当前位置:文档之家› 悬索桥抗风综述

悬索桥抗风综述

悬索桥抗风综述
悬索桥抗风综述

悬索桥抗风综述

摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。文中还对超长跨径悬索桥建设的可行性进行了研究。

关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器

1. 塔科玛桥的倒塌

1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。

设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。

塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。北美抗风对策的实质是桁架和重量。

2. 欧洲抗风方式的改进

欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。

箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。

采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。

3. 20世纪末的悬索桥

20世纪才真正是长大悬索桥的发展时期,日本架设了跨度近2 000m的世界

【桥梁】工程文献综述模板

摘要:本文从桥梁工程的定义出发,对桥梁工程做了基本的定界,接着介绍了桥梁的基本组成、桥梁的分类以及特点,随后,阐述了桥梁学科的历史发展以及规律,正是因为在历史的发展中我们不断总结和反思,才更好的推动了桥梁工程突飞猛进的发展。从历史过过渡到当下,进而引出了当下的一些桥梁学科的前沿问题,为后面对桥梁工程未来的展望奠定了基础。最后,对桥梁工程未来的发展方向做出了分析。 关键词:组成;分类;历史,前沿;未来 引言:本篇文献综述的论述主题是桥梁工程,紧紧围绕桥梁工程来展开本文。桥梁工程指桥梁勘测、设计、施工、养护和检定等的工作过程,以及研究这一过程的科学和工程技术,它是土木工程中属于结构工程的的一个分支。桥梁工程学的发展主要取决于交通运输对它的需要。我们在生活中桥梁处处可见,由此可看出桥梁在生产生活中的重要性,通过历史发展我们也可以了解到桥梁在文化,经济,军事每一个方面都有着重大的影响,桥梁随着时间的推移在不断的改变,但却历久弥新。随着科学技术的发展,经济,社会,文化水平的提高,桥梁建筑的需求越来越高。经过几十年的努力,我国的桥梁工程无论在建设规模上,还是在科技水平上,都取得令世界瞩目的成就。现代建筑的价值源于创新精神,桥梁工程也不例外。作为一名工科学子,我们要克服因循守旧,不思进取的风气,敢于质疑传统,在结构形式、施工方法、设计理念和设计方法上创新,对更高科技、更高质量、更环保的工程技术的追求步履不停。

正文: 1.【1】桥梁的基本组成 桥梁的组成与桥梁的结构体系有关。常见的桥梁组一般由上部结构、下部结构两部分组成。在桥跨和墩台之间还设有支座,用于连接和传力。除此之外,还有路堤、挡墙、护坡、导流堤、检查设备、台阶扶梯以及导航装置等附属设施。 1.1上部结构 桥梁位于支座以上的部分称为上部结构,它包括桥跨(也叫承重结构)和桥面。桥跨是桥梁中直接承受桥上交通荷载并架空的结构部分;桥面是承重结构以上的各部分(指公路桥的行车道铺装,铁路桥的道砟,枕木,钢轨,排水防水系统,人行道,安全带,路缘石,栏杆,照明或电力装置,伸缩缝等)。 1.2下部结构 桥梁位于支座以下部分称为下部结构,也叫支承结构。它包括桥墩,桥台以及墩台的基础,基础位于墩台的最下部分,承受墩台传递的全部荷载(包括交通荷载和结构自重)并将其传递给地基的结构物。地基是承受由基础传递的荷载而产生变形的各个土层(包括岩层)。 1.3正桥与引桥 桥梁跨越主要障碍物(或通航河道)的结构称为正桥;连接正桥和路堤的桥梁区段称为引桥。正桥跨度大,基础深,是整个桥梁工程的重点;引桥一般跨度较小,基础较浅;在正桥和引桥的分界处,有时还会设置桥头建筑——桥头堡。 1.4跨度 跨度也叫跨径,是表现桥梁技术水平的重要指标,它表示桥梁的跨越能力。多跨桥梁的最大跨度称为主跨。桥跨结构两支座间的距离L1称为计算跨径,用于结构分析计算;设计洪水位线上两相邻墩台间的水平净距L0称为桥梁净跨径,各孔净跨径之和称为总跨径,它反映的是卡桥梁的泄洪能力。 1.5桥梁全长 《公路桥涵设计通用规范》( D60-2004)规定:有桥台的桥梁为两岸桥台侧墙或八字墙尾端间的距离;无桥台的桥梁为桥面系长度。 1. 6桥下净空高度 设计洪水位或设计通航水位与桥跨结构最下缘的高差H称为桥下净空高度,应大于通航或排水要求的最小数值。 1.7建筑高度 桥面到桥跨结构最下缘的高差h称为桥梁的建筑高度。其数值应小于在桥梁定线中所要求的容许建筑高度。 2.【2】桥梁的分类及特点 桥梁有许多分类方式,人们通常根据桥梁的结构形式、所用材料、所跨越的障碍以及其用途、跨径大小等对桥梁进行分类。 2.1根据桥梁单孔跨径大小和多跨总长的不同,桥梁可分为;小桥、中桥、大桥、特大桥。

悬索桥计算

*第八节悬索 悬索有许多工程应用,常见的有高压输电线、架空索道、悬索桥等。悬索结构两端固定,它和梁的主要区别在于悬索不能抵抗弯曲,只能承受拉力。在初步的力学计算中,假设悬索具有充分的柔软性,故称为柔索。本节讨论的悬索均为柔索。对于已经处于平衡状态的悬索,根据刚化原理可知,作用在悬索上的力应该满足刚体的平衡条件。同时需要注意的是,绳索不是刚体,平衡方程表示绳索平衡的必要条件但非充分条件。 工程实际中经常碰到的问题是:在给定载荷作用下,求悬索的形状、索内拉力和绳索长度,以及它们与跨度、垂度、载荷之间的关系,以作为设计、校核悬索的根据。 悬索在工作中受到的载荷可以分为两类:(1)集中载荷;(2)分布载荷。其中分布载荷中最常见的是水平均布载荷、沿索均布载荷。当不计钢索自重时,旅游胜地高空缆车的索道受到车厢集中力(即重力)的作用(图8-39a);装有吊篮的架空索道,同样受吊篮的集中力(即重力)的作用。这些都是悬索受集中载荷作用的例子。悬索直拉桥主索上承受的载荷可看成是水平均布载荷(图8-39b)。高空输电线(图8-39c)和舰船的锚链上承受的载荷可看成是沿索均布载荷。 (a) (b) (c) 图8-39 当悬索两支座A和B高度相同时,两个支承点之间的水平距离称为跨度;在载荷作用下,悬索上每一点下垂的距离称为垂度,由悬挂点到最低点的垂直距离称为悬索的垂度。在悬索计算中,跨度和索上最低点的垂度通常是已知的。 一、集中载荷 设绳索(柔索)连接在两个固定点A和B并有n个垂直集中载荷P1、P2、…、P n,如图8—39(a)所示,绳索的重力与绳索承受的载荷相比可以忽略。因此当绳索系统处于平衡状态时,相邻载荷之间的绳索段AC1、C1C2、C2C3和C3B均被拉紧成直线段,即在集中载荷作用下,绳索成折线状。故绳索段AC1、C1C2、C2C3和C3B均可以当作二力杆,绳索中任

某人行景观悬索桥抗风性能试验研究

某人行景观悬索桥抗风性能试验研究 许福友,谭岩斌,张哲,陈国芳 (大连理工大学土木水利学院,大连 116024) 摘 要:通过全桥气弹模型试验对均匀和紊流场、3种风攻角宿迁黄河公园景观桥风振响应性能进行了研 究;对风速高度变化修正系数的理论计算值与规范值作了对比,分析其偏差原因。研究结果表明:地表越粗糙、高度越低,修正系数差值越大;40m高度以上两种结果非常吻合;黄河公园景观桥在三种攻角条件下,都未发现明显的涡激振动,且满足气动稳定要求;即使高风速条件下,抖振位移标准差也有可能高于平均值;均匀和紊流场中位移峰值因子及其比值分别主要分布在区间[2.5,4]和[0.8, 1.2]内;峰值因子与风场、风速、攻角之间基本不存在明确对应关系;本文研究结果对风振理论分析中峰值因子的合理取值提供很好参考。 关键词:人行景观桥;风洞试验;抖振;峰值因子 中图分类号:U448.25 文献标识码:A 现代城市交通流量飞速增长,迫使城市交通实现立体化,为保证行人与车辆双方的交通流畅及安全,城市人行桥得到了迅速的发展。人行桥不仅满足使用功能上的需要,还要向着体现以人为本的设计理念方向发展。因此往往作为城市标志性建筑而存在。采用钢材建造的斜拉桥和悬索桥,作为柔性轻逸结构更能给城市增添了活力和点缀,因此受到设计师和行人的青睐。有些人行桥往往较窄,宽度在5m 左右即可满足通行能力,此时由于人行荷载或风荷载引起的桥梁振动问题可能比较严重,需要采取抑振和减振措施。 基金项目:国家自然科学基金资助项目(50708012)、高等学校博士点新教师基金(20070141073) 收稿日期:2008-07- 1 22.0Pimentel [1]研究了来自人群行走时竖向荷载引起的人行桥振动,并根据设计要求对其进行评估。伦敦千禧桥[2]在人行荷载作用下表现为保持平衡状态的竖向、侧向和扭转耦合滚动,被称为“Holland Rotation”(荷兰式滚动)。Nakamura [3]通过现场实测研究了某人行悬索桥的侧向振动,为振动分析提供了第一手资料。法永生[4]通过模拟人行随机荷载激励对人行桥进行了人致振动时程分析并对其舒适度进行了评价,给出可行的减振措施并预测减振效果;建立了适合于评估人行桥振动烦恼率的舒适度量化指标,提出了考虑人行桥竖向与侧向耦合振动时的综合评价方法。孙利民教授[5]对人行桥人行激励竖向振动的国内外现有规范和标准进行了比较研究,并探讨了针对侧向人行激振的振动使用性设计方法。在参考国外规范的基础上,建议确定竖向和侧向人行激振荷载的计算公式。Flaga [6]通过理论分析研究了风荷载作用 下某人行悬索桥的气动特性。Tanaka [7]通过在某人行悬索桥跨中添加紧扣缆索与主梁的夹锁装置,可以大大减小跨中竖向挠度,提供颤振临界风速,且抑制了涡激振动。国内外对人行桥进行风洞试验很少,李文勃[8]通过节段模型风洞试验研究了深港皇岗/落马洲人行斜拉桥抗风性能。有关人行桥气弹模型风洞试验至今未见相关文献报道。 宿迁黄河公园景观桥为单跨105m 人行悬索桥,是宿迁城市标志性建筑。虽然该桥跨度不大,但加劲梁 采用钢桁架梁(图1)、高 图1主梁桁架断面 (单位:cm) 1.4m 、宽4.8m ,结构既窄,又轻。本文通过全桥气弹模型风洞试验对其涡振、抖振和颤振抗风性能进行研究。 1. 几种风速的确定 徐州宿迁地区基本风速为25.6m/s [9]。宿迁黄河公园景观桥桥位属于C 类风场,梯度风高度为400m ,风速剖面指数=α。标准风场,即B 类风场梯度风高度为350m ,16.0=α。桥面高出水面5m ,因此设计基准风 速为:V =17.2m/s 。 而根据抗风规范22.016 .)400/5(10/3506.25××=)(d [9]提供的C 类风场5m 高度处风速高度变化修正系数K 为0.86,即25.6×0.86=22 m/s 。由此可见,两种结果差别非常明显。主要原因如下:自然界风场被

自锚式悬索桥施工方案

目录 1、工程概况 (1) 1.1工程概述 (1) 1.2主要技术标准 (1) 1.3、主桥结构 (2) 2、重难点分析 (2) 3、主梁施工工艺流程 (3) 3.1先梁后拱施工工艺 (3) 3.2 先缆后梁施工工艺流程 (5) 4、方案对比分析表 (6) 5、主要工程项目的施工方案 (7) 5.1、总体施工方案 (7) 5.1.1下部结构 (7) 5.1.2上部结构 (7) 5.1.3猫道、承重索、主缆架设 (8) 5.2各分部施工方案 (8) 5.2.1栈桥施工方案 (8) 5.2.2桥塔基础施工方案 (9) 5.2.3桥塔 (11) 5.2.4 主梁施工 (12) 3.2.5 缆索施工 (15) 5、施工机械设备计划 (20)

1、工程概况 1.1工程概述 东莞江南支流港湾大桥工程位于广东省东莞市,跨越江南支流,连接沙田阇西村与坭洲岛,为东南-西北走向。项目起点与港口大道平交,起点K0+000,沿西北方向穿越江南支流后,终点与坭洲岛疏港大道相交,终点桩号K2+922,路线全长2.922Km,设置桥跨为60+130+320+130+65=705m,见下图。 桥跨布置图(m) 1.2主要技术标准 (1)道路等级:一级公路兼顾城市主干道功能; (2)设计速度:主线60km/h; (3)设计荷载:公路-Ⅰ级; (4)主桥标准段桥宽:1.25m 风嘴+2.5m 人行道+2m 吊杆锚固区+0.75m 硬路肩+11.25m 行车道+0.5m 路缘带+1m 中央隔离带+0.5m 路缘带+11.25m 行车道+0.75m 硬路肩+2m 吊杆锚固区+2.5m 人行道+1.25m 风嘴,全宽37.5m; (5)设计洪水频率:1/300; (6)通航等级:现状河道为拟建桥梁所在河段坭尾至杨公洲中8km河段航道为Ⅳ级航道,通航500吨级船舶,航道尺寸为2.5m×50m×330m(水深×底宽×弯曲半径)。近期规划为Ⅲ级航道,通航1000吨级船舶,航道尺寸为2.5m×60m×480m(水深×底宽×弯曲半径)。远期规划为Ⅰ级航道,海轮5000 吨级,垂直航迹线方向通航孔尺寸为(270×34)m,本桥桥址处通航孔净宽须不小于294m,净高不小于34m;

大跨径悬索桥风致振动及抗风措施

大跨径悬索桥风致振动及抗风措施 摘要:悬索桥以主缆为主要承重结构具有跨越能力大、雄伟壮观、造型优美等优点而成为大跨径桥梁结构首选桥型之一。但随着跨度的增大,悬索桥的刚度变小,对风的敏感性越来越大,对抗风要求也越来越高。大跨度悬索桥在风荷载的作用下,主要构件会产生各种形式的振动。简述了国内外悬索桥抗风的发展和研究历史,分析了悬索桥风致振动的形式,并提出增强结构刚度、抑制风致振动的抗风措施。 关键词:大跨径悬索桥、风致振动、抗风措施 1 前言 悬索桥是以缆索为主要承重结构的桥梁结构,由于其强大的跨越能力,成为跨越宽大江河、海湾的首选桥型之一。我国修建悬索桥的历史久远,早在千年之前,四川就已出现竹索桥。明清时期,在我国西南地区,修建有诸多铁索桥,有些索桥至今仍在使用,著名于世的有贵州盘江桥和四川泸定桥。在国外,也存在古老的悬索桥,如麦地海峡桥和克里夫顿桥。20世纪初,国外欧美等国家经历了工业革命,加上悬索桥计算理论的初步形成,使悬索桥得到迅速的发展。由于缺乏对空气动力学的研究,1940年,美国塔科马桥被风摧毁而倒塌。此后十年,悬索桥的建设进入了停滞期。在塔科马老桥风毁后,人们意识到悬索桥抗风设计的重要性,开始进行很多风洞试验以探索悬索桥抗风措施。抗风研究阶段后,世界各国为了适应日益增长的交通量和经济发展,兴起了修建大跨径悬索桥的高峰。我国在90年代后,国家加强基础建设水平,悬索桥的发展迅猛,东南沿海地区地区和长江内河等地修建了诸多大跨度的悬索桥,如今建设已经走在了世界的前列。但悬索桥由于跨径的增大,刚度减小,柔性问题突出,承受风荷载的能力逐渐减小,极易被风摧毁。悬索桥的风毁破坏属于脆性破坏,破坏前是难以预测和预警。因此,深入了解桥梁与风作用后效应,进行科学合理的抗风设计,采取有效的抗风措施提高桥梁的抗风能力,对于悬索桥的建设和发展具有十分积极的现实意义。 2 大跨度悬索桥风致振动形式 风是指空气由于太阳加热不均匀而引起的流动,具有一定的速度与方向。桥梁在风通过时,会与风产生作用,形成摩擦力和推力。当风以不变的物理量作用在桥梁时,产生的力为静力,可按结构力学方法进行计算。但是自然界风的作用由于具有不规则性,对悬索桥作用的大小和方向是随机的。悬索桥结构构件与风的作用大小和方向有所不同,会产生不同形式的风致振动。下面主要介绍悬索桥结构产生的常见风致振动形式。 2.1 加劲梁的颤振 当风通过非流线型断面的加劲梁时,气流会产生涡旋和分离,此时风不仅具有静力作用,更值得注意的是其对桥梁结构的动力作用。对于大跨度悬索桥这种刚度相对较小的桥型,风的作用激发了加劲梁结构产生振动,加劲梁的振动发过来影响气流的流场,改变气流的大小和方向,此时风的流动和加劲梁振动想互影响。空气力受加劲梁振动的影响较大时,形成一种自激力。加劲梁的振动系统阻尼在受不断的气流反馈作用而变为负值时,不断吸收能量导致振幅逐步增大的空气失稳现象现象称为加劲梁的颤振。

自锚式悬索桥

自锚式悬索桥的综述 2005-8-5【大中小】【打印】 摘要:介绍自锚式悬索桥的特点、历史及国内外发展情况。重点分析了钢筋混凝土桥的设计和发展,并对其施工工艺做了简单介绍。总结展望了自锚式悬索桥的发展空间及其需进一步研究的问题。 关键词:悬索桥;自锚式体系;施工;实例 一、前言 一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。 过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990 年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。 自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。 ②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊

20-悬索桥分析一

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手 悬索桥建模助手图1 掌握各参数含义及使用注意事参考帮助说明文档,1是悬索桥建模助手设置对话框,图项。在使用该建模助手时,经常碰到如下疑问:)对于小跨径的人行索桥,没有边跨如何建模?1 )桥面系荷载如何正确定义?2 )横向内力如何计算?3 解决了上述疑问,才能正确的使用悬索桥的建模助手。 2的结构布置:1对于问题,即要实现如图 图2 无边跨悬索桥布置

在建模助手对话框中,通过设置主梁端点A1的坐标和边跨吊杆间距完成无边跨及吊杆的布置。 图3 无边跨悬索桥设置 有边跨无吊杆:A1的x坐标为a,左跨吊杆间距为a的绝对值; 无边跨:A1的x坐标为a,但a输入非常小的数值,例如-0.01,左跨吊杆间距为a的绝对值;对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法 图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图:

发展中的自锚式悬索桥

发展中的自锚式悬索桥 孙立刚 (辽宁省交通勘测设计院,沈阳110005) 摘 要 自锚式悬索桥因其优美的造型受到人们越来越多的关注,近年来已有多座自锚式悬索桥建成。本文总结了自锚式悬索桥的特点,并介绍了自锚式悬索桥的建造历史、结构形 式、理论研究、设计和施工等方面的发展状况。 关键词 自锚式悬索桥 发展 综述 悬索桥根据主缆锚固方式的不同可以分为两种:一种是锚固在基础上,主缆的水平分力和竖向分 力通过锚固体传递给地基,这是地锚式悬索桥;另外一种是将主缆锚固于加劲梁的梁端锚固体上,主缆的水平力由加劲梁承受,竖向分力由桥墩和配重抵消,这种悬索桥称为自锚式悬索桥。由于取消了庞大的锚碇,自锚式悬索桥不仅造型精致美观,满足城市空间小、对景观效果要求高的特点,而且也避开了在不良地质处修筑锚碇的技术难题。1自锚式悬索桥的发展历程 从建造历史来说,自锚式悬索桥并不是一种新桥型。19世纪后半叶,奥地利工程师约瑟夫?朗金和美国工程师查理斯?本德提出了自锚式悬索桥的造型。朗金于1870年在波兰建造了世界上首座小型铁路自锚式悬索桥。20世纪初,自锚式悬索桥首先在德国兴起,自1915年在莱茵河上建造的第一座大型自锚式悬索桥—科隆-迪兹桥起,到1929年共修建了5座自锚式悬索桥,其中1929年建成的科隆-米尔海姆桥主跨跨径达到315m ,保持自锚式悬索桥跨径记录70余年。在这期间美国和日本也建造了几座自锚式悬索桥 。 图1日本此花大桥立面图 40年代塔科马桥风毁事故后,悬索桥的建造步 入了低谷阶段。1954年德国工程师在杜伊斯堡完 成了跨径230m 的自锚式悬索桥后,世界上没有再建造这种桥。上世纪90年代,日本和韩国重新推出了这种桥型,并且注入了新的元素。1990年建成的日本此花大桥为单索面自锚式公路悬索桥,跨径布置为120m +300m +120m ,主缆垂跨比1:6,采用倾斜吊杆,加劲梁为钢箱梁,主塔为花瓶型;1999年建成的韩国永宗大桥为双索面公铁两用自锚式悬索桥,跨径布置125m +300m +125m ,垂跨比1:5,采用竖直吊杆,索面倾斜,花瓶型主塔,加劲梁是桁架梁与钢箱梁的双层组合结构,上层通行汽车,下层铺设铁路。这两座桥成为现代自锚式悬索桥的典型代表。美国奥克兰海湾新桥重建计划中包括一座单塔2跨自锚式悬索桥和一座3跨双塔自锚式悬索桥, 其中单塔悬索桥跨径达到385m 。这几座桥的设计和建成拉开了新世纪自锚式悬索桥研究和建造的序幕。2自锚式悬索桥在国内的迅速推广和发展2.1 国内自锚式悬索桥的建造概况 国内所建造的自锚式悬索桥的结构形式丰富多 样,材料选择不拘一格。从加劲梁的构造上来说,有钢混叠合梁、桁架梁、钢箱梁、混凝土箱梁、混凝土边主梁;有漂浮式体系,也有在桥塔处设置支座的支承体系;从造型上来说,多数采用了双塔多跨式结构,佛山平胜大桥为独塔单跨式结构,还建成了独塔双跨式的人行自锚式悬索桥;在加劲梁的材料使用方面,我国桥梁设计者首次提出了混凝土自锚式悬索桥的概念,即以钢筋混凝土代替钢作为加劲梁材料, 并且成功地建成了几座这种类型的悬索桥。2002年在金石滩金湾桥的建造中加劲梁首次使用了钢筋混凝土,随后建成的抚顺万新大桥和江山市北关大 ? 13?第11期 北方交通

悬索桥抗风综述

悬索桥抗风综述 摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。文中还对超长跨径悬索桥建设的可行性进行了研究。 关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器 1. 塔科玛桥的倒塌 1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。 设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。 塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。北美抗风对策的实质是桁架和重量。 2. 欧洲抗风方式的改进 欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。 箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。 采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。 3. 20世纪末的悬索桥 20世纪才真正是长大悬索桥的发展时期,日本架设了跨度近2 000m的世界

悬索桥重点(关键)和难点分项工程的应对措施

3.2. 4.7.9.1索塔施工 (1)重点与难点 A索塔施工测量 本工程索塔高,距两岸较远,给索塔施工测量带来较大的难度。 B索塔C50高性能混凝土 索塔混凝土泵送高度较大,在进行配合比设计时应充分考虑混凝土的强度、耐久性及泵送性能,配备泵送能力较强的输送泵。 C实体段大体积混凝土的温控措施 塔柱实体段属高标号大体积混凝土,施工时必须采取有效措施进行内外温差控制,防止混凝土开裂而降低工程耐久性。 D横梁施工支架 横梁施工支架均属高支架,对支架的强度和刚度要求高。 (2)应对措施 索塔施工测量放样定位采用全站仪三维坐标法进行施工控制,高程控制采用全站仪三角高程法结合NA2精密水准仪几何水准法,达到满足测量精度和施工质量要求。 塔柱起步段采用爬模施工,其爬架、模板利用液压爬模的外模和外爬架,分层高度3.0m,设4层;其余塔柱采用液压爬模施工,爬模标准施工节段高4.5m。 塔柱实体段采用分层浇注,并采取有效的温控措施。 横梁采用钢管支架现浇。 在索塔施工过程中,均属高空立体交叉作业面,安全控制难度极大,对支架施工、爬模施工、预应力施工等工序必须严格进行安全控制。 3.2. 4.7.9.2猫道施工 (1)重点与难点 猫道系统是悬索桥上部结构安装最重要的临时工程之一,作为上部结构安装最大的施工平台,贯穿上部结构安装的始终。猫道系统的好坏直接关系到整个上部结构安装的施工安全与质量。 (2)应对措施 猫道结构采用三跨连续的无抗风缆体系,以简化施工工序,有利于加快施工进度,有利于降低对桥下通航的影响。 猫道的设计,特别是对每根猫道索的长度、破断张力、最大荷载、弹性变形的要求都将充分考虑到上部结构安装过程中的各种工况。 猫道架设采用单线往复式牵引系统,在单线往复式牵引系统形成前,先进行先导索过江,导索过江通过500HP拖轮从南向北牵引过江,需进行一次封航。 形成单线往复式牵引系统后,通过托架法架设猫道索,该工作关键点在于:对于未锚固猫道索的临时固定工作。 牵引过程中两岸的卷扬机同步指挥。 这两项工作中的任何失误,都将直接威胁航道的安全。 猫道的就位、测量及调整通过经纬仪观测主跨各索的切线与水平面间的夹角,塔顶实测纵向偏移值及塔顶和塔底的温度平均值,计算出各索的调整长度,据此在连接滑轮组上进行调整。 根据施工进展需要,对猫道索长进行阶段性的放松调整。在主缆架设完毕后,将猫道转载于主缆上。根据猫道施工的要求,在工程后期对锚固点进行调整。

自锚式悬索桥施工控制

大跨度悬索桥主缆控制 大跨度悬索桥主缆的受力图式可简化为受沿索长分布的均布荷载和吊索处的集中荷载作用的柔性索,主缆的计算即可转化为求理想索结构的线形和内力问题。主缆线形是以吊点为分段点的分段悬链线,通过分段悬链线解析计算理论可以求得主缆在荷载作用下的线形和内力。 在对设计成桥状态精确计算的前提下,为了使竣工后的主缆线形符合设计要求,还需要在施工过程中对主缆的线形进行控制。其方法是事先计算出各施工阶段的超前控制值,并在施工过程中不断进行跟踪分析和调整。大跨度悬索桥的结构线形主要受主缆线形和吊索长度的控制,主缆一旦架设完成,其线形将不能进行调整;吊索长度根据主缆完成线形提出,一般也不预留太大的调整长度。因此主缆施工阶段的控制是整个施工过程中最重要的部分。精确计算出主缆初始安装位置和吊索制作长度等超前控制值非常关键,是保证悬索桥成桥后几何线形满足设计的必要条件。 5.1主缆系统施工控制计算的基本原理 5.1.1成桥主缆线形计算原理 悬索桥的成桥主缆线形是主缆设计的目标和基础,主缆索股下料长度计算、索股架设线形计算、索鞍的预偏量计算、空缆索夹安装位置计算、吊索的下料长度计算等均与成桥主缆线形有关,因此精确地计算成桥主缆线形是完成施工控制的前提。 悬索桥的成桥理想设计状态为: ①恒载状态下中跨的线形满足设计矢跨比; ②索塔塔顶在恒载状态下没有偏位,塔根不存在弯矩; ③恒载由主缆承担,加劲梁在恒载状态下不产生弯矩。 其中,状态③通常不易达到,跟主梁施工方法、顺序有关。对于大跨度悬索桥,事先只知道设计成桥状态结构的控制性几何形状参数,如主缆理论顶点、垂度、主缆跨径中点位置、桥面竖曲线、索夹水平位置、鞍座中心位置等,而主缆的精确线形和结构内力都是未知的,无法通过倒拆法精确计算架设参数。 根据设计给定的控制性几何形状参数,如给定主缆理论顶点和锚固点,则相当于悬索的几何约束边界条件已知。通过下列条件可确定主缆的成桥线形:①主缆上吊点的水平位置已知;②索夹上作用的集中荷载已知(吊索内力可以通过基于有限位移理论的非线性有限元法求得):③主缆通过给定点,如跨中的标高己知;④相邻两跨主缆在塔顶或索鞍处的平衡条件已知。根据3.2节所述的分段悬链线理论,对于具有给定的几何边界条件、分段点几何相容条件、分段点力学平衡条件及①、③两个已知条件,可确定主跨主缆的线形及内力。对于锚跨,由于缺少条件③,可通过已计算出的边跨主缆的内力按条件④确定该跨主缆的某端水平分力或张力,从而确定锚跨的主缆线形及内力。 5.1.2空缆线形及预偏量计算原理 空缆线形是主缆架设的依据,而且也是施工控制中唯一能控制的缆形,一旦主缆架设完成,就无法对主缆线形进行调整。因此,精确计算空缆线形十分重要。空缆状态下,主缆仅承受沿索长方向均布的自重荷载,几何线形可视为悬链线。依据无应力长度不变的原理,利用本文第三章的解析计算方法,可精确计算空缆线形。 索鞍预偏量是指以满足成桥状态的各跨主缆无应力索长空挂于索鞍上,使左右空索水平拉力相等时的鞍座移动量。索鞍预偏量设置的目的是为了在加劲梁吊装过程中,分阶段将主索鞍由边跨向跨中顶推,以平衡两侧主缆对索塔的水平分力,减小塔身弯曲,确保塔身应力不超过容许值,最终使塔身恢复到竖直状态。空缆线形是指具有初始索鞍预偏量下的线形,空缆线形和索鞍位置计算密切相关,索鞍预偏量计算是空缆状态计算中的一个内容。空缆线形和索鞍预偏量的计算采用以下变形相容条件及受力平衡条件:

20-悬索桥分析(一)

20-悬索桥分析(一)

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手

图1 悬索桥建模助手 图1是悬索桥建模助手设置对话框,参考帮助说明文档,掌握各参数含义及使用注意事项。在使用该建模助手时,经常碰到如下疑问:1)对于小跨径的人行索桥,没有边跨如何建模? 2)桥面系荷载如何正确定义? 3)横向内力如何计算? 解决了上述疑问,才能正确的使用悬索桥的

对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法 图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布

荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图: 图6 实际形状及横向内力 横向内力计算过程如下: 利用节线法求主缆初始坐标及初始横向内力,分为2步骤:首先根据桥面恒载值,等效为吊杆处的节点荷载,进行初次计算,得到相应的主缆坐标和横向内力;然后,考虑主缆和吊杆自重,再迭代分析(主缆坐标影响自重,自重反过来也影响主缆坐标),满足收敛条件,最后得到主缆的初始形状和初始横向力。 当曲线比较平坦时,可以用下式估算横向内力: H=qL2 或H= M c0

悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展 悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主 要结构型式之一。悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚 碇等构成。从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。悬索 桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。 考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限 位移理论。挠度理论考虑了悬索桥几何非线性的主要因素,可用比 较简便的数值方法来分析,又有影响线可资利用,故很适用于初步 设计阶段的结构设计计算。有限位移理论则全面地考虑了悬索桥几 何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接 用于设计计算有诸多不便和困难。 悬索桥挠度理论是一种古典的悬索桥结构分析理论。这种理论 主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内 其计算结果比较接近结构的实际受力情况,具有较好的精度。悬索 桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。 最初的悬索桥分析理论是弹性理论。弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载 而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径 小于200米的悬索桥设计中应用[1]。但弹性理论假定缆索形状在加 载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入 变形影响的悬索桥挠度理论。

古典的挠度理论称为“膜理论”。它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。 悬索桥的挠度理论也是一种非线性的分析方法,至今仍不失为分析悬索桥的较简单实用的手段。但挠度理论在基本假设中忽略了吊杆的变位影响及加劲梁的剪切变形影响等,使分析结果的精度受到限制。随着计算方法、计算手段的发展,悬索桥的计算理论也发展到将悬索桥作为大位移构架来分析的有限位移理论。有限位移理论将整个悬索桥包括缆索、吊杆、索塔、加劲梁全部考虑在内,分析时可以将各种二次影响包括进去,从而使悬索桥的分析精度达到新的水平。 有限位移理论是20世纪60年代提出的计算理论。它是一种精确的理论,不需挠度理论所作的那些假定。其计算值一般要小于挠度理论[3]。根据参考文献,主跨为380m时,用有限位移理论计算的内力、挠度值,比挠度理论小10﹪;主跨768m时,在半跨加均

桥梁抗风的常见措施及定性分析

桥梁抗风的常见措施及定性分析 摘要:首先,分析缆索支撑体系桥梁主要构件风致振动的现象和本质,提出了抗风措施。其次,以1 400 m主跨的悬索桥、斜拉桥以及吊拉组合体系桥等缆索支承桥梁的主要结构型式为例,采用三维非线性抗风分析方法,进行了动力特性、空气静力和动力稳定性的分析和比较。最后,介绍桥梁基本结构的抗风性能分析,并以连续刚构桥和斜拉桥为重点介绍了最新的研究成果,提出桥梁抗风研究方面存在的几个薄弱点。 关键词:桥梁抗风;风压;风振;措施;定性分析 1研究桥梁抗风的必要性 随着我国国民经济的迅速发展,对公路交通事业提出更高的要求,在宽阔的海域和水深河宽的大江大河,跨越能力大的缆索支撑体系桥梁(包括悬索桥和斜拉桥)将成为首先被考虑的桥型。纵观悬索桥的发展历史,可以认为其起源于中 国,成熟于美国,革新于英国,进步在13本,普及在中国。目前被公认为跨越能力最大的桥型,1998年建成的明石海峡大桥其主跨已达到1 991 m.斜拉桥 在200~500 In跨度内与悬索桥相比有一定的竞争优越性。早期的斜拉桥由于计算方法和手段不能满足要求,材料松弛、拉索锚固困难、张拉不足等原因长期未能得到发展,索面体系仅限于稀索。近年来由于计算理论的发展,新材料的开发配合,施工技术的进步为斜拉桥的发展创造了一定的有利条件。 但在风力作用下,大跨度悬索桥和斜拉桥容易生变形和振动。1940年主跨853 m的美国塔科马在仅有19 m/s的风速下,发生毁桥事故。斜拉桥方面,日本石狩河口桥和加拿大的Hawkshaw(Longsreek)桥等相继因风振导致加固。因此,大型缆索体桥梁的抗风稳定性研究应引起足够的重视。 2大跨度缆索支撑体系的风振现象 2.1主梁体的风振 目前,大跨缆索支撑体系梁桥主梁一般采用扁平截面,由于其本身的抗扭刚度比较大,产生扭转发散振动所需的风速也较高。涡振发振风速较低,发生频率较高,容易使结构物产生疲劳、行车障碍以及诱发过桥者的不安全感,通过增大结构刚度来防止发生涡振是比较困难的。因此减少风振不仅需要选择良好的梁体截面,还要通过风洞试验来选用各种整流装置,如流线型风嘴、整流翼板等。 2.2桥塔的风振 一般来说,同等跨度桥梁的桥塔,悬索桥的桥塔高度大致仅为斜拉桥的一半,桥塔的风振,两者可以相互借鉴。桥塔塔柱常采用矩形,主要考虑涡振与挠 曲驰振的问题。在架设主缆之前,桥塔由于高度较大'冈0度和阻尼相对较小,在小风速的情况下涡振的发生频率是很高的,常安装滑移块或调质减震器来增加塔柱的阻尼。由于桥塔是细长钝体结构,在气流中不断吸收能量,因此驰振的发生也是不可忽视的。当 (升力系数的导数)<0时,可能出现不稳定的驰振现象。 常常通过风洞试验选择合适的桥塔断面来防止驰振的发生,如采用圆形截面和八角形截面。2.3索的风振 由于拉索的柔性、相对较小的质量及较低的阻尼,在风荷载的作用下,拉索极易发生振动。拉索的风致振动包括涡激共振、尾流驰振、驰振、风雨激振等。拉索的大幅振动容易引起锚固端的疲劳或者毁坏拉索端部的腐蚀保护系统,影响拉索的使用寿命,严重时甚至要紧急封闭交通。拉索振动已成为大跨径斜拉桥要解决的严重问题之一。在风的作用下斜索的后流会产生交变涡流,成为卡门涡旋。当漩涡脱落的频率和拉索的某一阶自振频率接近时,则

继续教育-自锚式悬索桥的施工监控

第1题 施工监测一般要求什么时间进行 A.早晨日出之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定 答案:A 您的答案:A 题目分数:6 此题得分:6.0 批注: 第2题 关于自锚式悬索桥的施工,说法错误的是? A.自锚式悬索桥是先施工加劲梁再施工主缆 B.鞍座施工时要先预偏,然后再顶推 C.自锚式悬索桥的吊杆在施工中无需张拉 D.施工应进行施工过程控制,应使成桥线形和内力符合设计要求。答案:C 您的答案:C 题目分数:6 此题得分:6.0 批注: 第3题 自锚式悬索桥的施工中鞍座一般顶推几次? A.一次 B.两次 C.根据设计图纸上的要求确定 D.根据施工监控的计算分析确定 E.三次 答案:D 您的答案:D 题目分数:6 此题得分:6.0 批注: 第4题 主缆的无应力索长如何确定? A.设计单位给定 B.监控单位给定

C.监控单位计算出无应力索长后请设计单位确认后给定 D.监控单位和施工单位共同商定 答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第5题 监控单位的施工监控指令下发给谁? A.业主单位 B.监理单位 C.设计单位 D.施工单位 答案:B 您的答案:B 题目分数:7 此题得分:7.0 批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:6 此题得分:6.0 批注: 第7题 自锚式悬索桥施工监测的内容有哪些? A.加劲梁、索塔和主缆的线形 B.吊杆、主缆的索力 C.加劲梁、索塔的应力 D.索夹的紧固力 E.温度监测 答案:A,B,C,E

悬索桥抗风综述

悬索桥桥抗风综述 课程名称:桥梁抗震抗风指导老师:周诗云 专业:土木工程 姓名:罗潇 学号: 20134190060 学生年级:2013级 日期:2016年12月5日

目录 悬索桥抗风综述 (2) 1.塔科玛桥的倒塌 2. 欧洲抗风方式的改进 (2) 3. 20世纪末的悬索桥 (3) 4. 采用拉索系统的新桥型 (3) 5. 空气动力学措施 (4) 6. 机械措施 (4) 7. 超长大跨悬索桥的可能 (6) 参考文献 (6)

悬索桥抗风综述 摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。文中还对超长跨径悬索桥建设的可行性进行了研究。 关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器 1. 塔科玛桥的倒塌 1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全 新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。 设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。 塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。北美抗风对策的实质是桁架和重量。 2. 欧洲抗风方式的改进 欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。 箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。 采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。

悬索桥分析时的一些注意事项

悬索桥分析时的一些注意事项 1)使用MIDAS/Civil分析悬索桥的基本操作步骤 a) 定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; b) 打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各 参数意义请参考联机帮助的说明以及下文中的一些内容); c) 将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; d) 运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元 内力数据,并自动生成“自重”的荷载工况; e) 对模型根据实际状况,对单元、边界条件和荷载进行一些必要的 编辑后,将主缆上的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; f) 定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收 敛。运行完了后程序会提供平衡单元节点内力数据; g) 删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义 为相应的结构组、边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; h) 运行分析后查看该施工阶段的位移是否接近于0以及一些构件的 内力是否与几何刚度初始荷载表格或者平衡单元节点内力表格的数据相同; i) 各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态 的各种分析; j) 详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2)建模助手中选择三维和不勾选三维的区别? a) 勾选三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽 度,输入的桥面系荷载将由两个索面来承担; b) 不勾选三维时,程序将给建立单索面的空间模型,不需输入桥面 的宽度,输入的桥面系荷载将由单索面来承担。

相关主题
文本预览
相关文档 最新文档