当前位置:文档之家› 44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808nm半导体激光器设计和制作
44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作

仇伯仓,胡海,何晋国

深圳清华大学研究院

深圳瑞波光电子有限公司

1. 引言

半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。

2.高功率激光结构设计

图1. 半导体激光外延结构示意图

图2. 外延结构以及与之对应的光场分布

图3. 量子阱限制因子与SCH层厚度之间的关系

图4. 光束发散角与SCH层厚度之间的关系

图1给出了一个典型的基于AlGaAs材料的808 nm半导体激光外延结构示意图,由其可见,外延结构由有源区量子阱、AlGaAs波导以及AlGaAs包层材料组成,在材料选取上包层材料的Al 组分要高于波导层材料的Al组分,以保证在材料生长方向形成波导结构,即材料对其中的光场有限制作用(见图2)。另外,为了实现电子与空穴在量子阱内产生受激辐射复合,材料必须被掺杂成p-i-n结构,其中有源波导区通常为非掺杂的本征区域。因为半导体激光的主要性能参数对温度非常敏感,所以在设计外延与器件结构时,必须仔细优化芯片结构参数,尽可能减小器件的内损耗以及串联电阻,尽可能地提高器件的内量子效率, 以便获得尽可能高的电光转换效率。在器件设计方面,通常采用腔长较长的结构,这是因为整个芯片的封装模块的热阻与腔长近似成反比,芯片越长,模块热阻越小,芯片的结温越低;此外另一考虑因素是器件的可靠性。因为可靠性也与芯片工作时的电流密度有关,电流密度越大,寿命越短。不同于低功率器件,在高功率激光设计中,阈值电流的大小不是最优先考虑的因素。研究表明,高功率激光芯片的寿命主要与芯片内的光场密度、电流密度以及芯片结温有关,而在上述三个因素之中,光场密度对寿命以及可靠性影响最为显著。事实上,激光芯

片失效在很大程度上是由与光场密度有关的两种失效模式有关:其一为因光场密度造成腔内光学灾变(简称COBD);其二为光场密度过高而在腔面引起的光学灾变(简称COMD)。在高功率激光外延结构设计中,为了降低因光功率密度过高而引起器件失效的几率,通常采用低光场密度或者低限制因子设计。在低限制因子设计中,虽然阈值电流会有所上升,但考虑到高功率激光的工作电流是阈值电流的10-20倍以上,阈值电流的些许增加并不会显著影响器件的整体效率。而且采用低限制因子设计还有一些额外的优点:1)可以降低激光腔内的整体光损耗。这是因为激光的损耗主要是由自由载流子吸收(FCA)[3]以及价带间载流子跃迁造成的吸收(IVBA)引起的[4],当采用低限制因子设计时,量子阱内的载流子吸收损耗也会相应降低;2)可以降低外延生长方向上的光束发散角,从而改善光束特性。芯片的光束特性影响到半导体激光的光束整形、耦合设计,当光束发散角小时,不仅会提高光的耦合效率,而且会容许后续的光学系统有更大设计与制造容差。低限制因子设计可以通过调整分别限制异质结(SCH)层厚度来获得。图3给出了量子阱光场限制因子gamma与SCH厚度之间的关系,由其可见,低限制因子可用两种不同方法来获得:其一为采用SCH厚度很薄的设计;其二为采用SCH厚度很厚的设计。SCH厚度达到一微米左右波导设计一般被称之为大光场(LOC)设计 [5]。在大光场设计中,因为比较容易兼顾芯片的腔内损耗以及串联电阻的优化,所以当今许多行业内顶级公司采用这一设计理念。

3.高功率激光工艺制作与腔面处理

高功率激光因为需要输出很高的功率,所以其有源区条宽都在几十微米甚至几百微米,具体条宽根据应用而定。为了区别单模窄波导激光,这种激光结构有时会被称之为宽条激光。宽条激光的工艺处理相对比较简单,有的公司为了简化工艺,只是通过有限几个步骤的工艺处理(如离子注入)形成电隔离区域,然后制作p面金属电极、晶片减薄、n面金属电极沉积、快速退火以及腔面镀膜等即完成所有工艺流程。不过,有证据似乎表明,用这种方法制作的激光的水平方向的光束特性随电流变化比较大[6]。

为了改善宽条激光相对于注入电流的稳定性,也可以通过刻蚀形成脊波导,波导结构不仅会对电流形成隔离作用,而且因为刻蚀形成的波导对光在横向形成波导限制。图5给出了刻蚀后形成的宽波导激光。高功率激光的工艺最具挑战之处在于腔面处理与镀膜工艺。腔面处理主要有无吸收腔面技术、腔面钝化技术等[7]。无吸收腔面技术是通过材料生长完毕后的工艺处理技术(通常被称之为量子阱混杂技术),在腔面附近区域,改变材料的性质,使得材料的吸收峰蓝移,从而使腔面区域的材料对芯片发射出的激光呈透明状态。无吸收腔面技术也可通过材料再生长的方法来实现,所生长的材料的能带宽度要足够大,以便使其对芯片所发射的光呈现完全透明状态。腔面钝化技术是在腔面的半导体材料上沉积一薄层其它材料,这种材料最好具有如下的性质:1)能够中和因半导体界面晶格缺陷而产生的复合中心;2)钝化材料应该对激光无吸收;3)钝化材料应该与半导体材料的热膨胀系数接近; 4)与本底半导体材料有很好的化学与物理吸附。腔面钝化的目的是中和半导体激光腔面的非辐射复合中心,从而消除因非辐射复合而引起的腔面光学灾变。腔面镀膜是在激光腔的后端面镀上多对由两种不同介质材料组成的介质膜,以便使其对腔内的反射率达到90%以上,而在激光的前端面,通过蒸镀一定厚度的介质膜材料,使其反射率在2-10%左右。

图5. 宽波导高功率激光示意图

4.高功率激光性能测试

高功率半导体激光测试参数主要包括光—电流—电压(LIV)特性曲线,温度特性、光谱曲线、光束特性、可靠性以及偏振性质等。由于半导体芯片对环境温度、环境湿度、静电、尘埃、电流电压的过脉冲以及光的回反射等都非常敏感,这些参数的任何变化不仅影响到测量精度,而且更有可能引起器件的突然失效。为此,激光的测试环境必须经过认真考虑。深圳瑞波光电子有限公司技术团队集多年测试分析经验,提出了一套完整的芯片参数测试分析方案,构建了能够精确控制测试环境、对各种参数进行快速自动测试、最后自动生成主要参数测试报告的测试系统。针对半导体激光器的关键制造环节的表征测试需要,我们研发了一系列测试仪器,包括针对裸芯片的单管/巴条测试系统和full-bar巴条测试系统(这里full-bar巴条测试是指共电极测试,测试电流可达200-400 A),针对贴片后器件的COS (chip-on-submount)测试系统、针对光纤耦合蝶形封装的模块测试系统、以及大容量并可以实时监控器件功率和波长的老化寿命测试系统等。图7给出了我们研发的COS 测试系统的图片,该系统主要由电子学系统、机械组件、控制系统以及数据处理与分析系统组成,可以对前述的各种参数进行快速和全方位的测试。

图6. 测试工作台照片

5.超高功率808 nm 高功率激光芯片

RB-808系列激光芯片是我们自主设计与制作的808nm高功率激光芯片。RB-808 系列芯片是瑞波公司积极顺应市场需求,研发出针对不同工作模式的芯片,其中包括输出不同功率的单管芯片(8-10瓦)、输出功率达100 W(CW:连续电流模式)的巴条芯片等。在本文中我们

重点介绍我们所研发的单管高功率产品,而高功率巴条芯片将在其它文章中给予详细介绍。808 nm 激光在外延结构设计上,有多种不同选择,比如量子阱材料可以采用GaAs、AlGaAs、InGaAlAs、InGaAsP等[8],波导材料可以在选取量子阱材料后,根据材料的电子学与光学性质做出相应选择。在深圳瑞波,我们采用了有源区无铝的InGaAsP量子阱结构。采用无铝有源区结构的好处是没有腔面在解理后在大气中的氧化问题,从而避免了与大气氧化有关的可靠性问题。芯片工艺制作完毕后,芯片以P面朝下的方式被焊接在厚度为350 微米的镀金AlN陶瓷片上,焊锡材料采用的是金锡焊料。为了简明起见,以后将这种方式封装的芯片称之为COS(chip-on-submount)。COS测试是用我们开发的测试系统完成的,该系统可以在连续和脉冲电流下全方面表征器件的光电特性,包括LIV特性,光谱特性以及光束特性等。该系统已经在多家激光芯片制造企业和封装企业的研发实验室和生产线上采用。图7为所测试的不同温度下的光—电流(L-I)特性曲线,由其可见,COS在20度测试环境下,阈值电流大约为1.8 A,斜率效率大约为1.2 W/A, 而达到10瓦输出功率时所需要的工作电流为10 A。图8为所测试的中心波长与电流之间的关系,考虑到对于808 nm的激光芯片,温度每升高一度,波长红移大约为0.25 nm, 意味着在工作电流为10 A时,芯片的结温大约比环境测试温度高出16度左右,这一温度升高与我们的计算完全相符。图9为工作电流在10 A时所测得的光束发散角,很显然,在垂直方向上(即外延生长方向)光束发散角的全宽半高值(FWHM)大约为25度,比国外通用的同类型808芯片的36度发散角减少了30%,而水平方向上包含95%光场能量的光束发散角大约为10度。瑞波公司808nm芯片优异的远场特性使得后续封装模块光束整形和光纤耦合得到改善。在器件可靠性评估中,我们对器件进行加速寿命测试以及COMD破坏性测试。加速寿命测试是在更高的可控环境温度下,以及比额定工作电流更高的注入电流下以连续波(CW)方式工作,通过监控芯片的工作参数与时间的关系来评估芯片在正常运行时的使用寿命;而COMD破坏性测试是在特定脉冲工作方式下,对器件施加不断增加的电流,直到器件因COMD发生而停止工作为止,这一测试容许我们获得芯片发生COMD时腔面功率的大小。在COMD测试中,我们采用周期为10毫秒、占空比为10%的脉冲电流对芯片进行破坏性测试,测试结果可参见图10。由图可见,当注入电流为48 A时,COS的功率为44瓦,随后芯片失效。仔细分析发现,图10给出的测试结果并不是由于腔面灾变失效引起器件功率下降,因为失效分析发现芯片的失效是由于电流过大,引起金线熔断而引起的,而熔断的金线导致芯片局部温度过高才导致芯片最终失效。从所测试的光—电流—电压(L-I-V)特性来看,芯片失去功率的同时,电压也降为零值,而真正的COMD 发生时,电压会升高大约150 mV,电压升高的原因是当芯片输出功率瞬间减小,腔内的载流子浓度因为辐射复合减小而随之升高,抬高了量子阱内的费米能级,进而导致了电压的上升。此外,还需要补充的是,尽管COMD测试是在脉冲状态下进行的,但因为脉冲宽度达1000微秒,远远超过芯片本身的热时间常数,所以这一测试在热学上几乎等效于持续电流测试模式。

图7. 808 nm 连续电流,不同温度情况下的单管COS模块光—电流特性曲线

图8. 激光波长随温度变化关系

图9. 水平与垂直方向的光束特性

图10. 激光腔面失效功率(COMD)测试

6.结论

本文简要综述了高功率808 nm 半导体激光的设计以及腔面工艺处理方法,随后展示了深圳瑞波光电子公司在高功率808 nm 芯片研发方面所取得的进展。我们最新测试的单管COMD

功率达44瓦以上,这一功率水平表明我们的芯片腔面处理工艺能够满足10瓦单管芯片所需要的工艺水平。

致谢

本项目研究得到了国家高技术研究发展计划(863 计划)课题“高线性激光器和高饱和功率光探测器阵列芯片”资助(课题编号2015AA016901),并得到了广东省“创新引进科研团队计划”与深圳市“孔雀团队计划”的支持。

参考文献

1.G. Bacchin, A. Fily, B. Qiu, D. Fraser, S. Robertson, V. Loyo-Maldonado, S. D.

McDougall and B. Schmidt, “High temperature and high peak power 808 nm QCW bars and stacks”, SPIE Vol. 7583, (2010)

2.Matthew Peters, Victor Rossin, Bruno Acklin, “High-efficiency high-reliability

laser diodes at JDS Uniphase”, Proc. SPIE5711, High-Power Diode Laser Technology and Applications III, 142, (March 17, 2005)

3.K A Bulashevich, V F Mymrin, S YuKarpov, D M Demidovand A L Ter-Martirosyan,

“Effe ct of free-carrier absorption on performance of 808

nmAlGaAs-basedhigh-power laser diodes”, Semicond. Sci. Technol. 22, 502–510, (2007)

4.H. C. Casey, Jr and P. L. Carter, “Variation of intervalence band absorption

with hole concentration in p-type InP”, A ppl. Phys. Lett., 44, 82-83, (1984)

5.N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov,

I. S.Tarasovand , and Zh. I. Alferov, “16W continuous-wave output power from100

μm-aperture laser with quantumwell asymmetric heterost ructure”, ELECTRONICS LETTERS, Vol. 40, No. 22, (8th October 2004)

6.Bocang Qiu, Manuela Buda, “Beam divergence dependnce of Injection current”,

Intense internal report, 2008

7.Stephen P. Najida, Gianluca Bachin, Bocang Qiu, “Benefits of quantum well

intermixi ng in high power diode lasers”, SPIE Vol. 5356, (2004)

8. B.C. Qiu, O. Kowalski, S.D. McDougall, X.F. Liu, and J.H. Marsh, “High

reliability, high power arrays of 808 nm single mode diode lasers employing various quantum well structures”, SPIE Vol. 6909, (2008)

44瓦超高功率808nm半导体激光器设计与制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上[1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

高功率半导体激光器

光机电信息 Sep.2008 钛蓝宝石激光器反射镜 新加坡EdmoundOptics公司拥有一系列用于超快激光系统的钛蓝宝石激光反射镜。钛蓝宝石激光反射镜可以使激光脉冲保持平坦的群速度色散曲线,中心波长为800nm,在700~900nm范围内曲线都可以保持平坦。 反射镜的直径在12.7~25.4mm之间,厚度为 6.35mm,表面质量为10-5,表面精度为1/10波长。 镜子的强度很高,对于脉冲长度为150fs的激光脉冲或100kW/cm2的连续激光,镜子可以承受高达 0.5J/cm2的激光能量。对于730~900nm波长的偏振 光s和p偏振光,反射镜都可以做到100%的有效反射。 这些反射镜加工精细,平行度优于5arcmin.,通光口径达到85%,直径公差为+0.0/-0.2mm,厚度公差为±0.2mm。入射光角度设计为45°,用于超快激光光束的转向。 www.edmoundoptics.com 高功率半导体激光器 德国LIMO公司发布了一种高功率半导体激光 器-LIMO50-L28x28-DL795-EX473。该激光器可以形成28mm×28mm×80mm的均匀光场,输出功率达到了50W,中心波长为794.8nm±0.2nm,波长稳定性极高,光谱宽度只有0.7nm。 该激光器可靠性高,经济实用。采用热电致冷或自来水冷却的方式。结构紧凑的激光头外形尺寸为445mm×110mm×66mm,非常适用于便携式测量仪器。 www.limo.de 平顶光束生成器 StockerYale公司的平顶光束生成器是一种光束 整形模块,它可以把高斯光束转化为聚焦、准直或发散成平顶能量分布的光束,即使经过较长距离也可以保持光束能量和强度的高度均匀。 StockerYale公司的平顶光束生成器适用于紫 外、可见光以及近红外波段的激光器,易于与 StockerYale公司的Lasiris或其它类型的激光器相集 成。 www.stockeryale.com 485nm皮秒脉冲二极管激光器 德国PicoQuant公司对外发布了其485nm波长的皮秒脉冲二极管激光头。该激光头可应用于生物 名企名品 AdvancedManufacturers&Products 64

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

工业用大功率半导体激光器发展状况激光材料加工、信息与通信、(精)

工业用大功率半导体激光器发展状况 激光材料加工、信息与通信、医疗保健与生命科学以及国防是世界范围内激光技术的四个最主要的应用领域,其中激光材料加工所占比例最大,同时也是发展最快、对一个国家国民经济影响最大的激光技术应用领域。激光材料加工技术在工业领域应用的广泛程度,已经成为衡量一个国家工业水平高低的重要标志。 激光材料加工用大功率激光器经历了大功率CO2激光器、大功率固体YAG激光器后,目前正在朝着以半导体激光器为基础的直接半导体激光器和光纤激光器的方向发展。在材料加工应用中,以大功率半导体激光器为基础的直接半导体激光器和光纤激光器,不仅具备以往其他激光器的优势,而且还克服了其他激光器效率低、体积大等缺点,将会在材料加工领域带来一场新的技术革命,就如同上世纪中叶晶体管取代电子管、为微电子技术带来的革命一样。因此,直接半导体激光器和光纤激光器是未来材料加工用激光器的发展方向之一。 下面将介绍近年来大功率半导体激光器的发展现状,以及目前提高半导体激光器输出功率和改善光束质量的方法和最新进展,同时介绍大功率半导体激光器在材料加工中的应用现状、分析展望大功率半导体激光器的 发展趋势。 图1:半导体激光器多光束合成技术示意图 高功率和高光束质量是材料加工用激光器的两个基本要求。为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。

基于ZEMAX的半导体激光准直仿真设计

引言 半导体激光器( laser diode, LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。 1.理论分析及计算 采用 OSARM 公司的型号为 SPL LL90 _3 的半导体激光器查看使用说明书得 到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散角 = 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约 0. 1 m ~ 0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第 2 个柱透镜 M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜 M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

全球十大半导体激光器产品进展

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广。由于以上诸多优势,半导体激光器在工业应用、照明、投影、通信、医疗以及科研等领域已经应用相当普遍。 新型太赫兹半导体激光器 加州大学洛杉矶分校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,还可以用于分析星体的形成和行星大气的组成。 目前使用可见光的垂直外腔表面发射激光器(VECSEL)已经被广泛用于生成高能束,但是这种技术此前并不适用于太赫兹频率范围。加州大学洛杉矶分校的电气工程副教授本杰明·威廉姆斯带领团队研制了首个可以在太赫兹频率范围使用的VECSEL。 为了使VECSEL在太赫兹频率范围发出高能束,威廉姆斯团队研制出带有一个叫做“反射阵超材料表面镜”装置的VECSEL。这种装置之所以如此命名,是因为它包含一个由大量微小天线耦合激光腔组成的阵列,这样当太赫兹波经过这个阵列时就“看”不到激光腔,反而会被反射回去,就像被普通的镜子反射回去一样。 “把超材料表面和激光器结合起来还是第一次。”威廉姆斯表示,这一方法既可以使激光器在太赫兹频率范围输出更大的功率,还可以形成高质量的激光束,而且超材料的使用可以让科研人员对激光束进行进一步的设计,以生成理想的极化度、形

半导体激光器调研报告

半导体激光器调研报告 班级:电科 姓名:XXX 学号:20120xxx

半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 仪器简介: 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P 型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。 工作原理: 根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。 一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接带隙半导体材料如Si有高得多的辐射跃迁几率,发光效率也高得多。 半导体复合发光达到受激发射(即产生激光)的必要条件是:①粒子数反转分布分别从P型侧和n型侧注入到有源区的载流子密度十分高时,占据导带电子态的电子数超过占据价带电子态的电子数,就形成了粒子数反转分布。②光的谐振腔在半导体激光器中,谐振腔由其两端的镜面组成,称为法布里一珀罗腔。③高增益用以补偿光损耗。谐振腔的光损耗主要是从反射面向外发射的损耗和介质的光吸收。 半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数; (2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;

半导体激光器的原理及分类方式

摘要: 本文就半导体激光器介绍了半导体激光器的工作原理,较详尽地阐述了它在光纤通信中的应用情况。 关键词:半导体激光器谐振腔泵浦源工作物质光纤通信WDM 激光技术; 半导体激光 一、半导体激光器 1.什么叫激光 激光的英文叫Laser light amplification by stimulated emission of radiation. 就是通过受激 发射实现光放大。 光通过谐振腔的选模作用和增益介质的放 大作用,经过震荡和放大,实现拥有单色性、 准直性、相干性非常好的光束,这个就是激光。 激光器有很多种类型,但他的必要组成部 分无外乎:谐振腔、增益介质、泵浦源。 2、半导体激光器的工作原理 2.1基本条件: (1)有源区载流子反转分布 (2)谐振腔:使受激辐射多次反馈,形成振荡 (3)满足阈值条件,使增益>损耗,有足够的注入电流。 2.2工作原理 半导体激光器工作原理是激励方式,利用半导体物质(既 利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两 个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、 产生光的辐射放大,输出激光。 半导体激光器是以一定的半导体材料做工作物质而产生 受激发射作用的器件.其工作原理是,通过一定的激励方式,在 半导体物质的能带(导带与价带)之间,或者半导体物质的能带 与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反 转,当处于粒子数反转状态的大量电子与空穴复合时,便产生 受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。 理论上认为半导体激光器应该是在直接带隙半导 体PN结中.用注入载流子的方法实现由柏纳德—— 杜拉福格条件所控制的粒子数反转;由高度简并的电 子和空穴复合所产生的受激光辐射在光学谐振腔内振 荡并得到放大,最后产生相干激光输出。 就基本原理而论,半导体激光器和其它类型的激 光器没有根本的区别,都是基于受激光发射.要使激 光器得到相干的、受激光输出,须满足两个条件,即 粒子数反转条件与阈值条件.前者是必要条件,它意味着处于高能态的粒子(如半导体导带中的电子)数多于低能态的粒子数.达到这一条件,有源工作物质就具有增益。后者是充分

大功率半导体激光器高效率设计

河北工业大学 硕士学位论文 大功率半导体激光器高效率设计 姓名:杜伟华 申请学位级别:硕士 专业:物理电子学 指导教师:陈国鹰;杨红伟 20081101

河北工业大学硕士学位论文 大功率半导体激光器高效率设计 摘要 由于具有较高的输出功率和功率转换效率,大功率半导体激光器被广泛应用于泵浦固体激光器、激光加工、打印、光存储、光通讯及激光医疗等领域。功率、效率和可靠性是衡量半导体激光器性能的三个关键性指标。提高激光器的功率转换效率可以使激光器输入相同电流时输出更大的光功率,同时对于降低散热系统能耗、提高激光器光电特性、延长激光器寿命、提高可靠性以及节约运转费用有着非常重要的意义。效率的提高依赖于材料结构及其质量、芯片设计与器件制作工艺。 本课题基于器件的设计及其工艺的优化提高808nm大功率半导体激光器的功率转换效率。本文首先从理论上详细分析影响808nm大功率激光器效率的各个因素,然后以理论分析和计算机模拟为基础进行材料选择,波导层和包层使用AlGaAs材料,并且波导层采用大光腔结构,量子阱层使用AlGaInAs材料;在芯片制作方面,通过进行激光器的腔面反射率的设计,得出了最大的功率转换效率与腔长、腔面反射率的关系,选用了合适的腔面反射率进行腔面镀膜;在封装方面,鉴于微通道载体是目前解决连续工作大功率半导体激光器阵列散热问题的主要手段,因而采用微通道载体解决散热问题,通过计算机模拟,进行了微通道载体设计,同时对烧结工艺进行了优化。 通过对808nm大功率激光器进行深入研究,最终研制的808nm大功率半导体激光器微通道阵列,连续工作状态下,最高功率超过100W,功率转换效率达到56.7%,实现了项目指标。 关键词:功率转换效率,大光腔,应变量子阱,腔面反射率,烧结,微通道载体 i

大功率半导体激光器的寿命与可靠性研究(1)

大功率半导体激光器的寿命与可靠性研究 组别:11 组员:李硕 11023112 孟晓 11023106 王乐 11023121 李冉 11023111 马云霄 11023117 吴天宇 11023110

目录 一、大功率激光器的应用背景 (3) 二、半导体激光器的可靠性及寿命 (4) 三、大功率半导体激光器寿命的测量方法 (5) 3.1 高功率二极管激光器的寿命测量方法 (5) 3.1.2寿命测试实验 (6) 3.1.3 结论 (7) 3.2 焊接应面力对寿命的影响 (8) 四、提高大功率半导体器件寿命的使用方法 (8) 五、总结 (9) 六、组员分工 (9)

一、大功率激光器的应用背景 随着半导体激光技术的日趋成熟和应用领域的不断扩展,大功率半导体激光器的应用 范围已经覆盖了光电子学的诸多领域,成为当今光电子实用器件的核心技术。由于大功率 半导体激光器具有体积小、质量轻、寿命长等优点,广泛应用于民用生产和军事等领域。 近年来,国外大功率半导体激光器的研究进展非常迅速,单条最大连续输出功率已 经大于600 W,最高电光转换效率高达72%,单条40-120 W 已经商品化。相对而言, 国内在大功率半导体激光器研究和应用方面虽然起步较晚,但也取得了很大的进展。 大功率半导体激光器是一类用途非常广泛的光电子器件,输出功率可以高达百瓦、千瓦,甚至准连续输出功率达万瓦以上,而且这些器件的能量转换效率可高达50%以上。半导体激光器相对于其他类型激光器的最大特点就是波长多样性,随着应用领域的不断拓宽,大功率激光器的研究几乎包括整个650-1 700 nm波段。目前大功率半导体激光器以及大功率半导体激光器泵浦固体激光器在材料加工、激光打标、激光打印、激光扫描、激光测距、激光存储、激光显示,照明、激光医疗等民用领域,以及激光打靶、激光制导、激光夜视、激光武器等军事领域均得到广泛应用。 大功率半导体激光器在材料加工方面的主要应用有:软钎焊、材料表面相变硬化、材料表面熔覆、材料连接、钛合金表面处理、工程材料表面亲润特性改进、激光清洁、辅助机械加工等。北京工业大学研制了光束整形l 000 W 大功率半导体激光器,用于U74钢轨表面淬火试验。 军事方面的主要应用为: (1)半导体激光制导跟踪。从制导站激光发射系统按一定规律向空间发射经编码调制的激光束,且光束中心线对准目标;在波束中飞行的导弹,当其位置偏离波束中心时,装在导弹尾部的激光探测器接受到激光信号,经信号处理后,调整导弹的飞行方向,从而实现制导跟踪。

相关主题
文本预览
相关文档 最新文档