当前位置:文档之家› 半导体激光器工艺知识详解

半导体激光器工艺知识详解

半导体激光器工艺知识详解

半导体激光器工艺知识详解

半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化镓(GaAs)、硫化镉(CdS)等,激励方式主要有电注入式、光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式。半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展。

半导体激光器的体积小、重量轻、成本低、波长可选择,其应用遍布临床、加工制造、军事,其中尤以大功率半导体激光器方面取得的进展最为突出。

半导体激光器的工作原理激光产生原理

半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:

(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

(2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p腔(法布里一珀罗腔)半导体激光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面一面构成F—P 腔。

(3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质: (1) 温度的变化能显著的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞导电。前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要为三族元素:铝、镓、铟、硼等。电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞快。电洞和电子运动速度的大小用迁移率来表示,迁移率愈大,截流子运动速度愈快。假如把一些电洞注入到一块N型半导体中,N型就多出一部分少数载子――电洞,但由于N型半导体中有大量的电子存在,当电洞和电子碰在一起时,会发

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

半导体激光器研究的依据及意义-Read

半导体激光器研究的依据及意义 信息技术已成为当今全球性战略技术。以光电技术和微电子技术为基础所支持的通信和网络技术已成为高技术的核心,正在深刻影响国民经济、国建设的各个领域。其中,半导体激光器起着举足轻重的作用 半导体激光器 ,其转换效率高、体积小、重量轻、可靠性高、能直接调制以及与其它半导体器件集成的能力强等特点而成为信息技术的关键器件。在光谱技术、光外差探测、医疗、加工等领域得到愈来愈广泛的应用。目前,它已是固体激光器泵浦、光纤放大器泵浦中不可替代的重要光源。 但是,半导体激光器正常工作时,需要稳定的环境温度。环境温度的变化以及激光器运转时器件发热而导致其温度起伏,将直接影响激光器输出功率的稳定性和运行的安全可靠性,甚至造成半导体激光器的损坏。因此,半导体激光器的驱动电源温度控制问题越来越受到人们的重视。 阀值是所有激光器所具有的特性,它标志着激光器的增益与损耗的平衡点。由于半导体激光器是直接注入电流的电子—光子转换器件,因此其阀值是常用电流密度或者电流来表示的。温度是影响半导体激光器阀值特性的主要因素。温度对阈值电流密度的影响由下面公式 J th (T )=J th (T r )exp[(T-T r )/T 0] 1. (1) 给出。T 为半导体激光器的工作温度,T r 为室温,J th (T )为工作温度 下的阈值电流密度,J th (T r )为室温下的阈值电流密度,T 0是表征半导 体激光器温度稳定性的特征温度,它与激光器所使用的材料及结构有关。 温度的变化也影响半导体激光器的激光波长,λ=2nL/m 1.(2) 中,n 为折射率,m 是模数,波长λ随折射率n 和长度L 较大程度的影响。波长λ对T 微分,这里,折射率是温度和波长的函数,即: (1/λ)(d λ/dT)=(1/n)(аn/аλ)T (d λ/dT)

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体?; I* s# N* v8 Y! H3 a8 q4 a1 R0 \- W 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何' u* k9 `+ D1 v1 U# f5 [7 G 答:硅(Si)、锗(Ge)和砷化家(AsGa): j* z$ X0 w& E4 B3 m. M( N( _; o4 D 何谓VLSI' b5 w; M# }; b; @; \8 g3 P. G 答:VLSI(Very Large Scale Integration)超大规模集成电路5 E3 U8 @- t& \ t9 x5 L4 K% _2 f 在半导体工业中,作为绝缘层材料通常称什幺0 r7 i, `/ G1 P! U" w! I 答:介电质(Dielectric). w- j" @9 Y2 {0 L0 f w 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线?4 Z* y3 A, G f+ z X* Y5 ? 答:良好的导体仅次于铜 介电材料的作用为何?% Y/ W) h' S6 J, l$ i5 B; f9 [ 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质5 |3 X. M$ o; T8 Y, N7 l5 q+ b 何谓IMD(Inter-Metal Dielectric)9 u9 j4 F1 U! Q/ ?" j% y7 O/ Q" m; N, b 答:金属层间介电质层。1 X8 g' q a0 h3 k4 r" X$ l. l 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass): u0 F0 d! A M+ U( w/ Q 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG?& ~- I3 f8 i( Y! M) q, U 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass)6 f/ g4 U& D/ }5 W 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体" q) ]0 H- @9 p7 C8 P; D8 Y. P) X 二氧化硅其K值为3.9表示何义( Y! @1 J! X+ P; b* _$ g 答:表示二氧化硅的介电质常数为真空的3.9倍6 H9 v' O5 U U" R9 w! o$ ` 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体4 Z& Z5 a* E6 m+ F 简述Endpoint detector之作用原理.6 [2 d$ j" l7 p4 V. f 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测

半导体工艺讲解

半导体工艺讲解(1)--掩模和光刻(上) 概述 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于 10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning ) ?光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 ? 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 ?1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;? ?b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺 第一章半導體基礎知識 通常物質根據其導電性能不同可分成三類。第一類爲導體,它可以很好的傳導電流,如:金屬類,銅、銀、鋁、金等;電解液類:NaCl 水溶液,血液,普通水等以及其他一些物體。第二類爲絕緣體,電流不能通過,如橡膠、玻璃、陶瓷、木板等。第三類爲半導體,其導電能力介於導體和絕緣體之間,如四族元素Ge鍺、Si矽等,三、五族元素的化合物GaAs砷化鎵等,二、六族元素的化合物氧化物、硫化物等。 物體的導電能力可以用電阻率來表示。電阻率定義爲長1 釐米、截面積爲1 平方釐米的物質的電阻值,單位爲歐姆*釐米。電阻率越小說明該物質的導電性能越好。通常導體的電阻率在10-4 歐姆*釐米以下,絕緣體的電阻率在109 歐姆*釐米以上。 半導體的性質既不象一般的導體,也不同于普通的絕緣體,同時也不僅僅由於它的導電能力介於導體和絕緣體之間,而是由於半導體具有以下的特殊性質: (1) 溫度的變化能顯著的改變半導體的導電能力。當溫度升高時,電阻率會降低。 比如Si在200C時電阻率比室溫時的電阻率低幾千倍。可以利用半導體的這個特性製成自動控制用的熱敏元件 (如熱敏電阻等),但是由於半導體的這一特性,容易引起熱不穩定性,在製作半導體器件時需要考慮器件自身産生的熱量,需要考慮器件使用環境的溫度等,考慮如何散熱,否則將導致器件失效、報廢。 (2)半導體在受到外界光照的作用是導電能力大大提高。如硫化鎘受到光照後導電能力可提高幾十到幾百倍,利用這一特點,可製成光敏三極管、光敏電阻等。

(3)在純淨的半導體中加入微量(千萬分之一)的其他元素(這個過程我們稱爲摻雜),可使他的導電能力提高百萬倍。這是半導體的最初的特徵。例如在原子密度爲 5*1022/cm3 的矽中摻進大約5X1015/cm3 磷原子,比例爲10-7(即千萬分之一),矽的導電能力提高了幾十萬倍。 物質是由原子構成的,而原子是由原子核和圍繞它運動的電子組成的。電子很輕、很小,帶負電,在一定的軌道上運轉;原子核帶正電,電荷量與電子的總電荷量相同,兩者相互吸引。當原子的外層電子缺少後,整個原子呈現正電,缺少電子的地方産生一個空位,帶正電,成爲電洞。物體導電通常是由電子和電洞導電。 前面提到摻雜其他元素能改變半導體的導電能力,而參與導電的又分爲電子和電洞,這樣摻雜的元素(即雜質)可分爲兩種:施主雜質與受主雜質。 將施主雜質加到矽半導體中後,他與鄰近的4個矽原子作用,産生許多自由電子參與導電,而雜質本身失去電子形成正離子,但不是電洞,不能接受電子。這時的半導體叫N 型半導體。施主雜質主要爲五族元素:銻、磷、砷等。將施主雜質加到半導體中後,他與鄰近的4 個矽原子作用,産生許多電洞參與導電,這時的半導體叫p 型半導體。受主雜質主要爲三族元素:鋁、鎵、銦、硼等。電洞和電子都是載子,在相同大小的電場作用下,電子導電的速度比電洞快。電洞和電子運動速度的大小用遷移率來表示,遷移率愈大,截流子運動速度愈快。\ 假如把一些電洞注入到一塊N型半導體中,N型就多出一部分少數載子一一電洞, 但由於N型半導體中有大量的電子存在,當電洞和電子碰在一起時,會發生作用, 正負電中和,這種現象稱爲複合 單個N型半導體或P型半導體是沒有什麽用途的。但使一塊完整的半導體的一部分是N 型,另一部分爲P型,並在兩端加上電壓,我們會發現有很奇怪的現象。如果將P型半導體接電源的正極,N型半導體接電源的負極,然後緩慢地加電壓。當電壓很小時,一般小

半导体激光器的应用与分类

半导体激光器的应用与分类 半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。 半导体激光器的分类有多种方法。按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。 LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。 半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。hymsm%ddz 半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。 半导体激光器的光场是发散的而且是不对称的。在垂直PN结平面方向(快轴方向),发散角较大,通常在20°~45°之间;在平行PN结平面方向(慢轴方向),发散角较小,通常在6°~12°之间。由此可以看出,半导体二极管激光器的光场在空间分布呈椭圆形。

(完整版)半导体工艺试卷及答案

杭州电子科技大学研究生考试卷(B卷)

1、什么是CMOS器件的闩锁效应?描述三种阻止闩锁效应的制造技术。(12分) 答:闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,在电源和地之间形成低阻抗大电流的通路,导致器件无法正常工作,甚至烧毁器件的现象。这种寄生双极晶体管存在CMOS器件内的各个部分,包括输入端、输出端、内部反相器等。当外来干扰噪声使某个寄生晶体管被触发导通时,就可能诱发闩锁,这种外来干扰噪声常常是随机的,如电源的浪涌脉冲、静电放电、辐射等。闩锁效应往往发生在芯片中某一局部区域,有两种情况:一种是闩锁只发生在外围与输入、输出有关的地方,另一种是闩锁可能发生在芯片的任何地方,在使用中前一种情况遇到较多。 2、为什么要用区熔法生长硅晶体?比较FZ和CZ优缺点。(10分) 答:(1)原因:因为区熔法可以得到低至1011cm-1的载流子浓度。区熔生长技术的基本特点是样品的熔化部分是完全由固体部分支撑的,不需要坩埚。柱状的高纯多晶材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使得多晶柱紧邻线圈的部分熔化,线圈移过后,熔料在结晶为为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长装置可置于真空系统中,或者有保护气氛的封闭腔室内 (2)CZ和FZ区别:CZ是直拉法,就是首先把多晶硅置于坩埚内加热熔化,然后采用小的结晶“种子”——籽晶,再慢慢向上提升、结晶,获得大的单晶锭。 (3)CZ和FZ优缺点比较:FZ是水平区域熔化生长法,就是水平放置、采用感应线圈加热、并进行晶体生长的技术。直拉法在Si单晶的制备中更为常用,占75%以上。直拉法制备Si单晶的优点是:1)成本低;2)能制备更大的圆片尺寸,6英吋(150mm)及以上的Si单晶制备均采用直拉法,目前直拉法已制备出400mm(16英吋)的商用Si单晶;3)制备过程中的剩余原材料可重复使用;4)直拉法制备的Si单晶位错密度低,0~104cm-2。直拉法制备Si单晶的主要缺点是,由于使用坩埚,Si单晶的纯度不如区熔法。区熔法制备Si单晶的主要优点是,由于不使用坩锅,可制备高纯度的硅单晶,电阻率高达2000Ω-mm,因此区熔法制备的Si单晶主要用于功率器件及电路。区熔法制备Si单晶的缺点是:1)成本高; 3、什么是LOCOS和STI?为什么在高级IC工艺中,STI取代了LOCOS?(12分) 答:(1)LOCOS:即“硅的局部氧化”技术(Local Oxidation of Silicon)CMOS工艺最常用的隔离技术就是LOCOS(硅的选择氧化)工艺,它以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。-常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散,使LOCOS工艺受到很大的限制。STI:浅沟槽隔离(STI)是用于隔绝活动区域的制造方法,它会使实际电流不同于模拟结果。具体情况取决于电晶体位置。 (2)取代原因:LOCOS结构影响了有源区长度,为了减小鸟嘴,出现了改进的LOCOS 结构,PBL和PELOX结构。PBL(poly buffer LOCOS多晶衬垫LOCOS)结构是在掩蔽氧化层的SiN和衬底SiO2之间加入一层薄多晶,这样减小了场氧生长时SiN薄膜的应力,也减小了鸟嘴。PELOX(poly encapsulated Locol Oxidation多晶镶嵌LOCOS)结构是在SiN层的顶部和侧部嵌如多晶或非晶薄膜,然后在生长场氧,它同样能减小鸟嘴。因为两种结构增加了工艺的复杂性,故LOCOS一般用于0.5~0.35μm的工艺中。为了更有效的隔离器件的需要,尤其是对于DRAM器件而言;对晶

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素一傢Ga硼B PN结: 半导体元件制造过程可分为 前段( FrontEnd )制程 晶圆处理制程( WaferFabrication ;简称 WaferFab)、 晶圆针测制程( WaferProbe); 後段( BackEnd) 构装( Packaging )、 测试制程( InitialTestandFinalTest ) 一、晶圆处理制程晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器( Microprocessor )为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘 (Particle )均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗 ( Cleaning )之後,接著进行氧化( Oxidation )及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过 WaferFab 之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、 IC 构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型 IC 的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离) ECL(不掺金)(非饱和型)、TTL/DTL (饱和型)、STTL (饱和型)B在元器件间自然隔离 I2L (饱和型) 半导体制造工艺分类 二MOSIC勺基本制造工艺: 根据栅工艺分类 A铝栅工艺

半导体激光器的应用与前景

关于半导体激光器 作者 摘要:目前半导体激光器发展非常快。随着技术的成熟,半导体激光器的应用也越来越广泛。本文主要分析半导体激光器的国内外发展现状,总结其原理、应用。评估半导体激光在未来的发展。 关键词:半导体激光器原理与应用未来前景Abstract:Nonadays,the semiconductor laser develop very fast.with the technology becomed more and more adultness, the semiconductor laser was application in kinds of filed.This essay analysis the semiconductor laser statu of develop in home and foreige,at the same time ,summarizing its principle and applicat- Ion.estimating the semiconductor laser develop in future.

Keywords:the semiconductor laser principle and application the prospest 国内外发展状况: 相对于固体激光器和气体激光器来说,半导体 激光器真可谓是姗姗来迟,但是它具有效率高、体 积小、寿命长、成本低、等优点,目前在激光器领 域中已占据一半以上的市场份额,而且还在不断扩 大,大有取代传统激光器的趋势[1]。 半导体激光是目前各种激光中发展最快的,它 占有激光市场的最大份额。半导体激光器又称为二 极管激光器(LD),随着生长技术的进步、器件量 产化能力的提高、性能的改善及成本的下降 , LD 陆续扩展到许多其它应用领域,包括 CDROM 驱动、激光打印、可擦除光存储驱动、条码扫描、 文娱表演、光纤通信 ,以及航空和军事应用如军训 模拟装置、测距机、照明器、CI等。由于LD的

半导体工艺(精)

半导体的生产工艺流程 -------------------------------------------------------------------------------- 一、洁净室 一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用! 二、晶圆制作 硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ 法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ悬浮区熔法法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。

半导体工艺知识综合题库

工艺知识竞赛试题库 一、公共知识: 1.中英对照 T/R:卷带(Tape and Reel) TEST:测试 Marking:印章 V/I:Visual Inspection Packing:包装 P/N:型号(Part No.) Reel:卷盘 Lot No.:批号 Run Card:随工单 WIP:在制品(Work in process)Stand-off:站立高度 NO Marking:无印记 Yield:良率 O/S:开短路 Package:封装形式 Quantity:数量 Quality:质量 D/C:周期(Date Code) Tube:料管 Bulk:散装 Carry tape:载带 Cover tape:盖带 PPM:百万分之一 SPC:统计过程控制 Reel force:编带拉力 CPK:过程能力指数 CCD:光检 Test program:测试程序 Machine:机器 Operator:操作工 Monitor:值班长 Repairer:维修工 Manager:经理 标签:Label Record:记录标准:Standard SOP:作业指导书 CP:控制计划(Control Plan) FMEA:潜在失效分析 DOE:实验设计 OCAP:超出控制的措施计划 UPH:每小时产量 START: 开始 Pitch motor:步进马达 GP:Green Product绿色产品 2. 员工上班静电检测内容:防静电手链和防静电鞋。 3. 测试车间温湿度范围:温度20-26℃、湿度40-60%;包装区温湿度范围:温度20-28℃、湿度40-70%。 4.5S包括:整理、整顿、清理、清洁、素养五个方面。 5.ESD(Electrostatic discharge)静电放电:指具有不同静电电位的物体由于直接接触或静电感应所引起的物体之间静电电荷的转移。 6.公司质量方针:全员参与鼓励和要求新潮集团全体员工持续的创新质量价值 持续改善持续改善我们的制程,产品和服务 顾客满意倾听顾客的心声,达到顾客的要求 7.公司愿景:成为一流的的半导体封测企业 8. 公司使命:为客户提供最好的品质、最短的交期、最具竞争力的成本及全方位的服务。 9.公司环境方针: 以法治理,清洁生产,全方位地预防和控制污染。

半导体激光器调研报告

半导体激光器调研报告 班级:电科 姓名:XXX 学号:20120xxx

半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 仪器简介: 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P 型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。 工作原理: 根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。 一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接带隙半导体材料如Si有高得多的辐射跃迁几率,发光效率也高得多。 半导体复合发光达到受激发射(即产生激光)的必要条件是:①粒子数反转分布分别从P型侧和n型侧注入到有源区的载流子密度十分高时,占据导带电子态的电子数超过占据价带电子态的电子数,就形成了粒子数反转分布。②光的谐振腔在半导体激光器中,谐振腔由其两端的镜面组成,称为法布里一珀罗腔。③高增益用以补偿光损耗。谐振腔的光损耗主要是从反射面向外发射的损耗和介质的光吸收。 半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数; (2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;

相关主题
文本预览
相关文档 最新文档