当前位置:文档之家› 中考数学专题复习1 配方法与换元法

中考数学专题复习1 配方法与换元法

中考数学专题复习1 配方法与换元法
中考数学专题复习1 配方法与换元法

考数学二轮专题复习之一:配方法与换元法

把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.

所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】:

例1: 填空题:

1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。 例 2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=

【闯关夺冠】

1.已知13x x +=.则221x x

+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2 –2ab+b 2 –c 2的值 ( )

A 大于零

B 等于零

C 小于零

D 不能确定

3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-

b 1的值。

4. 解方程:211(

)65()11

x x +=--

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

高考中的常用数学方法配方法待定系数法换元法

高考中的常用数学方法 配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为 222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段 是配方法.故)(2)(2 222xz yz xy z y x z y x ++-++=++=62 -11=25 ∴ 52 22=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°, 则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2 22 1=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即 16||||2||||||||||212221221=?-+=-PF PF PF PF PF PF ,

巧用换元法求解极限

万方数据

巧用换元法求解极限 作者:林群 作者单位:韩山师范学院数学与信息技术系 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009,""(6) 被引用次数:0次 参考文献(3条) 1.华中理工大学教学系高等数学 2.同济大学教学系高等数学 2007 3.吉艳霞用等价无穷小量代换求极限的探讨[期刊论文]-运城教育学院学报 2007(02) 相似文献(10条) 1.期刊论文林清华探讨洛必达法则求解极限-湖北广播电视大学学报2008,28(12) 极限作为重要的思想方法和研究工具贯穿于高等数学课程的始终.本文通过对洛必达法则求极限的深入探讨,针对不同题型归纳总结出具体的化简转化的方法;利用数列极限和函数极限的关系间接地应用洛必达法则求数列未定式,充分体现了洛必达法则应用的广泛性,给求极限提供了强有力的工具. 2.期刊论文王悦关于利用洛必达法则求极限的几点探讨-科技信息2009,""(2) <高等数学>是大学中的基础课程,极限是学生一开始就要接触的最基本的知识.其中有一类未定式的极限不能用"商的极限等于极限的商"这一法则,而要用洛必达法则.洛必达法则内容很简单,使用起来也方便,但在具体使用过程中,一旦疏忽,解题就可能出错.对于初学者来讲,若盲目使用此法则,会导致错误.本文就利用该法则解题中的几点注意作以分析与探讨,并举例说明. 3.期刊论文杨黎霞使用洛必达法则求极限的几点注意-科教文汇2008,""(25) 如果当x→a或x→∞时,两个函数∫(x)与F(x)都趋于零或都趋于无穷大,那么极限lim x→a x→∞∫(x)/F(x)可能存在,也可能不存在,洛必达法则是计算此类未定式极限行之有效的方法,然而,对于本科一年级的初学者来讲,若盲目使用此法则,会导致错误.本文就使用该法则解题过程中的几点注意作了分析与探讨. 4.期刊论文吴维峰.Wu Weifeng对等价无穷小代换与洛必达法则求极限的探讨-潍坊教育学院学报2008,21(2) 本文对用等价无穷小代换与洛必达法则求函数的极限进行了探讨. 5.期刊论文于祥洛必达法则应用误区的分析-北京电力高等专科学校学报2010,28(2) 洛必达法则是在柯西中值定理的基础之上推出的一种求不定式极限的重要定理,它的应用避免了因机械使用极限四则运算法则"商的极限等于极限的商"而产生的错误.但不可忽视的是由于对洛必达法则的使用不当,在计算不定式极限时同样得不到正确结果,究其因为主要是对洛必达法则的使用条件把握不够准确.本文结合具体例子对洛必达法则应用中易产生的误区进行了探讨和分析. 6.期刊论文夏滨利用洛必达法则求极限的方法与技巧探讨-现代企业教育2008,""(4) 本文主要通过一些典型例题介绍利用洛必达法则求极限的方法与技巧,从而更好地解决未定式问题. 7.期刊论文汤茂林.TANG Mao-lin用洛必达法则求不定式极限的技巧-职大学报2007,""(2) 本文介绍用洛必达法则求不定式极限的技巧. 8.期刊论文张波.李秀菊.赵广华关于"洛必达法则"求未定式极限的几点思考-网络财富2009,""(11) 本文通过洛必达法则的内客,给出了应用此法财的几类需要注意的情况. 9.期刊论文冯志敏.薛瑞使用洛必达法则的实质及其注意事项-中国科技信息2009,""(15) 本文主要总结了洛必达法则在求未定式极限中的应用,需要注意的问题,并深入分析了在使用洛必过法则的时候实质是对无穷小或无穷大进行降阶,从而经过有限次的使用法则将未定式转化成一般的极限问题,再利用极限的四则运算法则求出极限.另外指出在使用的时需要注意条件的满足,与其它求极限的方法如无穷小的替换的结合. 10.期刊论文刘蒲凰洛必达法则应用两则-高等数学研究2004,7(2) 指出洛必达法则在证明二重极限不存在时的一个应用,并指出了洛必达法则的一个推广 本文链接:https://www.doczj.com/doc/226007453.html,/Periodical_kjxx200906374.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:bac87a45-fe3a-4be7-ae02-9dcd008a87c0 下载时间:2010年8月9日

合并法换元法解元次方程组

合并法、换元法解二元一次方程组 (一)知识教学点 1.掌握用合并法、换元法解二元一次方程组的步骤. 2.熟练运用合并法、换元法解二元一次方程组. (二)能力训练点 1.培养学生的观察分析能力; 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,指导法. 2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-)重点 使学生会用合并法、换元法解二元一次方程组. (二)难点 灵活运用合并法、换元法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”.

四、课时安排 一课时. 五、教具学具准备 电脑 投影仪. 六、教学过程 一导 运用导学案 自主学习 (一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组. (二)自主探究请同学们根据提示用合并法解二元一次方程组 (略) 设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。 (三)总结 二研 合作学习 研究探讨 (一)例题解析 (1) ???-=+=+② 10y 65x ① 1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ① 3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧 (二)练习题 (1)???=+=+② 79y 137x ① 61713y x (2)???=+=+② 74y 1911x ① 1061119y x (3)?????-=--+=-++.1106,3106y x y x y x y x (4)??? ????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化 三验 课堂小测验(略) 设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

换元法及其应用

换元法及其应用 高一(2)班(C3)张宇绪论:目的在于总结数学解题方法,灵活运用换元法解题。 (一)选题引入 【例一】 其中(>1),则的值域是_______。 【分析】 一般得求出的值域比较容易,但当的自变量也是一个函数的时候求 其值域相对比较困难,这时候换元法就大派用场了。 【解】 求的值域,首先要求出的表达式。 函数一般我们习惯还是用来表示,所以要把换成。 【例二】 解不等式:。 【分析】 这是包含对数函数的不等式,一般地对数函数或指数函数写起来都比较麻烦,当在一个等式或不等式中对数或指数出现次数很多的时候,一般可以考虑用换元法,把对数或指数换掉,这样可以简化计算的中间过程,减少因为写错写漏而引起的错误。 【解】 原不等式可以化为: 即,以2为底的对数函数是增函数。 ,以2为底的指数函数是增函数。

变量代换的一个共同的特点是:尽可能让外表结构简单明白,尽可能将新鲜的问题转化到熟悉的老问题中去。换元法关键的一步是变量代换,如何选择,如何代换直接影响计算的复杂度,甚至影响到能否解决问题。 (二) 选题概述 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 (三) 选题分类 1、局部换元 又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 +2 -2≥0,先变形为设2 =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 2、三角换元 应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =√1-X^2值域时,若x ∈[-1,1],设x =sin α ,sinα∈[-1,1 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x +y =r (r>0)时,则可作三角代换x =rco sθ、y =rsinθ化为三角问题。 3、均值换元 如遇到x +y =2S 形式时,设x = S +t ,y = S -t 等等。 (四) 换元法典型题归纳 1、整体换元 求函数x x x x y cos sin cos sin ++=的最大值. 解:设??t x x ?y x x t .2 1cos sin ),22(cos sin 2-=?≤≤-+=则 ?t t t y .1)1(2 12122-+=+-=故 当.221,2max +==??y ?t 时 2、三角换元 求函数25x x y -+=的值域. 解:令????x ],2 ,2[,sin 5ππθθ-∈=

2011年中考数学专题复习之一 配方法与换元法

之一:配方法与换元法 一、配方法与换元法的特点: 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法与换元法是初中数学中的重要方法,近几年的中考题中常常涉及。有时题中指定用配方法或换元法求解,而更多的则是隐含在题目当中,在分析题意的基础上,由考生自己确定选用配方法或换元法,把代数式配成完全平方式的形式,利用完全平方式的特性去求解,以达到快速解题的目的,这是种快捷也是很有效的方法,在初中代数中,占有很重要的地位和份量。 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 二、配方法与换元法的方法: 配方法与换元法主要依据完全平方公式,由公式a 2±2ab+b 2=(a±b)2可知,如果一个多项式能够表达成“两个数的平方和,加上或减去这两个数的积的2倍,则这个多项式就可以写成这两个数的和或差的平方。”由完全平方式的性质可知,任何一个实数的平方都 是非负数,即(a-b)2≥0,当a=b 时,(a-b)2 =0。利用这条性质,并可以解决很多与之有联系的数学问题。 配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.而配方法一般有两种形式,一是根据第一项和 第二项的系数特点,确定第三项系数或常数项。如二次三项式4 x 2 +6x+k 是完全平方式,试确定k 值。这一类的问题只有一解。而更多的是由第一项和第三项的系数特点,确定第二项的系数。如二次三项式4x 2+kxy+25 y 2是完全平方式,试确定k 值。这一类问题一定要考虑正、负值两种情况,结果应为两解才为正确,这一点为不少考生所忽视,一定要考虑周到方可取得好成绩。 三、例题精讲: 热身: 填空题: 1.将二次三项式x 2 +2x -2进行配方,其结果为 。 2.方程x 2+y 2+4x -2y+5=0的解是 。 3.已知M=x 2 -8x+22,N=-x 2 +6x -3,则M 、N 的大小关系为 。 4.用配方法把二次函数y=2x 2+3x+1写成y=a(x+m)2+k 的形式 。 5.设方程x 2+2x -1=0的两实根为x 1,x 2,则(x 1-x 2)2= 。 6.已知方程x 2-kx+k=0的两根平方和为3,则k 的值为 。 7.若x 、y 为实数,且1 1),32(332 +-+-=-+x y x y x 则 的值等于 。 【例1】 分解因式:(1)a 2b 2-a 2+4ab-b 2+1 ;(2)(x 2+2x +4)(x 2+2x+6)-8 分析:多于三项式的多项式的分解因式,常需要进行适当的分组,分组的原则是:首先看有没有能够构成完全平方的项,然后看看有没有能够构成平方差的项,最后看有没有公因式. 解答:(1)a 2b 2-a 2+4ab-b 2+1 = (a 2b 2+2ab+1)-(a 2-2ab+b 2)=(ab+1)2-(a-b)2 =(ab+a-b+1)(ab-a+b+1)。

换元法解方程

换元法解方程 西安市第八十五中学江树基 换元法是用新元代替方程中含有未知数的某个部分,达到化简的目的.换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径.常用方法有均值代换、多元代换、常数代换等. 解分式方程、无理方程、高次方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、高次方程逐步降次,实现这一基本思想的方法有多种,其中换元法是常用的一种重要方法,本文注重研究用换元法解方程的技能、技巧. 一、分式方程 分析:这个方程左边两个分式互为倒数关系,抓住这一特点,可设 ∴(y-1)2=0,解得y=1. 经检验,x 1,x 2 都是原方程的根. 分析:观察方程的分母,发现各分母均是关于x的二次三项式,仅常数项不同,抓住这一特点,可设y=x2+2x. 解:设y=x2+2x,则原方程可化为 即y2-y-12=0,解得y1=4,y2=-3.

x2+2x=-3,无实数解. 例3 解方程 分析:观察方程的分母,发现三个分母都是关于x的二次三项式,仅一次项不同,抓住这一特点,可设y=x2+2x+10. 解:设y=x2+2x+10,则原方程可化为 解得y =9x,y2=-5x. 1 由x2+2x+10=9x,解得x =5,x2=2. 1 由x2+2x+10=-5x,解得x =-5,x4=-2. 3 经检验知,它们都是原方程的解. 注:以上三个例子可看出,换元时必须对原方程进行仔细观察、分析,抓住方程的特点,恰当换元,化繁为简,达到解方程的目的. 二、无理方程 两边立方,并整理得 y3-2y2+3y=0,即y(y2-2y+3)=0, ∴y=0或y2-2y+3=0,无解. 经检验知x=-1是原方程的解. 可设两个未知数,利用韦达定理解. 原方程为m+n=1,又∵(m+n)3=m3+n3+3mn·(m+n)=4+3mn=1,∴mn=-1.

综合解一元二次方程—换元法

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母 来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元 的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 2 2 2 . (3)(x+x)+(x+x)=6 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2= ,直接开方即可;(3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x= = = , ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4 ,x2=﹣5 , 2 +x,将原方程转化为2 , (3)设t=x t+t=6 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. 2 2 ∴x+x=2或x+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2.

换元法在椭圆问题中运用

换元法在椭圆问题中使用 我们在解决椭圆问题时往往因为运算量大,而感觉问题变得很难。其实,在椭圆方程中,令a=b=r,则椭圆方程变为圆方程;在椭圆面积公式S=πab中,令a=b=r,则椭圆面积公式变为圆的面积公式.以上说明圆能够看作是特殊的椭圆,它们有很多相似的性质,从而椭圆的有些 问题就能够用圆的知识来处理.下面分类举例,予以说明.求椭圆的中 点弦方程例1:已知椭圆+=1,定点P(m,n)(mn≠0)在椭圆内,求以P(m,n)为中点的弦所在的直线方程.解:令x′=,y′=,则已知椭圆和定点P(m,n)变为相对应的圆x′2+y′2=1和定点P′(,),从而所求问题变为:求圆x′2+y′2=1内以P′(,)为中点的弦所在的直线方程.∵直线OP′的斜率kOP′==,∴以P′为中点的弦所在直 线的斜率为-,弦所在直线的方程为y′-=-(x′-),化简得 b2mx+a2ny-b2m2-a2n2=0.评析:本题也可用韦达定理或“点差法”解决,但运算较繁琐,而以上解法通过换元法将椭圆转化为圆,再使用 圆的性质轻松求解,可谓方法独特.求椭圆上的动点到定直线(或定点)的距离的最值例2:在椭圆+=1上求一点,使它到直线l:3x-2y-16=0 的距离最短,并求此距离.解:令x′=,y′=,则已知椭圆和直线l变为相对应的圆x′2+y′2=1和直线l′:6x′-2y′-16=0.从而所求问 题变为:求圆x′2+y′2=1上一点到直线l′:6x′-2y′-16=0的距 离最短问题.由平面几何知识可知,过圆x′2+y′2=1的圆心O′(0,0)作直线l′的垂线段,交圆于点P′(x′,y′),点P′到垂足的距离最短.所以由直线l′的垂线O′P′:y′=-x′和圆x′2+y′2=1 相交,可求得点P′为(,-).则相对应椭圆上所求的点P为(,-),所求最短距离为=.评析:此类问题还可用函数法、判别式法、导数法 和参数法求解,而通过换元法将椭圆和直线(或定点)转化为相对应 的圆和直线(或定点),使用圆的性质和平面几何知识使问题易于理解,又可避免较为繁琐的计算过程.求椭圆方程例3:已知椭圆的中心 在原点,焦点在x轴上,离心率为,过点M(0,2)作直线l与椭圆交于A、B两点,设N为AB的中点,且KON=,=,求椭圆的方程.解:

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结 第一部分:方法介绍 初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍. 、提公因式法.:ma+mb=m(a+b) 、运用公式法. (1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b); , 2 2, 2 2 , 2,2 (2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b); (3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2); 2 2、3 3 3 3 2 2、 (4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ). F面再补充两个常用的公式: (5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2; 3,3 3 2,2 2 (6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca); 例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是() (二)分组后能直接运用公式ab bc ca, A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 2 2a 2b 2c 2ab 2bc 2ca (a b)2 2 2 (b c) (c a) 三、,分组分解法 例 2、分解因式:2ax 10ay 5by 解法一:第、二项为一组; 第三、四项为一组。 解:原式=(2ax 10ay) (5by bx) = 2a(x 5y) b(x 5y) =(x 5y)(2a b) bx 解法二:第一、四项为一组;第 二、三项为一组。 原式=(2ax bx) ( 10ay 5by) =x(2a b) 5y(2a b) =(2a b)(x 5y) 练习:分解因式1、a2 ab ac bc 2、xy x y 1

因式分解(双十字相乘法)换元法,添拆项法,

板块二:选主元 【例1】 分解因式:1a b c ab ac bc abc +++++++ 【例2】 分解因式:(6114)(31)2a a b b b +++-- 【例3】 分解因式:2222a b ab bc ac --++ 【例4】 分解因式:2222223a b ab a c ac abc b c bc -+--++ 【例5】 分解因式:22(1)(1)(221)y y x x y y +++++ 【例6】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++ 【例7】 分解因式:322222422x x z x y xyz xy y z --++- 板块三:双十字相乘 双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式 22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。 由于这种方法两次使用了十字相乘法,故称之为双十字相乘法. 【例8】 分解因式:222332x xy y x y +-+++ 【例9】 分解因式:22344883x xy y x y +-+--

【例10】 分解因式:2265622320x xy y x y --++- 【例11】 分解因式:22276212x xy y x y -++-- 【例12】 分解因式:22121021152x xy y x y -++-+ 【例13】 分解因式:22243x y x y ---- 【例14】 分解因式:22534x y x y -+++ 【例15】 分解因式:2222()3103x a b x a ab b ++-+- 【例16】 分解因式:22265622320x xy y xz yz z ----- 【例17】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证: 2b a c =+ 【例18】 分解因式:2262288x xy y x y +-+-- 【例19】 分解因式:223224x xy y x y ++++ 【例20】 分解因式:222695156x xy y xz yz z -+-++

利用换元法解方程(组)教学内容

第6讲 利用换元法解方程 一、方法技巧 (一)换元法解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的. (二)运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程. 解分式方程、无理方程、整式(高次)方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、整式(高次)方程逐步降次. (三)换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方 法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 例如:① 256011x x x x ????++= ? ?++? ??? ,可使用局部换元法,设1x y x =+ ②22110x x x x +++=,变形后也可使用局部换元法,设1x t x += ③222212219116 x x x x x x x +++++=+++,看着很繁冗,变形整理成222211191116 x x x x x x +++++=+++时,就可使用局部换元法. ④()()443182x x +++=,可设()()3122x x y x +++==+,方程变成 ()()441182y y ++-=,使方程变得易解,这是均值换元法. ⑤4326538560x x x x +-++=,符合与中间项等距离的项的系数相等, 如46x 与6,35x 与5x 系数相等,可构造1x x + 换元,是倒数换元法. ⑥32310x x +++=,不易求解,若反过来看,把设x 看作已 t ,则方程就变成()() 2232110x t x t x ?+++-=, 数字换元法不常用,但不失为一种巧妙的解题方法. 有时根据方程各部分特点可设双元,达到化繁为简,求解的目的. 例如:

换元法在数学解题中的应用[开题报告]

毕业论文开题报告 信息与计算科学 换元法在数学解题中的应用 一选题的背景、意义 1.1 选题的背景[1] 从一种形态转化到另一种形态,这是数学发展的一个杠杆,也是集体常用的手段。数学史上这样的例子很多,无论是对一些具体问题的解决,还是在经典的数学方法中,都无不渗透着这一思想。解题中常用到的换元法,其实也是这一思想的具体体现。由于条件与结论中的变量关系在形式上的隐蔽,它们之间实质性的逻辑联系不易从表面形式上发现,即使看出它们之间的联系,也由于表面形式的复杂而不易直接求解。但当我们进行适当的变量代换,把问题的条件和结论作形式上的转换,这样就容易揭示出它们之间的内在联系,把问题化难为易,化繁为简。掌握了换元思想,不但可以比较顺利地解决一些较难的题目,还可以用多种方法解答同一个个问题,提高我们的思维。 当然,为了使问题得到解决,这种转换应该是有效的。什么是有效的转化?总的来说,有利于问题解决的转化就是有效转化。在具体问题中,针对转化的有效性,人们做了很多的探讨。以换元法为例,就有很多文章探讨了解方程中的换元技巧,积分中的换元技巧等等。每一类问题又由于其具体形式的不同,换元的形式也多种多样。分析各种还原形式的共同规律,可以捡起归纳为以下几类:定积分换元法、不定积分换元法、三角换元、二重积分换元法、含无理递推式的换元法和换元法在其他方面的应用。 1.2 选题的意义[2] 换元法在解决定积分、不定积分、三角函数、二重积分、含无理递推式等数学问题中有着广泛的应用,换元法是解决复杂繁琐数学问题的重要工具。 解数学问题时,当遇到代数中式子较烦或解法比较复杂时,如果能从式子的特殊性中挖掘并发挥换元的因素,这样往往能够产生更为简洁的解法,把繁难的计算和推理简化。从而达到化难为易、化深为浅、化繁为简的目的。这就是简化解题方案,寻求最佳解题法的有效方法。 当遇到题中含有几个变量或次数较高问题时,我们可以考虑用换元法,能否消去某些变量或降低变量次数,起到减元降次的作用。

因式分解综合应用(换元法与添项拆项)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:目前我们学习的因式分解的方法有哪些? 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为____________. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分_______时,我们会________将其替换,从而简化式子的形式. 以下是问题及答案,请对比参考: 问题1:目前我们学习的因式分解的方法有哪些? 答:提公因式法,公式法,分组分解法,十字相乘法. 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化 为. 答:四种基本方法. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分时,我们会将其替换,从而简化式子的形式. 答:重复出现;设元. 因式分解综合应用(换元法与添项拆项)(人教 版) 一、单选题(共10道,每道10分) 1.把因式分解,正确结果是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 2.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 3.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法

4.把因式分解,正确结果是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 5.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路:

8常用数学方法-配方法、待定系数法、换元法

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠ F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳 知识体系梳理 ◆ 添项拆项法 有的多项式由于“缺项”,或“并项”因此不能直接分解。通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。 一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。 ◆ 待定系数法 有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。然后再把积乘出来。用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。 ◆ 换元法 所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂

的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫 。换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。 (1)、使用换元法时,一定要有 意识,即把某些相同或相似的部分看成一个 。 (2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。 (3)、利用换元法解决问题时,最后要让原有的数或式“回归”。 ★★ 典型例题、方法导航 ◆ 方法一:添项拆项法 【例1】分解因式: 分析:此多项式是三次三项式,缺项不能直接分解。可考虑添项拆项法分解。从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或,但的中间项是,因此是不可能的,因此只可能是前面两种的其中一种。下面请看:

换元法解方程

换元法 在因式分解中,把一个较复杂的数学式子的某一部分看成一个整体,用一个字母去代替这一部分,使原式变成含有新元的简单式子,在分解后再将新元换出,这种方法叫换元法. 1.10)3)(4(22+++-+x x x x 2.24)4)(3)(2)(1(-++++x x x x 3.20)5)(1)(3(2-+-+x x x 4.90)384)(23(22-++++x x x x 5.)(4)(22222y x xy y xy x +-++ 6.2)1()2)(2(-+-+-+xy y x xy y x 7.4482--a a 8.yz z y x 2222+-- 9. 644+x 10. 2214176y xy x -- 11. 581337622-++--y x y xy x 12.1433181892022-+--+y x y xy x 13. 2820152-+--y x xy x 14.12)2)(1(22-++++x x x x

15.1)1(2)(3---++y x xy y x 16. 222222)1(2)1)(16(5)16(2++++++++x x x x x x 17. 已知乘法公式 a 5+b 5=(a+b)(a 4-a 3b+a 2b 2-ab 3+b 4),a 5-b 5=(a-b)(a 4+a 3b+a 2b 2+ab 3+b 4),利用或不利用上述公式,分解因式:x 8+x 6+x 4+x 2+1. 五.待定系数法 1. 192256112--x x 2.744272234+---x x x x 3.156234+-+-x x x x 六.因式定理 余数定理 ).()()(a f a x x f 的余数等于 除以多项式- 因式定理 整除能被则即的值为零,多项式如果a x x f a f x f a x -==)(,0)( )(,).)(a x x f -含有因式(即

用换元法解各种复杂方程(3周)

用换元法解各种复杂方程 班级: 姓名: 用换元思想探索双二次方程、无理方程、分式方程这三类方程的解法。 [内容综述] “换元法”是一种重要的数学方法,它可以把较复杂的问题转化为较简单的问题去解决。在解高次方程、分式方程、无理方程的过程中都可以应用换元方法,其要点是把方程中的一些表达形式相同的部分看成一个整体并设新的字母表示,从而达到化简方程并把原方程化归为已经会解的一元一次或一元二次方程的目的。 [问题精讲] 1.在中学课程中,只要求学生会解一些特殊的高次方程,最常见的就是“双二次方程”,即只含有未知数的四次项、二次项和常数项的方程。对于这类方程,可以经过对二次项的换元转化为一元二次方程 例1 解方程(x 2+1)2=x 2+3 分析:思路1:以x 2 +1为一个整体进行换元,因此要对方程右边进行变形使其含有x 2 +1。 思路2:把方程展开成标准的双二次方程,再对x 2进行换元。 解法一:原方程可化为(x 2+1)2-(x 2+1)-2=0,设x 2+1=y 得y 2-y-2=0, 解得 y 1=2,y 2=-1,x 2+1=-1无实根, 由x 2+1=2解得x 1=1,x 2=-1。 解法二:由原方程得x 4+x 2-2=0,设x 2=y (解题熟练时,这一换元过程也可以不写出) 得y 2+y-2=0,解得y 1=1,y 2=-2,x 2=-2无实根, 由x 2 =1解得x 1=1,x 2=-1。 注意:换元的关键是善于发现或构造方程中表达形式相同的部分作为换元的对象。在解方程的过程中换元的方法常常不是唯一的,解高次方程时,只要能达到降次目的的换元方法都可以应用。但是无论采用哪一种换元方法,所得方程的解都是相同的。 2.解无理方程时,常把原方程中的一个含有未知数的根式作为整体进行换元,达到化去根号转化为可解方程的目的。这时经过变形,原方程的某个整式部分常可表示为新元的平方。 例2 解方程051356222 =-----x x x x 分析:为使原方程中出现形式相同的部分,可以将其变形为 03135)13(222=------x x x x 。 解:设y x x =--132,则原方程可以化为2y 2 -5y-3=0 解得2 1 ,321- ==y y (不符合算术根的定义,舍去。) 由3132 =--x x 得x 1=5,x 2=-2,经检验是原方程的根。 注:以前学过平方去根号法解无理方程,是种普遍方法。现在的换元必须构造出根号内外两个相同的式子才行。 3.解分式方程时,常把原方程中的一个分式作为整体进行换元,换元时要注意分子、分母互换 的两个分式可以用一个新元和它的倒数来表示。例如方程 1123 311682222=+-+-+x x x x x x 可变形为112)1(31)2(82222=+-+-+x x x x x x 。设y x x x =-+1 22 2 进行换元可得113 8=+y y ,去分母后化为8y 2-11y+3=0可解。 例3 解方程( )()x x x x ++++=151 602 分析 括号里的分式相同,由这个特点,知可用换元法来解。 解:设x x y +=1 ,于是原方程变形为y y 2560++= 解得y y 1232=-=-, 均为原方程的根。 ,经检验。,解得时,当; ,解得时,当32 433221243 313212211-=-=-=-=+-=-=-=+-=x x x x x y x x x y 例4 解方程6 12 2x x x x +=++ 分析 方程左边分式分母为x x 2+,可将右边x x 2+看成一个整体,然后用换元法求解。 解:设x x y 2+=,则原方程变形为6 1y y =+ 解得,当时,,此方程无实根。当时,,解得,。经检验,,都是原方程的根。 y y y x x y x x x x x x 121222 121232 33222121=-==-+=-=+==-==-=

相关主题
文本预览
相关文档 最新文档