分析与挖掘体系的原则,希望可以为从事数据挖掘技术的分析人员提供一定的帮助和理论启示,仅供参考。 关键词:大数据;数据分析;数据挖掘;体系建设 引言 进入21世纪以来,随着高新科技的迅猛发展和经济全球化发展的趋势,我国国民经济迅速增长,各行业、领域的发展也颇为迅猛,人们生活水平与日俱增,在物质生活得到极大满足的前提下,更加追求精神层面以及视觉上的享受,这就涉及到数据信息方面的内容。在经济全球化、科技一体化、文化多元化的时代,数据信息的作用和地位是不可小觑的,处理和归类数据信息是达到信息传递的基础条件,是发展各学科科技交融的前提。 然而,世界上的一切事物都包含着两个方面,这两个方面既相互对立,又相互统一。矛盾即对立统一。矛盾具有斗争性和同一性两种基本属性,我们必须用一分为二的观点、全面的观点看问题。同时要积极创造条件,促进矛盾双方的相互转变。数据信息在带给人们生产生活极大便利的同时,还会被诸多社会数据信息所困扰。为了使广大人民群众的日常生活更加便捷,需要其客观、正确地使用、处理数据信息,完善和健全数据分析技术和数据挖掘手段,通过各种切实可行的数据分析方法科学合理地分析大数据时代下的数据,做好数据挖掘技术工作。 1 实施数据分析的方法 在经济社会快速发展的背景下,我国在科学信息技术领域取得长足进步。科技信息的发展在极大程度上促进了各行各业的繁荣发展和长久进步,使其发展更加全面化、科学化、专业化,切实提升了我国经济的迅猛发展,从而形成了一个最佳的良性循环,我国也由此进入了大数据时代。对于大数据时代而言,数据分析环节是必不可少的组成部分,只有科学准确地对信息量极大的数据进行处理、筛选,才能使其更好地服务于社会,服务于广大人民群众。正确处理数据进行分析过程是大数据时代下数据分析的至关重要的环节。众所周知,大数据具有明显

面板数据分析步骤

转载:面板数据分析的思路和Eviews操作: 面板数据一般有三种:混合估计模型;随机效应模型和固定效应模型。首先,第一步是作固定效应和随机效应模型的选择,一般是用Hausman检验。 如果你选用的是所有的企业,反映的是总体的效应,则选择固定效应模型,如果你选用的是抽样估计,则要作Hausman检验。这个可以在Eviews 5.1里头做。 H0:应该建立随机效应模型。 H1:应该建立固定效应模型。 先使用随机效应回归,然后做Hausman检验,如果是小概率事件,拒绝原假设则应建立固定效应模型,反之,则应该采用随机效应模型进行估计。 第二步,固定效应模型分为三种:个体固定效应模型、时刻固定效应模型和个体时刻固定效应模型(这三个模型的含义我就不讲了,大家可以参考我列的参考书)。如果我们是对个体固定,则应选择个体固定效用模型。但是,我们还需作个体固定效应模型和混合估计模型的选择。所以,就要作F值检验。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。 H0:对于不同横截面模型截距项相同(建立混合估计模型)。SSEr H1:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。SSEu

F统计量定义为:F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)] 其中,SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(个体固定效应模型的)的残差平方和(Sum squared resid)。非约束模型比约束模型多了T–1个被估参数。需要指出的是:当模型中含有k 个解释变量时,F统计量的分母自由度是NT-T- k。通过对F统计量我们将可选择准确、最佳的估计模型。 在作回归是也是四步:第一步,先作混合效应模型:在cross-section 一栏选择None ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEr 第二步:作个体固定效用模型:在cross-section 一栏选择Fixed ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEu 第三步:根据公式F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)]。计算出结果。其中,T为年数,不管我们的数据是unbalance还是balance 看observations就行了,也即Total pool (balanced) observations:的值,但是如果是balance我们也可以计算,也即是每一年的企业数的总和。比如说我们研究10年,每一年又500加企业,则NT=10×500=5000。K为解释变量,不含被解释变量。 第四步,根据计算出来的结果查F值分布表。看是否通过检验。检验准则:当F> Fα(T-1, NT-T-k) , α=0.01,0.05或0.1时,拒绝原假设,则结论是应该建立个体固定效应模型,反之,接受原假设,则不能建立个体固定效应模型。

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

eviews面板数据实例分析

1、已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)与人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。 年人均消费(consume)与人均收入(income)数据以及消费者价格指数(p)分别见表9、1,9、2与9、3。 表9、1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607、43 3693、55 3777、41 3901、81 4232、98 4517、65 4736、52 CONSUMEBJ 5729、52 6531、81 6970、83 7498、48 8493、49 8922、72 10284、6 CONSUMEFJ 4248、47 4935、95 5181、45 5266、69 5638、74 6015、11 6631、68 CONSUMEHB 3424、35 4003、71 3834、43 4026、3 4348、47 4479、75 5069、28 CONSUMEHLJ 3110、92 3213、42 3303、15 3481、74 3824、44 4192、36 4462、08 CONSUMEJL 3037、32 3408、03 3449、74 3661、68 4020、87 4337、22 4973、88 CONSUMEJS 4057、5 4533、57 4889、43 5010、91 5323、18 5532、74 6042、6 CONSUMEJX 2942、11 3199、61 3266、81 3482、33 3623、56 3894、51 4549、32 CONSUMELN 3493、02 3719、91 3890、74 3989、93 4356、06 4654、42 5342、64 CONSUMENMG 2767、84 3032、3 3105、74 3468、99 3927、75 4195、62 4859、88 CONSUMESD 3770、99 4040、63 4143、96 4515、05 5022 5252、41 5596、32 CONSUMESH 6763、12 6819、94 6866、41 8247、69 8868、19 9336、1 10464 CONSUMESX 3035、59 3228、71 3267、7 3492、98 3941、87 4123、01 4710、96 CONSUMETJ 4679、61 5204、15 5471、01 5851、53 6121、04 6987、22 7191、96 CONSUMEZJ 5764、27 6170、14 6217、93 6521、54 7020、22 7952、39 8713、08 表9、2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512、77 4599、27 4770、47 5064、6 5293、55 5668、8 6032、4 INCOMEBJ 7332、01 7813、16 8471、98 9182、76 10349、69 11577、78 12463、92 INCOMEFJ 5172、93 6143、64 6485、63 6859、81 7432、26 8313、08 9189、36 INCOMEHB 4442、81 4958、67 5084、64 5365、03 5661、16 5984、82 6679、68 INCOMEHLJ 3768、31 4090、72 4268、5 4595、14 4912、88 5425、87 6100、56 INCOMEJL 3805、53 4190、58 4206、64 4480、01 4810 5340、46 6260、16 INCOMEJS 5185、79 5765、2 6017、85 6538、2 6800、23 7375、1 8177、64 INCOMEJX 3780、2 4071、32 4251、42 4720、58 5103、58 5506、02 6335、64 INCOMELN 4207、23 4518、1 4617、24 4898、61 5357、79 5797、01 6524、52 INCOMENMG 3431、81 3944、67 4353、02 4770、53 5129、05 5535、89 6051 INCOMESD 4890、28 5190、79 5380、08 5808、96 6489、97 7101、08 7614、36 INCOMESH 8178、48 8438、89 8773、1 10931、64 11718、01 12883、46 13249、8 INCOMESX 3702、69 3989、92 4098、73 4342、61 4724、11 5391、05 6234、36 INCOMETJ 5967、71 6608、39 7110、54 7649、83 8140、5 8958、7 9337、56 INCOMEZJ 6955、79 7358、72 7836、76 8427、95 9279、16 10464、67 11715、6 表9、3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109、9 101、3 100 97、8 100、7 100、5 99

数据分析与挖掘在金融方面的应用

数据挖掘在操作风险的量化和管理中的应用 根据《新巴塞尔资本协议》()给出的定义,“操作风险是指由于不正确的内部操作流程、人员、系统或外部事件所导致的直接或间接损失的风险。”这一定义侧重于从操作风险的成因包括法律方面的风险,但将策略风险和声誉风险排除在外。随着世界经济和银行业的发展,多种可供分析的操作风险管理方法正在逐渐的形成,商业银行多年来一直试图对它进行一定程度的控制,定性并尝试测量这一风险,作为非金融机构的财务公司也不例外。在量化模型技术的推动下,操作风险量化测评和管理的技术获得了相当大的发展。操作风险管理能通过减少风险、改善服务质量和降低经营成本,从而形成一种竞争优势并在股东价值中得到相应体现。本文拟从数据分析与挖掘角度入手,对财务公司操作风险的量化测评和管理进行初步探讨和简要分析。 一、解决问题的整体思路 财务公司要实现科学且合理的对操作风险进行量化测评与管理,一般要进行以下几个步骤的工作:数据挖掘→数据分析→模型构建→模型检验。其具体思路如下图所示: 图:操作风险量化测评和管理的整体思路

分类梳理,明确其业务流程,找出关键节点,并在关键节点处科学设置风险监测指标,通过对风险监测指标的观测来纵向监控各业务模块的操作风险。需要注意的是,依据对操作风险模型构建的要求,财务公司在设置风险检测指标时,将这些指标划分为操作风险事件发生频率指标(以下简称为“频率指标”)和操作风险事件损失指标(以下简称为“损失指标”)。在完成风险指标设置的工作后,财务公司对上述指标进行横向分类,即按照人员、系统、流程和外部事件所引发的四类风险,将上述风险监测指标分别归类于七种表现形式:内部欺诈,外部欺诈,聘用员工做法和工作场所安全性,客户、产品及业务做法,实物资产损坏,业务中断和系统失灵,交割及流程管理。财务公司通

面板数据的分析步骤

面板数据的分析步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

面板数据分析方法步骤

1.面板数据分析方法步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、

相关主题
文本预览
相关文档 最新文档