当前位置:文档之家› 光纤通信的发展趋势

光纤通信的发展趋势

光纤通信的发展趋势
光纤通信的发展趋势

光纤通信的发展趋势

摘要:随着用户对宽带接入技术提出更高的需求,光纤宽带接入技术逐步发展

成熟。本文围绕我国光纤宽带光纤网的发展趋势描述,分析了光纤通信技术发展、光纤技术的优点与劣势,并提出了一些作者自己的见解,希望能够帮助到我国光

纤宽带事业的发展。

关键词:光纤;通信;宽带;发展趋势

引言:

随着技术的进步,市场需求的增长,光纤通信技术的飞速发展,加快了“光速经济” 的到来。现代社会对通信的依赖越来越大,网络的生存性显得至关重要,通信的运行环境变化和

发展对光纤通信提出了更高的要求。光纤通信在网络信息时代孕育而生,作为信息的载体,

在很大程度上改变了通信方式,尤其是以光纤作为传输媒介,具有通信容量大、耗损小、频

带宽等特点,极大地推动了通信领域的发展。我国经济的进一步发展必将形成新的光纤通信

市场需求,像其他通信技术一样,光纤通信又一次呈现了蓬勃发展的新局面。

正文

一、光纤接入技术定义

所谓光纤接入网(OAN)就是采用光纤传输技术的接入网,一般指远端模块或本地交换

机与用户之间采用光纤通信或部分采用光纤通信的系统。一般情况下,OAN 泛指采用基带数

字传输技术并且以传输双向交互式业务为目的的接入传输系统,这样能够把数字或模拟技术

升级交互式业务或者广播式传输宽带。按照接入网室外传输设施中是否配备源设备,光纤接

入网(OAN)也可以划分为有源光网络(AON)与无源光网络(PON),前者采用电复用器

分路,后者则是采用光分路器分路。现阶段宽带接入网进入了巨大的发展轨道,各种光纤接

入网技术均得到了长足发展。

二、光纤接入网的优点

与其他接入网技术相比,光纤接入主要有以下优点:

1)光纤接入网能满足用户对各种业务的需求

人们对通信业务的要求也普遍提高,除了看电视、打电话以外,还希望有高速计算机通信、视频点播(VOD)、高清晰度电视(HDTV)、远程教学、家庭购物、家庭银行等等。这

些业务仅靠双绞线或铜线是难以实现的。

2)光纤接入采用的传输介质是光纤,其抗干扰性能好、频带宽、衰减小,保障了信号

传输的质量,加上光纤接入使用的网络与电话网是不相同的,光纤接入主要是通过光纤将小

区中心交换机和局端交换机相连、小区中心交换机和楼道交换机相连,这样的网络可靠性高、稳定性强。用户接入简单化,接入速率高,覆盖范围比ADSL还广。

3)光纤接入网的性能不断提高,价格不断下降,而铜缆的价格却在不断上涨。

4)光纤宽带所用的集线器、以太网交换机等组网设备的成本比较低。

5)光纤接入网提供数据业务,有较完善的管理和监控系统,可以适应宽带综合业

务数字网的需要,能够做到使信息高速公路畅通无阻。

6)光纤可以克服铜线电缆一些无法克服的限制因素。光纤频带宽、损耗低,解除了铜

线径小的限制。此外,光纤不受电磁干扰,确保了信号额传输质量,用光缆代替铜缆,能够

解决城市通信地下管道的拥挤问题。

7)光纤设备占用小,而其它端口设备主要安装在小区楼道内,该矿电信机房可用面积

已经很少,使用光纤接入节约了该矿机房的面积。另外在局端和用户不用设置传统的有源器件,只需要在小区楼道安装用户端口,不需要另外建造大的通信机房,这样可以节省了建设

费用且维护方便快捷。

三、光纤接入网的劣势

光纤接入网最大的问题就是成本较高。特别是光节点离用户越近,每个用户所分摊的接

入设备的成本就随之增高。此外,光纤接入网与无线接入网相比还得需要管道资源。这也导

致许多运营商看好光纤接入技术,却又不得选择无线接入技术的因故。目前,主要影响光纤

高速光纤通信技术研究论文.

高速光纤通信技术研究论文 2018-12-12 摘要:本文首先简要分析了高速光纤通信技术;然后分析了高速光纤通信系统的损伤问题;其次重点针对色散问题进行相关补偿技术分析;最后为相关研究指明了方向。 关键词:高速;光纤通信技术;损伤;补偿技术 近年来,光纤通信在我们的日常生活中运用越来越普遍,人们在实际应用中关注最多的还是质量问题,对通讯质量提出了很高的要求。高速光纤通讯技术凭借其信息容量大、传播速率高等特征在行业中得到了广泛应用,并且在发展中取得了显著成果。然后在高速光纤通信的传播过程中,也存在着诸多的损伤问题。针对问题来研究分析相关补偿技术具有重要的理论意义。 1高速光纤通信技术的分析 1.1光纤通信的基本原理 光纤的全称是光导纤维,其通信原理是首先将调制好的电信号通过光电转换模块转换为光信号之后,通过光波传输信息。不是单根光纤传输信息,而是许多根光纤聚集以光缆的形式来进行信息传输[1]。光纤通信系统的组成框图如图1所示。从图中可以看出,电信号通过光发射机、光纤接口、中继器、光接收机这三个模块,从而形成光纤通信系统;当数据需要通过光纤通信系统来进行数据传输时,首选需要将电信号转换为光信号,这个转换过程是在光发射机内进行的。光发射机内部主要是由光源和调制模块这两大部分组成,调制模块将电信号转换成光信号,再通过光源模块以光信号的形式发射出去。光纤接口主要是指物理接口即光电转换模块与光纤直接的接口,例如LC、FC、ST、SC等接口,由于光信号在传输的过程中存在衰减,中继器可以通过对光信号的重发或者转发,从而扩大整个通信系统的传输的距离。光接收机主要是完成光电信号的转换,光接收机内部包括光检测器、放大器、信号恢复这两个部分,光检测器主要是对接收到的光信号强度来进行检测,然后转换为电信号,放大器是对光检测器输出的电信号进行放大,信号恢复是对放大后的信号进行恢复成发送之前对应的逻辑1和0,信号恢复后的信号输出电信号给后级数字信号处理系统进行处理[2]。 1.2光纤通信的特征 光纤通信具有频带宽,传输容量大,损耗低,中继距离比较长,抗电磁干扰,安全性能高等特征。光纤通信的频带宽,可以传输宽频带的信息;光纤的损耗低,所以能实现长距离中继,主要适用于干线、长途网络;光纤通信不受外界电磁的影响,在抗电磁干扰方面具有显著的优势;光纤在传输过程中,密

光纤通信技术论文

光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点:(1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 光复用技术 复用技术是为了提高通信线路的利用率,而采用的在同一传输线路上同时传输多路不同信号而互不干扰的技术。光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光波分复用(WDM)技术是在一芯光纤中同时传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来,并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号分开,并作进一步处理,恢复出原信号后送入不同的终端。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长(能传输368亿路电话),近期的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏振模色散复用,OPDM)。而光时分复用(OTDM)技术指利用高速光开关把多路光信号在时域里复用到一路上的技术。光时分复用(OTDM)的原理与电时分复用相同,只不过电时分复用是在电域中完成,而光时分复用是在光域中进行,即将高速的光支路数据流(例如10Gbit/s,甚至40Gbit/s)直接复用进光域,产生极高比特率的合成光数据流。

光纤通信技术特点和发展

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

光纤通信论文毕业设计

光纤通信 专业: 通信技术班级: 0701 姓名: 学号: 完成日期: 2009 年11 月30 日

摘要本文简要介绍了光纤通信发展的历史及现状,较全面的向大家展现了制作"光缆开剥与接续"多媒体课件的过程。与此同时,还对课件制作过程中使用的工具和器材及作者的心得体会作了基本介绍,希望能给读者以启发. 一、前言 光纤通信自问世以来,通过其通信容量大、传输距离长、抗电磁干扰、保密性好、重量轻、资源丰富等优点,已经广泛应用于市内局间中继,长途通信和海底通信等公用通信网以及铁道、电力等专用通信网,同时在公用电话、广播和计算机专用网中得到应用.并已逐渐用于用户系统.光缆将取代过去用户系统无法实现宽频信息传输的传统线路,这样便可提供高质量的电视图像和高速数据等新业务,以满足人们广泛的生活和业务的需要. 光缆线路,是光纤通信系统组成的重要部分.光缆线路的建设质量是确保光通信系统性能良好和长期稳定的关键,而光缆开剥接续则是光缆线路施工中工程量大,技术要求复杂的一道重要工序,其质量好坏直接影响线路的传输质量和寿命,光缆开剥、接续、封合的快慢将影响整个工期的进程,对于20

芯以上光缆的接续不仅要求施工人员技术熟练,而且要求施工组织严密,在保证质量的前提下,确保施工的时间。 . 二、光纤通信的发展概况及动向 2-1发展概况 光波是人们最熟悉的电磁波,其波长在微米级,频率为100000亿HZ数量级.由电磁波谱中可以看出,紫外线、可见光、红外线均属于光波的范畴.目前光纤通信使用的波长范围是在近红外区内,即波长为0.8-1.8um可分短波长波段和长波长波段,短波长波段是指波长为0.85um,长波长波段是指1.31um和1.51um,这是目前采用的三个通信窗口. 利用光导纤维作为光的传输介质的光纤通信其发展只有二、三十年的历史,它的发展以1960年美国人Mainman发明的红宝石激光器和1966年英籍华人高琨博士提出利用SIO2石英玻璃可制成低损耗光纤的设想为基础,直到1970年美国康宁公司研制出损耗为20db/km的光纤,才使光纤进行远距离传输成为可能.自此以后,光纤通信在世界范围内展开并得到迅猛发展,在短短的一、二十年的时间中,以从0.85um短波长多模光纤发展到1.31um-1.55um的长波长单模光纤,同时开发出许多新型光电器件,激光器寿命已达十万小时甚至百万小时,许多国家相继建成了长距离的光纤通信系统.

我国光纤通信技术论文.doc

我国光纤通信技术论文 2020年4月

我国光纤通信技术论文本文关键词:光纤通信,我国,论文,技术 我国光纤通信技术论文本文简介:1光纤通信技术的主要特点 1.1损耗低,传输距离远与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用 我国光纤通信技术论文本文内容: 1光纤通信技术的主要特点 1.1损耗低,传输距离远 与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在

长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。 1.2抗干扰能力强 与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO 的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。 1.3安全性和保密性高 因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使

光纤通信技术论文

光纤通信技术论文 论光纤通信技术的特点和发展趋势 摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。本文探讨了光纤通信技术的主要特征及发展趋势。 关键词:光纤通信技术特点发展趋势接入技术 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1.光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤

通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2.光纤通信技术的特点 2.1 频带极宽,通信容量大。 光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。 目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。

光纤通信的发展趋势探讨毕业论文

本科生毕业设计(论文)资料第一部分论文说明书

(2010届) 本科生毕业论文光纤通信的发展趋势探讨

长沙学院本科生毕业论文光纤通信的发展趋势探讨 系(部):电子与通信工程系 专业:通信工程

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解XX大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 光纤通信的诞生与发展是电信史上的一次重要革命。近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望。 本文首先介绍了光纤通信发展的历史,通过对光纤基本构成:光纤、光源、光检测器特点的介绍,表明光纤通信技术的发展是离不开光器件的发展的,全文围绕光纤通信的容量和速率以及实际应用的几个发展趋势作了详细的介绍,并对世界较前沿的通信技术作了简单的介绍。 通过对光纤通信几个发展趋势进行的学习以及实际工作的了解,发现传统的通信网络无论从业务量设计、容量安排、组网方式,以及交换方式上来讲都已无法适应这些新的发展趋势,各大公司都在设计未来网络的蓝图,诸如可持续发展的网络、一体化网和新的公用网等等,其基本思路都是相同的,即具有统一的通信协议和巨大的传输容量,能以最经济的成本,灵活可靠持续地支持一切已有和将有的业务和信号。 关键词:DWDM MSTP TMN SDH/SONET 智能ASON FTTH ABSTRACT The birth and development of optical fiber communication is a major revolution in

光纤通信分析论文

光纤通信分析论文 一、光波分复用(WDM)技术 光波分复用(WavelengthDivisionMultiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM 是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM 系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)

光纤通信论文

浅谈光纤光缆技术的未来前景 学院电子信息学院 年级大三 专业电信 日期2017.6 姓名张辂 学号1428403044

摘要 (1) 一、有源光纤 (2) (一)色散补偿光纤(Dispersion Compesation Fiber,DCF) (2) (二)光纤光栅(Fiber Grating) (2) (三)多芯单模光纤(Multi-Coremono-Mode Fiber,MCF) (3) 二、光有源器件的进展 (3) (一)集成器件 (3) (二)垂直腔面发射激光器(VCSEL) (3) (三)窄带响应可调谐集成光子探测器 (3) (四)基于硅基的异质材料的多量子阱器件与集成(SiGe/Si MQW) (3) 三、光无源器件 (4) 四、光复用技术 (4) 五、光放大技术 (4) 参考文献 (6)

当今世界,是信息的世界。“得信息者得天下”,已经成为世界各国的共识。作为个人,在这个“互联网+”的大数据时代中,为了生计也不得不获取各种各样的信息。在这样的背景下,信息高速公路建设已成为世界性热潮。而光纤通信技术作为信息高速公路的核心和支柱,自然而然的被推到了时代的前线,成为各国大力发展的重要目标。 光纤通信是一个巨大的系统工程。它的各个组成部分互为依存、互相推动,共同向前发展。就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 本文将着重就光纤光缆技术极其相关的光有源器件和光无源器件做一定的介绍,共同探讨光纤光缆技术的未来前景。 关键词:光纤、通信、前景。 Abstract Today’s world is an informational world.“The one who wins the information wins the whole world”has becomes a common view worldwide. As for the individual,living in the Age of“Internet+”and Big Data, we have to gain various sorts of information in order to make a living.In this context,the information highway construction has become a worldwide craze.As the core of the information highway and the pillar of the optical fiber communication technology has become a top priority. Optical fiber communication industry is a huge systematic project. Its components are interdependent and mutually promote,together forward. On optical fiber communications technology themselves,it should include the following major components:fiber optical cable technology,transmission technology,optical active devices,optical passive devices and optical network technology. This paper will focus on the optical fiber cable technology and the related optical active devices and optical passive devices,and discuss the future of the optical fiber cable technology together. Keywords:optical fiber,communication,prospect.

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 1、导言 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 2、光纤通信技术的发展历史总结

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。 光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。 上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0. 2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。 由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。 3、光纤通信技术的现状研究

光纤通信基础知识

光纤通信基础知识 基本光纤通信系统 最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。下面是光通信系统图。 光通信系统图 数字光纤通信系统 光纤传输系统是数字通信的理想通道。与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。 电发射端机 主要任务是PCM编码和信号的多路复用。 多路复用是指将多路信号组合在一条物理信道上进行传输,到接收端再用专门的设备将各路信号分离出来,多路复用可以极大地提高通信线路的利用率。 在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulsecodemodulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。

抽样是指从原始的时间和幅度连续的模拟信号中离散地抽取一部分样值,变换成时间和幅度都是离散的数字信号的过程。 抽样所得的信号幅度是无限多的,让这些幅度无限多的连续样值信号通过一个量化器,四舍五入,使这些幅度变为有限的M种(M为整数),这就是量化。由于在量化的过程中幅度取了整数,所以量化后的信号与抽样信号之间有一个差值(称为量化误差),使接收端的信号与原信号间有一定的误差,这种误差表现为接收噪声,称为量化噪声。码位数M越多,分级就越细,误差越小,量化噪声也越小。 编码是指按照一定的规则将抽样所得的M种信号用一组二进制或者其它进制的数来表示,每种信号都可以由N个2二进制数来表示,M和N满足M=2N。例如如果量化后的幅值有8种,则编码时每个幅值都需要用3个二进制的序列来表示。需要注意的是,此处的编码仅指信源编码,这和后面提到的信道编码是有所区别的。 现以话音为例来说明这个过程。我们知道话音的频率范围是300~3,400Hz,在抽样的时候,要遵循所谓的奈奎斯特抽样率,实际中按8,000Hz的速率进行抽样。为了保证通话的质量,在长途干线话路中采用的是8位码(28=256个码组)。这样量化值有256种,每一种量化值都需要用8位二进制码编码,那么每一个话路的话音信号速率为8×8=64kbps。 奈奎斯特抽样定理:要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。 多路复用技术包括:频分多路复用(FDM)、时分多路复用(TDM)、波分多路复用(WDM)、码分多址(CDMA)和空分多址(SDMA)。 时分多路复用:当信道达到的数据传输率大于各路信号的数据传输率总和时,可以将使用信道的时间分成一个个的时间片(时隙),按一定规则将这些时间片分配给各路信号,每一路信号只能在自己的时间片内独占信道进行传输,所以信号之间不会互相干扰。 频分多路复用:当信道带宽大于各路信号的总带宽时,可以将信道分割成若干个子信道,每个子信道用来传输一路信号。或者说是将频率划分成不同的频率段,不同路的信号在不同的频段

光纤通信的发展前景

光纤通信的现状及其未来发展 光信息科学与技术08-1班 韩欣欣 08133102 关键词:光纤通信 光纤到户 未来发展 摘要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率,大容量的通信成为可能。目前它已经成为一种不可替代的、最主要的信息传输技术。 引言: 光无处不在。在人类发展的早期,人类已经开始使用光传递信息了。但那时候传递的信息容量非常少,局限性也很大。 随着社会的发展,信息传输与交换量与日俱增,传统的电通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。这样就出现了现在的光通信技术,就是光纤通信。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。 与传统的电通信相比,光纤通信是以很高频率的光波作为载波,以光纤为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,自其出现以来就备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年至今增加了近一万倍 传输速度在过去的10年中大约提高了100倍。 光纤发展与应用 为了发展光通信技术,人们又考虑和尝试了各种传输介质,但是他们的损耗都非常的高。直到1966年美籍华人高锟博士和霍克哈姆发表论文,预见了低损耗的光纤能够应用于通信,敲开了光纤通信的大门。从此光纤在通信中的应用引起了人们的重视。 很快在1970年8月美国康宁公司首次研制成功损耗为20dB/kM光纤。光纤通信的时代由此开始了。 1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平

光纤通信技术特点分析论文

光纤通信技术特点分析论文 论文关键词:光纤通信技术,特点,应用 论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。 1.光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 2.光纤通信技术的特点 (1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不

通信工程毕业论文光纤通信技术的现状及发展趋势

光纤通信技术的现状及发展趋势 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它

在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过 的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限, 在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径 和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C 低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。 并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全 介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设 的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生 产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如 大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是

光纤通信的发展趋势

光纤通信的发展趋势 摘要:随着用户对宽带接入技术提出更高的需求,光纤宽带接入技术逐步发展 成熟。本文围绕我国光纤宽带光纤网的发展趋势描述,分析了光纤通信技术发展、光纤技术的优点与劣势,并提出了一些作者自己的见解,希望能够帮助到我国光 纤宽带事业的发展。 关键词:光纤;通信;宽带;发展趋势 引言: 随着技术的进步,市场需求的增长,光纤通信技术的飞速发展,加快了“光速经济” 的到来。现代社会对通信的依赖越来越大,网络的生存性显得至关重要,通信的运行环境变化和 发展对光纤通信提出了更高的要求。光纤通信在网络信息时代孕育而生,作为信息的载体, 在很大程度上改变了通信方式,尤其是以光纤作为传输媒介,具有通信容量大、耗损小、频 带宽等特点,极大地推动了通信领域的发展。我国经济的进一步发展必将形成新的光纤通信 市场需求,像其他通信技术一样,光纤通信又一次呈现了蓬勃发展的新局面。 正文 一、光纤接入技术定义 所谓光纤接入网(OAN)就是采用光纤传输技术的接入网,一般指远端模块或本地交换 机与用户之间采用光纤通信或部分采用光纤通信的系统。一般情况下,OAN 泛指采用基带数 字传输技术并且以传输双向交互式业务为目的的接入传输系统,这样能够把数字或模拟技术 升级交互式业务或者广播式传输宽带。按照接入网室外传输设施中是否配备源设备,光纤接 入网(OAN)也可以划分为有源光网络(AON)与无源光网络(PON),前者采用电复用器 分路,后者则是采用光分路器分路。现阶段宽带接入网进入了巨大的发展轨道,各种光纤接 入网技术均得到了长足发展。 二、光纤接入网的优点 与其他接入网技术相比,光纤接入主要有以下优点: 1)光纤接入网能满足用户对各种业务的需求 人们对通信业务的要求也普遍提高,除了看电视、打电话以外,还希望有高速计算机通信、视频点播(VOD)、高清晰度电视(HDTV)、远程教学、家庭购物、家庭银行等等。这 些业务仅靠双绞线或铜线是难以实现的。 2)光纤接入采用的传输介质是光纤,其抗干扰性能好、频带宽、衰减小,保障了信号 传输的质量,加上光纤接入使用的网络与电话网是不相同的,光纤接入主要是通过光纤将小 区中心交换机和局端交换机相连、小区中心交换机和楼道交换机相连,这样的网络可靠性高、稳定性强。用户接入简单化,接入速率高,覆盖范围比ADSL还广。 3)光纤接入网的性能不断提高,价格不断下降,而铜缆的价格却在不断上涨。 4)光纤宽带所用的集线器、以太网交换机等组网设备的成本比较低。 5)光纤接入网提供数据业务,有较完善的管理和监控系统,可以适应宽带综合业 务数字网的需要,能够做到使信息高速公路畅通无阻。 6)光纤可以克服铜线电缆一些无法克服的限制因素。光纤频带宽、损耗低,解除了铜 线径小的限制。此外,光纤不受电磁干扰,确保了信号额传输质量,用光缆代替铜缆,能够 解决城市通信地下管道的拥挤问题。 7)光纤设备占用小,而其它端口设备主要安装在小区楼道内,该矿电信机房可用面积 已经很少,使用光纤接入节约了该矿机房的面积。另外在局端和用户不用设置传统的有源器件,只需要在小区楼道安装用户端口,不需要另外建造大的通信机房,这样可以节省了建设 费用且维护方便快捷。 三、光纤接入网的劣势 光纤接入网最大的问题就是成本较高。特别是光节点离用户越近,每个用户所分摊的接 入设备的成本就随之增高。此外,光纤接入网与无线接入网相比还得需要管道资源。这也导 致许多运营商看好光纤接入技术,却又不得选择无线接入技术的因故。目前,主要影响光纤

光纤通信技术论文

光纤通信技术论文 光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输 媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点: (1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交 换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)

光纤通信发展趋势

光纤通信技术的发展与展望 摘要:具有损耗低、传榆频带宽、容量大、体积小、重量轻等优点的光纤通信备受业內人士青睐,发展非常迅速,文章概述光纤通信技术的发展现状,并展望其发展趋势。 关键词:光纤通信技术发展趋势 前言: 所谓光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。 从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 一、光纤通信的发展史 为了发展光通信技术,人们考虑和尝试了各种传输介质,其中包括利用玻璃材料制成光导纤维来传输光信号,但是当时最好的光学玻璃材料的损耗在1000dB/km以上,这么高的传输损耗根本就无法用于通信。 1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了光纤通信的基础。 1970年,光纤研制取得了重大突破。美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。因此,光纤通信开始可以和同轴电缆通信竞争,世界各国相继投入大量人力物力,把光纤通信的研究开发推向一个新阶段。 1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平的不断提高,进而将梯度折射率多模光纤的衰减系数降至4dB/km。 1973年,美国贝尔实验室研制的光纤损耗降低到2.5dB/km。1974年降到了1.1dB/km。 1976年日本电报电话(NTT)公司等单位将光纤损耗降低到0.47dB/km。 在以后的10年中,光纤损耗,接近了光纤最低损耗的理论极限。 我国光纤发展状况: 我国从1974年就开始了光纤通信的基础研究,并在几年之内就取得了阶段性的研究成果。在此基础上,20世纪70年代末进行了光纤通信系统现场试验。90年代初期,我国开始了光纤通信系统的大量建设,光缆逐渐取代电缆,并完成了“八纵八横”国家干线。这些干线主要是采用PDH140Mbit/s系统。随着市

相关主题
文本预览
相关文档 最新文档